CN112158354B - 一种确定飞机自动锪窝深度的方法 - Google Patents

一种确定飞机自动锪窝深度的方法 Download PDF

Info

Publication number
CN112158354B
CN112158354B CN202010852479.7A CN202010852479A CN112158354B CN 112158354 B CN112158354 B CN 112158354B CN 202010852479 A CN202010852479 A CN 202010852479A CN 112158354 B CN112158354 B CN 112158354B
Authority
CN
China
Prior art keywords
depth
workpiece
connecting piece
countersink
step difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010852479.7A
Other languages
English (en)
Other versions
CN112158354A (zh
Inventor
付建超
樊西锋
王维
何凤涛
谢颖
张龙
薛松
谢明伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202010852479.7A priority Critical patent/CN112158354B/zh
Publication of CN112158354A publication Critical patent/CN112158354A/zh
Application granted granted Critical
Publication of CN112158354B publication Critical patent/CN112158354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Drilling And Boring (AREA)

Abstract

本发明公开了一种确定飞机自动锪窝深度的方法,首先根据连接件尺寸,确定平面工件的锪窝深度hA;根据工件外形曲率半径与压环的尺寸,确定压环压紧间隙引入的窝深补偿深度hB;根据工件外形曲率半径与连接件尺寸,确定连接件安装阶差引入的窝深补偿深度hC;得到飞机自动锪窝深度h=hA+hB+hC。本发明计算得到的飞机自动锪窝深度综合考虑了连接件外形,工件外形,压环尺寸,连接件安装后形成阶差四个因素的影响,可以针对性对飞机上每个孔的锪窝深度进行精确控制,有助于提高安装连接件后的飞机表面质量。

Description

一种确定飞机自动锪窝深度的方法
技术领域
本发明属于飞机装配的技术领域,具体涉及一种确定飞机自动锪窝深度的方法。
背景技术
飞机的表面存在大量连接件,用于蒙皮与结构的连接固定。这些连接件安装后与蒙皮形成的阶差会对飞机的性能将产生极大的影响,是飞机表面质量的一项重要指标,因此尽可能降低连接件安装后形成的表面阶差是飞机装配领域中的重要内容。现有的数字化制孔系统锪窝时,都需要通过工艺数模向设备输入锪窝深度,但目前确定窝深大多是采用试验的方法确定一个平面工件下的定值,未考虑飞机外形曲率与连接件尺寸等因素的影响。飞机表面通常可近似为轴线沿航向的圆柱面,但各个制孔点位的曲率存在较大差异,在这种情况下,所有制孔点位按同一窝深值锪窝后形成的表面阶差差异较大,造成表面质量不高。
发明内容
本发明的目的在于提供一种确定飞机自动锪窝深度的方法,本发明综合考虑了连接件外形、工件外形、压环尺寸、连接件安装后形成阶差的因素的影响,有助于提高安装连接件后的飞机表面质量。
本发明主要通过以下技术方案实现:一种确定飞机自动锪窝深度的方法,主要包括以下步骤:
步骤S1:根据连接件尺寸,确定工件为平面时的锪窝深度hA
步骤S2:根据工件外形曲率半径与压环的尺寸,确定压环压紧间隙引入的窝深补偿深度hB
步骤S3:根据工件外形曲率半径与连接件尺寸,确定连接件安装阶差引入的窝深补偿深度hC
步骤S4:得到飞机自动锪窝深度h=hA+hB+hC
为了更好地实现本发明,进一步的,当平面工件,则锪窝深度hA为:
Figure GDA0003234459570000011
其中:
D1为连接件的杆部直径,
D2为连接件的头部直径,
θ为连接件的头部斜角。
为了更好地实现本发明,进一步的,当工件外形为外凸圆柱面时,则压环端面圆心压至工件上制孔法矢起点位置,则压环压紧间隙引入的窝深补偿深度hB为0。
为了更好地实现本发明,进一步的,当工件外形为外凸圆柱面时,与工件圆柱外形轴线的垂直方向上连接件头部会与工件表面形成阶差,其最大阶差H1为:
Figure GDA0003234459570000021
为保证连接件在圆周方向与工件外形形成较小的阶差,增加锪窝深度
Figure GDA0003234459570000022
增加锪窝深度后,连接件在圆周方向与工件外形形成的最大阶差减小为
Figure GDA0003234459570000023
因此,因连接件安装阶差引入的窝深补偿深度hC
Figure GDA0003234459570000024
为了更好地实现本发明,进一步的,当工件外形为内凹圆柱面时,则外形曲率半径在三维数模上测量为R,压环端面圆心无法压至工件上制孔法矢起点位置,两者之间存在间隙,所述间隙为压环压紧间隙引入的窝深补偿深度hB
Figure GDA0003234459570000025
其中,D3为压环的外径。
为了更好地实现本发明,进一步的,当工件外形为内凹圆柱面时,与工件圆柱外形轴线的垂直方向上连接件头部会与工件表面形成阶差,其最大阶H2为:
Figure GDA0003234459570000026
为保证连接件在圆周方向与工件外形形成较小的阶差,减小锪窝深度
Figure GDA0003234459570000027
减小锪窝深度后,连接件在圆周方向与工件外形形成的最大阶差减小为
Figure GDA0003234459570000028
因此,因连接件安装阶差引入的窝深补偿深度hC
Figure GDA0003234459570000031
为了更好地实现本发明,进一步的,当工件外形为外凸圆柱面时,则飞机自动锪窝深度为:
Figure GDA0003234459570000032
当工件外形为内凹圆柱面时,则飞机自动锪窝深度为:
Figure GDA0003234459570000033
其中:
D1为连接件的杆部直径,
D2为连接件的头部直径,
D3为压环的外径,
θ为连接件的头部斜角。
本发明的有益效果:
本发明计算得到的飞机自动锪窝深度综合考虑了连接件外形,工件外形,压环尺寸,连接件安装后形成阶差四个因素的影响,可以针对性对飞机上每个孔的锪窝深度进行精确控制,有助于提高安装连接件后的飞机表面质量。
附图说明
图1为本发明中在平面工件上锪窝的示意图;
图2为连接件与平面工件的连接结构示意图;
图3为本发明中在外凸圆柱面工件上锪窝的示意图;
图4为连接件与外凸圆柱面工件的连接结构示意图;
图5为本发明中在内凹圆柱面工件上锪窝的示意图;
图6为连接件与内凹圆柱面工件的连接结构示意图。
其中:1.平面工件、2.压环、3.连接件、4.外凸圆柱面工件、5.内凹圆柱面工件。
具体实施方式
实施例1:
一种确定飞机自动锪窝深度的方法,主要包括以下步骤:
步骤S1:根据连接件3尺寸,确定工件为平面时的锪窝深度hA
步骤S2:根据工件外形曲率半径与压环2的尺寸,确定压环2压紧间隙引入的窝深补偿深度hB
步骤S3:根据工件外形曲率半径与连接件3尺寸,确定连接件3安装阶差引入的窝深补偿深度hC
步骤S4:得到飞机自动锪窝深度h=hA+hB+hC
本发明计算得到的飞机自动锪窝深度综合考虑了连接件3外形,工件外形,压环2尺寸,连接件3安装后形成阶差四个因素的影响,可以针对性对飞机上每个孔的锪窝深度进行精确控制,有助于提高安装连接件3后的飞机表面质量。
实施例2:
本实施例是在实施例1的基础上进行优化,如图1-图4所示,当工件外形为外凸圆柱面时,主要包括以下步骤:
步骤S1:平面工件1的锪窝深度hA
Figure GDA0003234459570000041
其中:
D1为连接件3的杆部直径,
D2为连接件3的头部直径,
θ为连接件3的头部斜角。
步骤S2:则压环2端面圆心压至工件上制孔法矢起点位置,则压环2压紧间隙引入的窝深补偿深度hB为0。
步骤S3:当工件外形为外凸圆柱面时,与工件圆柱外形轴线的垂直方向上连接件3头部会与工件表面形成阶差,其最大阶差H1为:
Figure GDA0003234459570000042
为保证连接件3在圆周方向与工件外形形成较小的阶差,增加锪窝深度
Figure GDA0003234459570000051
增加锪窝深度后,连接件3在圆周方向与工件外形形成的最大阶差减小为
Figure GDA0003234459570000052
因此,因连接件3安装阶差引入的窝深补偿深度hC
Figure GDA0003234459570000053
步骤S4:飞机自动锪窝深度为:
Figure GDA0003234459570000054
当工件外形为内凹圆柱面时,则飞机自动锪窝深度为:
Figure GDA0003234459570000055
本发明计算得到的飞机自动锪窝深度综合考虑了连接件3外形,工件外形,压环2尺寸,连接件3安装后形成阶差四个因素的影响,可以针对性对飞机上每个孔的锪窝深度进行精确控制,有助于提高安装连接件3后的飞机表面质量。
本实施例的其他部分与实施例1相同,故不再赘述。
实施例3:
本实施例是在实施例1的基础上进行优化,如图1、图2、图5、图6所示,当工件外形为内凹圆柱面时,主要包括以下步骤:
步骤S1:平面工件1的锪窝深度hA
Figure GDA0003234459570000056
其中:
D1为连接件3的杆部直径,
D2为连接件3的头部直径,
θ为连接件3的头部斜角。
步骤S2:当工件外形为内凹圆柱面时,则外形曲率半径在三维数模上测量为R,压环2端面圆心无法压至工件上制孔法矢起点位置,两者之间存在间隙,所述间隙为压环2压紧间隙引入的窝深补偿深度hB:
Figure GDA0003234459570000061
其中,D3为压环2的外径。
步骤S3:当工件外形为内凹圆柱面时,与工件圆柱外形轴线的垂直方向上连接件3头部会与工件表面形成阶差,其最大阶H2为:
Figure GDA0003234459570000062
为保证连接件3在圆周方向与工件外形形成较小的阶差,减小锪窝深度
Figure GDA0003234459570000063
减小锪窝深度后,连接件3在圆周方向与工件外形形成的最大阶差减小为
Figure GDA0003234459570000064
因此,因连接件3安装阶差引入的窝深补偿深度hC
Figure GDA0003234459570000065
步骤S4:飞机自动锪窝深度为:
Figure GDA0003234459570000066
本发明计算得到的飞机自动锪窝深度综合考虑了连接件3外形,工件外形,压环2尺寸,连接件3安装后形成阶差四个因素的影响,可以针对性对飞机上每个孔的锪窝深度进行精确控制,有助于提高安装连接件3后的飞机表面质量。
本实施例的其他部分与上述实施例1相同,故不再赘述。
实施例4:
一种确定飞机自动锪窝深度的方法,如图1-图6所示,主要包括以下步骤:
(1)根据连接件3尺寸,确定平面工件1的锪窝深度。
(2)根据工件外形曲率半径与压环2尺寸,确定压环2压紧间隙引入的窝深补偿深度。
(3)根据工件外形曲率半径与连接件3尺寸,确定连接件3安装阶差引入的窝深补偿深度。
(4)结合(1)(2)(3)的结果,综合计算飞机自动锪窝深度。
所述步骤(1)的具体步骤如下:
(1-1)给出连接件3的杆部直径D1,连接件3的头部直径D2,连接件3的头部斜角θ。
(1-2)计算平面工件1的锪窝深度hA
Figure GDA0003234459570000071
所述步骤(2)的具体步骤如下:
(2-1)给出压环2的外径D3
(2-2)确定工件外形为外凸圆柱面还是内凹圆柱面。
(2-3)若为外凸圆柱面工件4,其外形为外凸圆柱面,外形曲率半径在三维数模上测量为R,压环2端面圆心能压至工件上制孔法矢起点位置,则压环2压紧间隙引入的窝深补偿深度hB为0。
(2-4)若为内凹圆柱面工件5,其外形为内凹圆柱面,外形曲率半径在三维数模上测量为R,压环2端面圆心无法压至工件上制孔法矢起点位置,两者之间存在间隙,该间隙即为压环2压紧间隙引入的窝深补偿深度hB
Figure GDA0003234459570000072
所述步骤(3)的具体步骤如下:
(3-1)确定工件外形为外凸圆柱面还是内凹圆柱面。
(3-2)若为外凸圆柱面工件4,其外形为外凸圆柱面,按(1)(2)步骤的锪窝深度锪窝后,在与工件圆柱外形轴线的垂直方向上连接件3头部会与工件表面形成阶差,其最大阶差H1
Figure GDA0003234459570000073
为保证连接件3在圆周方向与工件外形形成较小的阶差,增加锪窝深度
Figure GDA0003234459570000074
增加锪窝深度后,连接件3在圆周方向与工件外形形成的最大阶差减小为
Figure GDA0003234459570000081
因此因连接件3安装阶差引入的窝深补偿深度hC
Figure GDA0003234459570000082
(3-3)若为内凹圆柱面工件5,其外形为内凹圆柱面,按(1)(2)步骤的锪窝深度锪窝后,在与工件圆柱外形轴线的垂直方向上连接件3头部会与工件表面形成阶差,其最大阶差H2
Figure GDA0003234459570000083
为保证连接件3在圆周方向与工件外形形成较小的阶差,减小锪窝深度
Figure GDA0003234459570000084
减小锪窝深度后,连接件3在圆周方向与工件外形形成的最大阶差减小为
Figure GDA0003234459570000085
因此因连接件3安装阶差引入的窝深补偿深度hC
Figure GDA0003234459570000086
所述步骤(4)的具体步骤如下:
(4-1)若为外凸圆柱面工件4,其外形为外凸圆柱面,确定的锪窝深度h:
Figure GDA0003234459570000087
(4-2)若为内凹圆柱面工件5,其外形为内凹圆柱面,确定的锪窝深度h:
Figure GDA0003234459570000088
某数字化系统按一种常见的连接件3尺寸要求制孔锪窝,连接件3的杆部直径D1=6mm,头部直径D2=11mm,头部斜角θ=120°,数字化系统末端执行器压环2外径D3=30mm,对于不同曲率大小,不同曲面形状工件上的各类锪窝深度值如表1所示:
表1
Figure GDA0003234459570000091
由上表结果可以看出,hB、hC都将会对安装连接件3后形成的阶差产生一定影响,因此按本发明方法补偿后的窝深深度锪窝有助于减小连接件3安装阶差,提高飞机表面质量。
本发明计算得到的飞机自动锪窝深度综合考虑了连接件3外形,工件外形,压环2尺寸,连接件3安装后形成阶差四个因素的影响,可以针对性对飞机上每个孔的锪窝深度进行精确控制,有助于提高安装连接件3后的飞机表面质量。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (1)

1.一种确定飞机自动锪窝深度的方法,其特征在于,主要包括以下步骤:
步骤S1:根据连接件尺寸,确定工件为平面时的锪窝深度hA
步骤S2:根据工件外形曲率半径与压环的尺寸,确定压环压紧间隙引入的窝深补偿深度hB
步骤S3:根据工件外形曲率半径与连接件尺寸,确定连接件安装阶差引入的窝深补偿深度hC
步骤S4:得到飞机自动锪窝深度h=hA+hB+hC
当平面工件,则锪窝深度hA为:
Figure FDA0003234459560000011
其中:
D1为连接件的杆部直径,
D2为连接件的头部直径,
θ为连接件的头部斜角;
当工件外形为外凸圆柱面时,则压环端面圆心压至工件上制孔法矢起点位置,则压环压紧间隙引入的窝深补偿深度hB为0;
当工件外形为外凸圆柱面时,与工件圆柱外形轴线的垂直方向上连接件头部会与工件表面形成阶差,其最大阶差H1为:
Figure FDA0003234459560000012
为保证连接件在圆周方向与工件外形形成较小的阶差,增加锪窝深度
Figure FDA0003234459560000013
增加锪窝深度后,连接件在圆周方向与工件外形形成的最大阶差减小为
Figure FDA0003234459560000014
因此,因连接件安装阶差引入的窝深补偿深度hC
Figure FDA0003234459560000015
当工件外形为内凹圆柱面时,则外形曲率半径在三维数模上测量为R,压环端面圆心无法压至工件上制孔法矢起点位置,两者之间存在间隙,所述间隙为压环压紧间隙引入的窝深补偿深度hB
Figure FDA0003234459560000021
其中,D3为压环的外径;
当工件外形为内凹圆柱面时,与工件圆柱外形轴线的垂直方向上连接件头部会与工件表面形成阶差,其最大阶H2为:
Figure FDA0003234459560000022
为保证连接件在圆周方向与工件外形形成较小的阶差,减小锪窝深度
Figure FDA0003234459560000023
减小锪窝深度后,连接件在圆周方向与工件外形形成的最大阶差减小为
Figure FDA0003234459560000024
因此,因连接件安装阶差引入的窝深补偿深度hC
Figure FDA0003234459560000025
当工件外形为外凸圆柱面时,则飞机自动锪窝深度为:
Figure FDA0003234459560000026
当工件外形为内凹圆柱面时,则飞机自动锪窝深度为:
Figure FDA0003234459560000027
其中:
D1为连接件的杆部直径,
D2为连接件的头部直径,
D3为压环的外径,
θ为连接件的头部斜角。
CN202010852479.7A 2020-08-21 2020-08-21 一种确定飞机自动锪窝深度的方法 Active CN112158354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010852479.7A CN112158354B (zh) 2020-08-21 2020-08-21 一种确定飞机自动锪窝深度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010852479.7A CN112158354B (zh) 2020-08-21 2020-08-21 一种确定飞机自动锪窝深度的方法

Publications (2)

Publication Number Publication Date
CN112158354A CN112158354A (zh) 2021-01-01
CN112158354B true CN112158354B (zh) 2021-12-10

Family

ID=73860108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010852479.7A Active CN112158354B (zh) 2020-08-21 2020-08-21 一种确定飞机自动锪窝深度的方法

Country Status (1)

Country Link
CN (1) CN112158354B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114193231B (zh) * 2022-02-16 2022-06-14 成都飞机工业(集团)有限责任公司 一种用于数控锪窝的底孔孔口测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033591A1 (en) * 1994-06-07 1995-12-14 T-Drill Oy Method and apparatus for making a longitudinal hole in a pipe
CN107010243A (zh) * 2017-03-20 2017-08-04 成都飞机工业(集团)有限责任公司 一种精准控制钉头凹凸量的安装方法
CN108015312A (zh) * 2017-10-27 2018-05-11 上海拓璞数控科技股份有限公司 用于机器人高精度制孔与锪窝的末端执行器及测量方法
CN109396496A (zh) * 2018-12-12 2019-03-01 中国航空制造技术研究院 一种用于曲面类表面自动钻锪的锪窝深度控制方法
CN111331431A (zh) * 2020-03-20 2020-06-26 上海拓璞数控科技股份有限公司 接触式曲面壁板法向测量与锪窝深度补偿装置及测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033591A1 (en) * 1994-06-07 1995-12-14 T-Drill Oy Method and apparatus for making a longitudinal hole in a pipe
CN107010243A (zh) * 2017-03-20 2017-08-04 成都飞机工业(集团)有限责任公司 一种精准控制钉头凹凸量的安装方法
CN108015312A (zh) * 2017-10-27 2018-05-11 上海拓璞数控科技股份有限公司 用于机器人高精度制孔与锪窝的末端执行器及测量方法
CN109396496A (zh) * 2018-12-12 2019-03-01 中国航空制造技术研究院 一种用于曲面类表面自动钻锪的锪窝深度控制方法
CN111331431A (zh) * 2020-03-20 2020-06-26 上海拓璞数控科技股份有限公司 接触式曲面壁板法向测量与锪窝深度补偿装置及测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
压脚对机器人制孔影响的试验研究与分析;马超虹;《中国优秀硕士学位论文全文数据库 信息科技辑》;20140630;第41-42页 *
基于压脚位移补偿的机器人制孔锪窝深度控制;费少华,方强,孟祥磊,柯映林;《浙江大学学报(工学版)》;20120715;第46卷(第07期);全文 *

Also Published As

Publication number Publication date
CN112158354A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN112158354B (zh) 一种确定飞机自动锪窝深度的方法
CN209335303U (zh) 一种玻璃加工用砂轮棒
CN103586513B (zh) 一种飞机涡轮机匣安装边的精密孔的加工方法
CN104588441B (zh) 一种壁板预应力喷丸校形的方法和预弯夹具
CN112484640B (zh) 基于跟踪仪的机器人用磁流变抛光工具头定标装置与方法
CN108526365B (zh) 一种大型钛合金中央件的锻造成形方法
CN106623990A (zh) 一种大直径铝合金非均匀截面框环精确加工方法
CN102107346A (zh) 机身整体壁板的成型方法
CN112247497B (zh) 一种陶瓷基乘波体结构天线罩的加工方法
CN105855926A (zh) 一种用于飞机蒙皮镜像铣削的支撑装置
CN112355579B (zh) 旋转类机匣的加工方法
CN110802379B (zh) 一种直升机尾减速器钛合金内侧压板的加工方法
CN106271417A (zh) 一种止动环加工方法
US20180345348A1 (en) Manufacturing method for press-formed article
CN213636303U (zh) 天线罩头锥与连接环装配结构总成
CN208801091U (zh) 一种加工锥孔的夹具
CN104533747B (zh) 一种球墨铸铁平斜盘及其生产方法
CN103920890A (zh) 一种大型球瓣两侧焊接坡口的车削加工方法
CN113953772A (zh) 一种用于铸造锥体环块异形安装边的加工方法
CN210450466U (zh) 一种滚边头
CN108080856A (zh) 星形臂焊接工装
CN208514200U (zh) 控制阀精磨锥面跟随套
CN207673619U (zh) 一种用于航空发动机的径向扩压器
CN108127347B (zh) 检测叶片用工艺弧段量具体的加工方法
CN109933938A (zh) 一种飞机机轮轮毂螺栓孔口处对接面的设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant