CN112151255A - 一种磁控形变记忆材料及其制造方法 - Google Patents

一种磁控形变记忆材料及其制造方法 Download PDF

Info

Publication number
CN112151255A
CN112151255A CN202010862402.8A CN202010862402A CN112151255A CN 112151255 A CN112151255 A CN 112151255A CN 202010862402 A CN202010862402 A CN 202010862402A CN 112151255 A CN112151255 A CN 112151255A
Authority
CN
China
Prior art keywords
magnetic field
elastic composite
composite material
memory material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010862402.8A
Other languages
English (en)
Inventor
蒋乐伦
易声柱
张远西
罗青青
刘彬
任磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University Shenzhen Campus
Original Assignee
Sun Yat Sen University Shenzhen Campus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University Shenzhen Campus filed Critical Sun Yat Sen University Shenzhen Campus
Publication of CN112151255A publication Critical patent/CN112151255A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

本发明涉及一种磁控形变记忆材料及其制造方法,先制造出复合墨水,再通过DIW技术打印出弹性复合体材料,施加应力让其形变,通过脉冲磁场磁化形变后的弹性复合体材料,从而使磁极编码到弹性复合体材料中,去除外部应力,弹性复合体材料恢复初始形状,得到磁控形变记忆材料,这种磁控形变记忆材料再次施加磁场,会变为充磁时的形状。本发明的制造步骤简单,制造出的磁控形变记忆材料性能优良,利用磁场的安全性和有效操控性,未来可广泛应用于软体机器人、智能材料、生物医药工程等领域。

Description

一种磁控形变记忆材料及其制造方法
技术领域
本发明涉及形变材料领域,具体涉及一种磁控形变记忆材料及其制造方法。
背景技术
在外界环境,如温度,光,电,PH等因素刺激下产生形变的材料在软体机器人、柔性电子和生物医药领域有非常广阔的应用前景。特别地,在生物工程应用中,需要在一个有限的空间里实现远程操控。而磁场操控相对安全,无需直接接触,是一个非常有效实际的形变方法。然而,目前的磁控形变材料的制造过程复杂,且成本高昂。3D打印是一种高效的增材制造方法,可按需制造特定功能的结构。因此,结合3D打印技术,具体开发一种基于墨水直写成型(DIW)技术的磁控形变材料对于智能制造、智能材料、生物医学工程等领域有着非常重要的意义。
发明内容
本发明提供了一种磁控形变记忆材料的制造方法,可制造出基于DIW成型的含有铁磁性微颗粒的弹性体复合材料,其技术方案为:
一种磁控形变记忆材料的制造方法,步骤一:将可凝固材料、流变改性剂、铁磁性微颗粒混合制得混合物; 步骤二:将固化剂加入到步骤一所得的混合物中,然后搅拌均匀得到复合墨水;步骤三:将步骤二制备的复合墨水装入3D打印机的推注器中,按照预设的模型结构,通过DIW技术3D打印出弹性复合体材料。步骤四:通过施加应力,改变步骤三制备的弹性复合体材料的形状,再通过脉冲磁场磁化变形的弹性复合体材料,使得充磁后的弹性复合体材料在所述脉冲磁场的磁场方向上保有磁化强度,去除应力,充磁后的弹性复合体材料恢复到初始形状。针对按照上述制造方法制造的磁控形变材料,再次施加与制造时脉冲磁场同方向的磁场,充磁后的弹性复合体材料能变为充磁时的形状,从而实现记忆功能。
可凝固材料接触固化剂之后可固化,可凝固材料固化之后具有良好的柔性和弹性。优选的,步骤一中所述可凝固材料包括但不限于聚二甲基硅氧烷(PDMS)、道康宁1700(SE1700)、硅胶(Ecoflex00-30)或柔性光固化环氧树脂。
步骤一中所述流变改性剂用于改变材料的流变性质,减小材料的剪切应力,方便材料的挤出,优选的,所述流变改性剂包括但不限于二氧化硅纳米粒子或硅油。
步骤一中所述铁磁性微颗粒在充磁前没有磁性,充磁后在磁场方向上仍能保持一定的磁化强度,保证了充磁后的弹性复合体材料在所述脉冲磁场的磁场方向上能保有磁化强度,使磁极编码到弹性复合体材料中,优选的,所述铁磁性微颗粒包括但不限于铁氧体、橡胶磁、铝镍钴、钐钴或钕铁硼颗粒,且所述铁磁性微颗粒的平均尺寸为5-100μm。
优选的,步骤四中所述脉冲磁场通过电磁铁产生,磁场强度为2.7T。
优选的,步骤四中所述脉冲磁场的磁场强度与方向变化均为可编程控制,从而可以针对弹性复合体材料的各部分对应不同的磁场方向与强度,制造出具有复杂3D柔性结构的磁性形变记忆材料,通过磁场操控实现各种不同的变形、运动和功能,包括爬行、滚动、对物体的抓持与释放,药物传送等,
本发明还提供一种按照上述制造方法制造的磁控形变记忆材料,包括铁磁性微颗粒。
本发明先制造出复合墨水,再通过DIW技术打印出弹性复合体材料,施加应力让其形变,通过脉冲磁场磁化形变后的弹性复合体材料,从而使磁极编码到弹性复合体材料中,去除外部应力,弹性复合体材料恢复初始形状,得到磁控形变记忆材料,这种磁控形变记忆材料再次施加与制造时脉冲磁场同方向的脉冲磁场,会变为充磁时的形状。本发明的制造步骤简单,制造出的磁性形变记忆材料性能优良,利用磁场的安全性和有效操控性,未来可广泛应用于软体机器人、智能材料、生物医药工程等领域。
附图说明
图1是本发明实施例中磁控形变记忆材料的制造方法的制作过程示意图。
具体实施方式
下面以下结合附图举例对本发明作进一步说明。
实施例1:
参照图1,一种磁控形变记忆材料的制造方法按照以下步骤进行:
步骤一:将3g PDMS、0.3g二氧化硅纳米粒子、6.5g钕铁硼颗粒混合制得混合物;
步骤二:将0.2g PDMS固化剂加入到步骤一所得的混合物中,然后搅拌均匀得到复合墨水1;
步骤三:将步骤二制备的复合墨水1装入3D打印机的推注器中,按照预设的3D网状结构模型,通过DIW技术3D打印弹性复合体材料2。
步骤四:将步骤三制备的弹性复合体材料2,在弹性复合体材料2两边施加应力,弹性复合体材料2压缩变窄,再施加竖直向上的磁场强度为2.7T的脉冲磁场磁化弹性复合体材料2,去除外部应力之后,充磁后的弹性复合体材料2恢复初始形状,得到具有图案化磁极的弹性复合材料2,磁控形变材料制作完成。
针对按照上述制造方法制造的磁控形变材料,再次施加磁场强度为80 mT的竖直向上的脉冲磁场,磁控形变材料就能变回充磁时收缩的形状,从而实现收缩记忆功能。原理是:磁控形变材料内磁场方向和外部磁场方向一致时,磁控形变材料的磁势能最小。施加外部脉冲磁场时,磁控形变材料收缩以减小磁势能,磁势能转化为弹性势能。直到达到磁场产生的扭矩和磁控形变材料本身的弹性达到平衡,磁控形变材料稳定在充磁时收缩的形状。在实际操作中,再次施加的脉冲磁场强度越大,磁控形变材料恢复充磁时收缩的形状的程度越高。当去除外部磁场之后,磁控形变材料释放弹性势能恢复到初始的形状。
本发明的制造步骤简单,制造出的磁性形变记忆材料性能优良,利用磁场的安全性和有效操控性,未来可广泛应用于软体机器人、智能材料、生物医药工程等领域。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换等,均仍属于本发明技术方案保护的范围内。

Claims (7)

1.一种磁控形变记忆材料的制造方法,其特征在于,
步骤一:将可凝固材料、流变改性剂、铁磁性微颗粒混合制得混合物;
步骤二:将固化剂加入到步骤一所得的混合物中,然后搅拌均匀得到复合墨水;
步骤三:将步骤二制备的复合墨水装入3D打印机的推注器中,按照预设的模型结构,通过DIW技术3D打印出弹性复合体材料;
步骤四:通过施加应力,改变步骤三制备的弹性复合体材料的形状,再通过脉冲磁场磁化变形的弹性复合体材料,使得充磁后的弹性复合体材料在所述脉冲磁场的磁场方向上保有磁化强度,去除应力,充磁后的弹性复合体材料恢复到初始形状。
2.根据权利要求1所述的磁控形变记忆材料的制造方法,其特征在于,步骤一中所述可凝固材料包括但不限于聚二甲基硅氧烷、道康宁1700、硅胶或柔性光固化环氧树脂。
3.根据权利要求1或2所述的磁控形变记忆材料的制造方法,其特征在于,步骤一中所述流变改性剂包括但不限于热解法二氧化硅纳米粒子或硅油。
4.根据权利要求3所述的磁控形变记忆材料的制造方法,其特征在于,步骤一中所述铁磁性微颗粒包括但不限于铁氧体、橡胶磁、铝镍钴、钐钴或钕铁硼颗粒。
5.根据权利要求4所述的磁控形变记忆材料的制造方法,其特征在于,步骤四中所述脉冲磁场通过电磁铁产生,磁场强度为2.7T。
6.根据权利要求4所述的磁控形变记忆材料的制造方法,其特征在于,步骤四中所述脉冲磁场的磁场强度与方向变化均为可编程控制。
7.一种按照权利要求1至6中任一项磁控形变记忆材料的制造方法制造的磁控形变记忆材料,其特征在于,包括铁磁性微颗粒。
CN202010862402.8A 2019-12-17 2020-08-25 一种磁控形变记忆材料及其制造方法 Pending CN112151255A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911298134 2019-12-17
CN2019112981345 2019-12-17

Publications (1)

Publication Number Publication Date
CN112151255A true CN112151255A (zh) 2020-12-29

Family

ID=73889033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010862402.8A Pending CN112151255A (zh) 2019-12-17 2020-08-25 一种磁控形变记忆材料及其制造方法

Country Status (1)

Country Link
CN (1) CN112151255A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042732A (zh) * 2021-03-09 2021-06-29 吉林大学 可植入生物体的3d打印磁控变形夹持装置及方法
CN113733550A (zh) * 2021-08-31 2021-12-03 兰州大学 一种磁-热敏多材料智能结构的制备方法
CN113733545A (zh) * 2021-08-31 2021-12-03 兰州大学 一种磁敏智能超结构的制备方法
CN113799887A (zh) * 2021-09-16 2021-12-17 湖南大学 一种磁响应仿生爬行软机器人及其制备方法
CN114377290A (zh) * 2022-01-25 2022-04-22 华中科技大学 一种磁控收缩-舒张装置及系统
CN115785731A (zh) * 2022-12-01 2023-03-14 中山大学 一种3d打印磁响应墨水及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046241A (zh) * 2017-12-18 2018-05-18 苏州大学 一种3d打印超多孔弹性石墨烯气凝胶的方法
WO2019213134A1 (en) * 2018-04-30 2019-11-07 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College High performance and recyclable thermoset ink for 3d or 4d printing
CN110524861A (zh) * 2019-08-26 2019-12-03 中山大学 一种制备形状记忆产品的加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046241A (zh) * 2017-12-18 2018-05-18 苏州大学 一种3d打印超多孔弹性石墨烯气凝胶的方法
WO2019213134A1 (en) * 2018-04-30 2019-11-07 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College High performance and recyclable thermoset ink for 3d or 4d printing
CN110524861A (zh) * 2019-08-26 2019-12-03 中山大学 一种制备形状记忆产品的加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOONHO KIM等: ""Printing ferromagnetic domains for untethered fast-transforming soft materials"", 《NATURE》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042732A (zh) * 2021-03-09 2021-06-29 吉林大学 可植入生物体的3d打印磁控变形夹持装置及方法
CN113042732B (zh) * 2021-03-09 2022-07-08 吉林大学 可植入生物体的3d打印磁控变形夹持装置及方法
CN113733550A (zh) * 2021-08-31 2021-12-03 兰州大学 一种磁-热敏多材料智能结构的制备方法
CN113733545A (zh) * 2021-08-31 2021-12-03 兰州大学 一种磁敏智能超结构的制备方法
CN113799887A (zh) * 2021-09-16 2021-12-17 湖南大学 一种磁响应仿生爬行软机器人及其制备方法
CN114377290A (zh) * 2022-01-25 2022-04-22 华中科技大学 一种磁控收缩-舒张装置及系统
CN115785731A (zh) * 2022-12-01 2023-03-14 中山大学 一种3d打印磁响应墨水及其制备方法和应用
CN115785731B (zh) * 2022-12-01 2023-10-24 中山大学 一种3d打印磁响应墨水及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN112151255A (zh) 一种磁控形变记忆材料及其制造方法
Wu et al. Multifunctional magnetic soft composites: A review
Zheng et al. 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator
Zhao et al. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness
Wang et al. Integration of sensing and shape-deforming capabilities for a bioinspired soft robot
US20200223099A1 (en) Programmable soft materials containing ferromagnetic domains and methods of making
Kim et al. Contactless manipulation of soft robots
Kohls et al. Compliant electromagnetic actuator architecture for soft robotics
CN113114066B (zh) 基于柔性折叠磁性薄膜的自驱动磁控柔性机器人
CN111416546B (zh) 一种磁场驱动双稳态结构及其制作方法
Marume et al. Development of magnetic-field-driven artificial cilium array with magnetic orientation in each cilium
CN110843163B (zh) 一种软材料中复杂磁畴编程的快速实现方法
Cerdan et al. Magnetic self-healing composites: Synthesis and applications
Diguet et al. From dipolar interactions of a random distribution of ferromagnetic particles to magnetostriction
Lee et al. Magnetically Actuated Fiber‐Based Soft Robots
Tang et al. Reprogrammable shape transformation of magnetic soft robots enabled by magnetothermal effect
CN113232812B (zh) 一种磁场驱动的全柔性鳍及其制备方法
US20160151939A1 (en) Magnetically controlled casting process for multistructural materials
CN114952938A (zh) 磁控仿生机器人的生产方法
JP5420260B2 (ja) 磁性光硬化樹脂で作成した回転構造体およびそれを使用した磁気駆動マイクロアクチュエータ
Gao et al. A programmable 3D printing method for magnetically driven micro soft robots based on surface tension
Wu et al. Magnetically-assisted digital light processing 4D printing of flexible anisotropic soft-Magnetic composites
Dai et al. A magnetically actuated octopus-like robot capable of moving in 3D space
CN109956321B (zh) 基于磁力驱动的微小目标抓取装置及其制备与抓取方法
CN114052921A (zh) 一种柔性线性驱动系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201229