CN112159267B - 降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法 - Google Patents

降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法 Download PDF

Info

Publication number
CN112159267B
CN112159267B CN202010997157.1A CN202010997157A CN112159267B CN 112159267 B CN112159267 B CN 112159267B CN 202010997157 A CN202010997157 A CN 202010997157A CN 112159267 B CN112159267 B CN 112159267B
Authority
CN
China
Prior art keywords
maggot
compost
antibiotics
resistance genes
manure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010997157.1A
Other languages
English (en)
Other versions
CN112159267A (zh
Inventor
王成
黄伟明
胡瑞文
罗智文
周诤源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202010997157.1A priority Critical patent/CN112159267B/zh
Publication of CN112159267A publication Critical patent/CN112159267A/zh
Application granted granted Critical
Publication of CN112159267B publication Critical patent/CN112159267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/10Addition or removal of substances other than water or air to or from the material during the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/80Separation, elimination or disposal of harmful substances during the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Pest Control & Pesticides (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明属于生物环保技术领域,具体涉及一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法。该方法将竹炭与竹醋液组合作为蛆粪堆肥中的抗生素降解促进剂,可以显著降低蛆粪堆肥中抗生素,特别是磺胺类抗生素的含量,同时显著减少磺胺类抗生素抗性基因丰度,提高堆肥产品的品质和安全性,并且所用材料成本低、操作简单、便于控制、生产工艺不造成二次污染,适于大范围推广应用。

Description

降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法
技术领域
本发明属于生物环保技术领域。更具体地,涉及一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法。
背景技术
由于具有治疗控制疾病和促进动物生长等优点,兽用抗生素在集约化畜禽养殖中得到了广泛的应用。2013年中国抗生素总使用量约为16.2万吨,其中8.4 万吨用于畜禽养殖业。但在畜禽饲料中普遍存在超量添加抗生素的现象,且抗生素在动物体内不能被完全吸收代谢,大部分(约30%~90%)以原药或代谢产物的形式随粪便排泄出来,通过多种途径对环境和人体健康产生巨大的潜在危害,如影响微生物生长代谢、危及生态系统平衡、增强人体耐药性和干扰人类内分泌系统等。大量研究证实,畜禽粪便已成为抗生素的重要富集位点,未经处理直接作为肥料施用或排放都具有潜在的生态环境和人类健康风险。因此,很有必要开展畜禽粪便中抗生素控制与削减技术研究。
目前的研究表明,畜禽粪便好氧堆肥,即微生物在好氧条件下对畜禽粪便进行吸收、氧化和分解的过程,能够有效减少畜禽粪便中抗生素的含量,是畜禽粪便实现无害化、资源化利用的主要手段。如中国专利申请CN103387432A公开了一种竹炭猪粪堆肥高效去除抗生素的方法,该方法利用风干的锯末、腐熟粪便和竹炭合理的复配在一起,经过高温堆肥发酵后,可以使猪粪中有害的抗生素得到显著的去除,还能提高肥料的品质。但是好氧堆肥对畜禽粪便中抗生素的去除是有选择性的,在一定程度上取决于粪便种类,如好氧堆肥可显著减少鸡粪、猪粪和牛粪中磺胺类抗生素含量,但对蛆粪中磺胺类抗生素的去除效果并不理想。这些在蛆粪中残留下来的抗生素极易诱发抗性基因并快速在环境介质中的传播和迁移,而抗生素抗性基因在环境中的持久性残留、传播和扩散比抗生素本身的危害还要大。
因此,为实现畜禽粪便特别是蛆粪的无害化处理,达到显著降低堆肥中的抗生素特别是磺胺类抗生素含量,减少抗性基因的产生及传播,研制一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法势在必行。
发明内容
本发明要解决的技术问题是克服现有技术无法较好去除蛆粪中磺胺类抗生素,减少抗生素抗性基因的缺陷和不足,提供一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法。
本发明的目的是提供一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法。
本发明上述目的通过以下技术方案实现:
一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法,于蛆粪中加入抗生素降解促进剂,混合均匀作为初始物料,进行好氧堆肥处理;
其中,所述抗生素降解促进剂由竹炭和竹醋液按质量比(7~9):1组成。
本发明中的竹炭是竹材热解得到的主要产品,有丰富的孔隙分布和高比表面积,而且表面存在羧基、酚羟基等含氧官能团和少量含硫、氢、氯等其它元素的表面官能团,具有结构稳定、空隙丰富、比表面高和吸附特性强等特性。另外的,在烧制竹炭过程中竹材热解会形成竹醋液,其具有改良土壤、防治病虫害、减少农药使用、促进作物生长、提高产品品质等作用,而且对人畜无毒无害。本发明将竹炭与竹醋液组合作为蛆粪堆肥中的抗生素降解促进剂,可以显著降低蛆粪堆肥中抗生素,特别是磺胺类抗生素的含量,同时显著减少磺胺类抗生素抗性基因丰度,提高堆肥产品的品质和安全性,并且所用材料成本低、操作简单、便于控制、生产工艺不造成二次污染,适于大范围推广应用。
进一步地,所述抗生素降解促进剂分3次加入,分别为混合初始物料时、好氧堆肥高温期和好氧堆肥降温腐熟期,每次添加量为每吨蛆粪加入20~30kg抗生素降解促进剂。分别于混合初始物料时、好氧堆肥高温期和好氧堆肥降温腐熟期加入抗生素降解促进剂,有利于保持抗生素降解促进剂的有效浓度,更好地降解抗生素,减少抗生素抗性基因丰度。
更进一步地,所述好氧堆肥高温期为7~10天,好氧堆肥降温腐熟期为20~35 天。
进一步地,所述竹炭的比表面积为400~600m2/g,平均粒径为2~4mm,密度为0.48~0.52g/cm3
更进一步地,所述竹醋液的密度为1.02~1.25g/cm3,pH为2.2~2.5,有机酸含量为31.27~43.5%。
进一步地,所述初始物料还包括草木灰和锯末。其中,草木灰和锯末的直径大小控制在2~4mm。
更进一步地,所述草木灰的添加量为蛆粪质量的9.5~10.8%,所述锯末的添加量为蛆粪质量的15.5~25.3%。
进一步地,所述初始物料的含水率为55~65%,碳氮比为18~23,pH为 7.0~8.5。
更进一步地,所述pH采用石灰、氯化铁调节。
进一步地,好氧堆肥处理过程中,每3~5天翻堆1次。
更进一步地,所述好氧堆肥处理时间为40~50天。
进一步地,所述好氧堆肥处理时间中,温度大于55℃需至少持续10天。
本发明具有以下有益效果:
本发明一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法,将竹炭与竹醋液组合作为蛆粪堆肥中的抗生素降解促进剂,可以显著降低蛆粪堆肥中抗生素,特别是磺胺类抗生素的含量,同时显著减少磺胺类抗生素抗性基因丰度,提高堆肥产品的品质和安全性,并且所用材料成本低、操作简单、便于控制、生产工艺不造成二次污染,适于大范围推广应用。
附图说明
图1为本发明实施例和对比例堆肥过程中的温度变化曲线图。
图2为本发明实施例和对比例堆肥过程中磺胺类抗生素(磺胺二甲嘧啶、磺胺氯哒嗪)含量曲线图。
图3为本发明实施例和对比例堆肥过程中堆肥磺胺类抗性基因(sulI、sulII) 的丰度曲线图。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法
所述降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法具体包括以下步骤:
于1吨蛆粪中加入30kg抗生素降解促进剂(由竹炭和竹醋液按质量比8:1 组成)、100kg草木灰和200kg锯末,混合均匀作为初始物料,使初始物料(第 0天)的含水率为60.8%,碳氮比为18.9,pH为7.3(采用采用石灰、氯化铁调节),堆体初始尺寸为长4.0m、宽3.2m、高2.2m,进行好氧堆肥处理;
当第7天进入好氧堆肥高温期时,添加30kg抗生素降解促进剂(由竹炭和竹醋液按质量比8:1组成);当第21天进入好氧堆肥降温腐熟期时,再添加30kg 抗生素降解促进剂(由竹炭和竹醋液按质量比8:1组成);整个堆肥过程采用槽式好氧堆肥工艺,每3天机械间歇翻堆1次,总共堆肥发酵42天;
其中,竹炭的比表面积为425m2/g,平均粒径为2.8mm,密度为0.49g/cm3;竹醋液的密度为1.15g/cm3,pH为2.3,有机酸含量为38.5%。
实施例2一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法
所述降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法具体包括以下步骤:
于1吨蛆粪中加入20kg抗生素降解促进剂(由竹炭和竹醋液按质量比9:1 组成)、110kg草木灰和200kg锯末,混合均匀作为初始物料,使初始物料(第 0天)的含水率为61.8%,碳氮比为19.2,pH为7.5(采用采用石灰、氯化铁调节),堆体初始尺寸为长4.0m、宽3.2m、高2.2m,进行好氧堆肥处理;
当第7天进入好氧堆肥高温期时,添加20kg抗生素降解促进剂(由竹炭和竹醋液按质量比9:1组成);当第21天进入好氧堆肥降温腐熟期时,再添加20kg 抗生素降解促进剂(由竹炭和竹醋液按质量比9:1组成);整个堆肥过程采用槽式好氧堆肥工艺,每3天机械间歇翻堆1次,总共堆肥发酵42天;
其中,竹炭的比表面积为500m2/g,平均粒径为3.2mm,密度为0.50g/cm3;竹醋液的密度为1.05g/cm3,pH为2.4,有机酸含量为40.5%。
实施例3一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法
所述降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法具体包括以下步骤:
于1吨蛆粪中加入30kg抗生素降解促进剂(由竹炭和竹醋液按质量比7:1 组成)、100kg草木灰和200kg锯末,混合均匀作为初始物料,使初始物料(第 0天)的含水率为61.1%,碳氮比为19.9,pH为7.4(采用采用石灰、氯化铁调节),堆体初始尺寸为长4.0m、宽3.2m、高2.2m,进行好氧堆肥处理;
当第7天进入好氧堆肥高温期时,添加30kg抗生素降解促进剂(由竹炭和竹醋液按质量比7:1组成);当第21天进入好氧堆肥降温腐熟期时,再添加30kg 抗生素降解促进剂(由竹炭和竹醋液按质量比7:1组成);整个堆肥过程采用槽式好氧堆肥工艺,每5天机械间歇翻堆1次,总共堆肥发酵42天;
其中,竹炭的比表面积为455m2/g,平均粒径为2.2mm,密度为0.52g/cm3;竹醋液的密度为1.22g/cm3,pH为2.4,有机酸含量为40.5%。
对比例1一种堆肥方法
所述堆肥方法具体包括以下步骤:
于1吨蛆粪中加入120kg草木灰和210kg锯末,混合均匀作为初始物料,使初始物料(第0天)的含水率为61.5%,碳氮比为22.8,pH为7.5(采用采用石灰、氯化铁调节),每个堆体初始尺寸为长4.0m、宽3.2m、高2.2m,进行好氧堆肥处理;
整个堆肥过程采用槽式好氧堆肥工艺,每3天机械间歇翻堆1次,总共堆肥发酵42天。
对比例2一种堆肥方法
所述堆肥方法具体包括以下步骤:
于1吨蛆粪中加入30kg竹炭、100kg草木灰和200kg锯末,混合均匀作为初始物料,使初始物料(第0天)的含水率为60.8%,碳氮比为18.9,pH为7.8 (采用采用石灰、氯化铁调节),每个堆体初始尺寸为长4.0m、宽3.2m、高2.2m,进行好氧堆肥处理;
当第7天进入好氧堆肥高温期时,添加30kg竹炭;当第21天进入好氧堆肥降温腐熟期时,再添加30kg竹炭;整个堆肥过程采用槽式好氧堆肥工艺,每 3天机械间歇翻堆1次,总共堆肥发酵42天。
其中,竹炭的比表面积为425m2/g,平均粒径为2.8mm,密度为0.49g/cm3
实验例1堆肥温度测定
测定实施例1、对比例1~2的堆肥堆体温度,方法为:利用电子温度计分别测定堆体上部(表面下10cm)、中部和底部(底部以上10cm)的温度,取平均值作为整个堆体的温度值;结果参见图1。
由图可见,实施例1、对比例1~2的堆肥都经历了升温期、高温期和降温腐熟期这三个典型的堆肥阶段,实施例1(添加竹炭与竹醋液)和对比例2(添加竹炭)处理的可以更快速地进入高温期,并在高温期持续时间更长;对比例1(空白处理)、对比例2(添加竹炭)、实施例1(添加竹炭与竹醋液)处理大于55℃的发酵温度分别持续了10、15、16天。
实验例2堆肥磺胺类抗生素(磺胺二甲嘧啶、磺胺氯哒嗪)测定
分别于第0、1、2、3、4、5、6周于实施例1、对比例1~2的堆肥取样,样品通过固相小柱进行萃取,分别称取萃取后样品0.50g(精确至0.01g),利用 McIlvaine-Na2EDTA缓冲液浸提,然后用草酸甲醇溶液洗脱净化,经氮气吹干后定容,最后利用高效液相色谱仪(Thermo Scientific,美国)进行测定磺胺二甲嘧啶、磺胺氯哒嗪含量,测定结果参见图2。
由图可见,实施例1(添加竹炭与竹醋液)和对比例2(添加竹炭)处理的堆肥在整个蛆粪堆肥过程中的磺胺类抗生素(磺胺二甲嘧啶和磺胺氯哒嗪)一直低于对比例1(空白处理)的堆体;相比于对比例1(空白处理),对比例2(添加竹炭)可分别减少蛆粪堆肥过程中磺胺二甲嘧啶和磺胺氯哒嗪浓度的60.9%和 32.7%,实施例1(添加竹炭与竹醋液)可分别减少蛆粪堆肥过程中磺胺二甲嘧啶和磺胺氯哒嗪浓度的67.3%和38.6%。
实验例3堆肥磺胺类抗性基因(sulI、sulII)的丰度测定
分别于第0、1、2、3、4、5、6周于实施例1、对比例1~2的堆肥取样,冷冻干燥后分别取0.5g蛆粪样品,按照Omega EZNATM soil DNA试剂盒说明书提取基因组DNA,采用表1中所示的引物进行荧光定量PCR;利用SYBR法进行荧光定量扩增反应条件,所用仪器为iQTM5多重实时荧光定量PCR仪 (Bio-Rad,USA),所用试剂为
Figure RE-RE-GDA0002773866370000041
Premix Ex-TaqTM Kit(Takara),质粒的提取采用常规质粒抽提试剂盒Plasmid Mini Kit(OMEGA)。
表1供试引物序列
Figure RE-RE-GDA0002773866370000051
其中,标准曲线PCR体系与样品反应体系相同,根据抽提质粒计算目的基因拷贝数,10倍系列稀释(10-1,10-2,10-3,10-4,10-5和10-6)用作模板,制作标准曲线,根据标准曲线计算出样品中磺胺类抗性基因(sulI、sulII)的丰度,结果参见图3。
由图可见,与对比例1(空白处理)相比,实施例1(添加竹炭与竹醋液) 和对比例2(添加竹炭)均会影响蛆粪堆肥过程中磺胺类抗性基因(sulI、sulII) 的丰度;但相对比例2(添加竹炭),实施例1(添加竹炭与竹醋液)可显著地降低蛆粪堆肥过程中磺胺类抗性基因(sulI、sulII)的丰度,sulI和sulII降解率分别高达61.8%和63.6%。
基于三个不同处理在磺胺类抗性素及其抗性基因的变化,采用分阶段均匀混合的方式将竹炭与竹醋液添加至堆肥原料中的这种技术手段被认为是一种既能削减蛆粪堆肥中磺胺类抗生素浓度、又能显著减少磺胺类抗生素抗性基因丰度有效方法。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法,其特征在于,于蛆粪中加入抗生素降解促进剂,混合均匀作为初始物料,进行好氧堆肥处理;
其中,所述抗生素降解促进剂由竹炭和竹醋液按质量比(7~9):1组成;
所述抗生素降解促进剂分3次加入,分别为混合初始物料时、好氧堆肥高温期和好氧堆肥降温腐熟期,每次添加量为每吨蛆粪加入20~30kg抗生素降解促进剂;
所述初始物料还包括草木灰和锯末。
2.根据权利要求1所述方法,其特征在于,所述竹炭的比表面积为400~600m2/g,平均粒径为2~4mm,密度为0.48~0.52g/cm3
3.根据权利要求1所述方法,其特征在于,所述竹醋液的密度为1.02~1.25g/cm3,pH为2.2~2.5,有机酸含量为31.27~43.5%。
4.根据权利要求1所述方法,其特征在于,所述草木灰的添加量为蛆粪质量的9.5~10.8%,所述锯末的添加量为蛆粪质量的15.5~25.3%。
5.根据权利要求1所述方法,其特征在于,所述初始物料的含水率为55~65%,碳氮比为18~23,pH为7.0~8.5。
6.根据权利要求1所述方法,其特征在于,所述pH采用石灰、氯化铁调节。
7.根据权利要求1所述方法,其特征在于,好氧堆肥处理过程中,每3~5天翻堆1次。
8.根据权利要求1所述方法,其特征在于,所述好氧堆肥处理时间为40~50天。
CN202010997157.1A 2020-09-21 2020-09-21 降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法 Active CN112159267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010997157.1A CN112159267B (zh) 2020-09-21 2020-09-21 降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010997157.1A CN112159267B (zh) 2020-09-21 2020-09-21 降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法

Publications (2)

Publication Number Publication Date
CN112159267A CN112159267A (zh) 2021-01-01
CN112159267B true CN112159267B (zh) 2022-04-08

Family

ID=73863184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997157.1A Active CN112159267B (zh) 2020-09-21 2020-09-21 降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法

Country Status (1)

Country Link
CN (1) CN112159267B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423427A (zh) * 2008-11-27 2009-05-06 浙江大学 一种减少氮素损失的猪粪堆肥制备方法
CN103387432A (zh) * 2013-07-29 2013-11-13 中国林业科学研究院亚热带林业研究所 一种竹炭猪粪堆肥高效去除抗生素的方法
CN103739328A (zh) * 2013-12-27 2014-04-23 环境保护部华南环境科学研究所 一种高效降解畜禽粪便中磺胺类抗生素的好氧堆肥方法
CN104366029A (zh) * 2014-06-09 2015-02-25 江阴中炬生物科技有限公司 一种肉鸡饲料添加用竹醋液及其应用
CN204622707U (zh) * 2015-05-10 2015-09-09 徐小芳 毛巾
CN106748328A (zh) * 2017-03-08 2017-05-31 商洛学院 一种土壤污染修复剂
CN107129374A (zh) * 2017-06-05 2017-09-05 西北农林科技大学 一种降低有机肥中四环素类抗性基因丰度的方法
CN107190235A (zh) * 2017-05-03 2017-09-22 中山大学 一种实现多种二氧化钒低维结构的脉冲激光沉积的制备方法
CN107698119A (zh) * 2017-09-17 2018-02-16 湖南山河美生物环保科技股份有限公司 一种实现猪场粪污资源化利用零污染排放的治理方法
CN108329087A (zh) * 2018-02-01 2018-07-27 温州科技职业学院 一种治理猪粪中抗性基因、抗生素的方法
CN109516845A (zh) * 2018-12-29 2019-03-26 湖南润丰达生态环境科技有限公司 一种畜禽粪污有机肥发酵复合功能包及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753804B2 (ja) * 2012-02-07 2015-07-22 株式会社染谷 液肥の製造方法、堆肥の製造方法及び不耕起栽培方法
CN105801317A (zh) * 2016-06-04 2016-07-27 杭州千岛湖兴邦果业专业合作社 一种白肉枇杷专用肥
CN106396835B (zh) * 2016-07-21 2018-06-15 浙江省农业科学院 一种柑橘专用缓释肥
CN112023925B (zh) * 2020-08-31 2023-04-07 井冈山大学 畜禽粪便生物炭负载纳米零价铁复合材料的制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423427A (zh) * 2008-11-27 2009-05-06 浙江大学 一种减少氮素损失的猪粪堆肥制备方法
CN103387432A (zh) * 2013-07-29 2013-11-13 中国林业科学研究院亚热带林业研究所 一种竹炭猪粪堆肥高效去除抗生素的方法
CN103739328A (zh) * 2013-12-27 2014-04-23 环境保护部华南环境科学研究所 一种高效降解畜禽粪便中磺胺类抗生素的好氧堆肥方法
CN104366029A (zh) * 2014-06-09 2015-02-25 江阴中炬生物科技有限公司 一种肉鸡饲料添加用竹醋液及其应用
CN204622707U (zh) * 2015-05-10 2015-09-09 徐小芳 毛巾
CN106748328A (zh) * 2017-03-08 2017-05-31 商洛学院 一种土壤污染修复剂
CN107190235A (zh) * 2017-05-03 2017-09-22 中山大学 一种实现多种二氧化钒低维结构的脉冲激光沉积的制备方法
CN107129374A (zh) * 2017-06-05 2017-09-05 西北农林科技大学 一种降低有机肥中四环素类抗性基因丰度的方法
CN107698119A (zh) * 2017-09-17 2018-02-16 湖南山河美生物环保科技股份有限公司 一种实现猪场粪污资源化利用零污染排放的治理方法
CN108329087A (zh) * 2018-02-01 2018-07-27 温州科技职业学院 一种治理猪粪中抗性基因、抗生素的方法
CN109516845A (zh) * 2018-12-29 2019-03-26 湖南润丰达生态环境科技有限公司 一种畜禽粪污有机肥发酵复合功能包及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting;Honghong Guo et al;《Environmental Pollution》;20190508;第1097-1105页 *
我国猪粪资源化处理利用技术的现状及展望;雷小文等;《湖南畜牧兽医》;20120815(第04期);第3-5页 *
畜禽粪便堆肥过程中传热传质规律研究;王磊元 等;《中国农机化学报》;20160115;第37卷(第1期);第230-234页 *

Also Published As

Publication number Publication date
CN112159267A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
Ge et al. New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting
Zhou et al. Modified cornstalk biochar can reduce ammonia emissions from compost by increasing the number of ammonia-oxidizing bacteria and decreasing urease activity
Zhang et al. Oxytetracycline stress reconstruct the core microbial community related to nitrogen transformation during composting
Huang et al. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes
Yin et al. Roles of nxrA-like oxidizers and nirS-like reducers in nitrite conversion during swine manure composting
Fu et al. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community
Zhang et al. Evaluation of maifanite and silage as amendments for green waste composting
Li et al. Effects of carbon/nitrogen ratio and aeration rate on the sheep manure composting process and associated gaseous emissions
Zhang et al. Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance
Xie et al. Effect of hydrothermal pretreatment and compound microbial agents on compost maturity and gaseous emissions during aerobic composting of kitchen waste
CN108456068A (zh) 一种辅料添加快速去除沼渣中四环素类抗生素的堆肥方法
Lv et al. Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw
Kong et al. Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator
Deng et al. Insight to nitrification during cattle manure-maize straw and biochar composting in terms of multi-variable interaction
Lu et al. Effects of sulphur and Thiobacillus thioparus 1904 on nitrogen cycle genes during chicken manure aerobic composting
Chen et al. Effect of red kaolin on the diversity of functional genes based on Kyoto Encyclopedia of Genes and Genomes pathways during chicken manure composting
Li et al. Feedstock optimization with rice husk chicken manure and mature compost during chicken manure composting: Quality and gaseous emissions
Meng et al. Diversity and abundance of denitrifiers during cow manure composting
Zhu et al. Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages
Dai et al. Mechanism associated with the positive effect of nanocellulose on nitrogen retention in a manure composting system
Guo et al. Differences in organic nitrogen transformation during chicken manure composting with the addition of different disaccharides
Huang et al. Biochars modify the degradation pathways of dewatered sludge by regulating active microorganisms during gut digestion of earthworms
Wang et al. Evaluation of physicochemical properties, bacterial community, and product fertility during rice straw composting supplemented with different nitrogen-rich wastes
CN112159267B (zh) 降低蛆粪堆肥中磺胺类抗生素及其抗性基因污染的方法
Liu et al. Evaluation of fungal dynamics during sheep manure composting employing peach shell biochar

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant