CN112138167A - Oral pharmaceutical composition of teriparatide or abamectin - Google Patents
Oral pharmaceutical composition of teriparatide or abamectin Download PDFInfo
- Publication number
- CN112138167A CN112138167A CN201910498364.XA CN201910498364A CN112138167A CN 112138167 A CN112138167 A CN 112138167A CN 201910498364 A CN201910498364 A CN 201910498364A CN 112138167 A CN112138167 A CN 112138167A
- Authority
- CN
- China
- Prior art keywords
- pharmaceutical composition
- small intestine
- teriparatide
- absorption
- promoting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108010049264 Teriparatide Proteins 0.000 title claims abstract description 31
- OGBMKVWORPGQRR-UMXFMPSGSA-N teriparatide Chemical compound C([C@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)[C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CNC=N1 OGBMKVWORPGQRR-UMXFMPSGSA-N 0.000 title claims abstract description 31
- 229960005460 teriparatide Drugs 0.000 title claims abstract description 31
- IBSREHMXUMOFBB-JFUDTMANSA-N 5u8924t11h Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](OC)C[C@H](O[C@@H]2C(=C/C[C@@H]3C[C@@H](C[C@@]4(O3)C=C[C@H](C)[C@@H](C(C)C)O4)OC(=O)[C@@H]3C=C(C)[C@@H](O)[C@H]4OC\C([C@@]34O)=C/C=C/[C@@H]2C)/C)O[C@H]1C.C1=C[C@H](C)[C@@H]([C@@H](C)CC)O[C@]11O[C@H](C\C=C(C)\[C@@H](O[C@@H]2O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](OC)C3)[C@@H](OC)C2)[C@@H](C)\C=C\C=C/2[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\2)O)C[C@H]4C1 IBSREHMXUMOFBB-JFUDTMANSA-N 0.000 title claims abstract description 20
- 239000005660 Abamectin Substances 0.000 title claims abstract description 20
- 229950008167 abamectin Drugs 0.000 title claims abstract description 20
- 239000008203 oral pharmaceutical composition Substances 0.000 title abstract description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 58
- 210000000813 small intestine Anatomy 0.000 claims abstract description 54
- 230000001737 promoting effect Effects 0.000 claims abstract description 35
- 238000010521 absorption reaction Methods 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229920001661 Chitosan Polymers 0.000 claims abstract description 13
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims abstract description 13
- 229920002125 Sokalan® Polymers 0.000 claims abstract description 13
- 229960001631 carbomer Drugs 0.000 claims abstract description 13
- 239000001509 sodium citrate Substances 0.000 claims abstract description 13
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims abstract description 13
- 229940045110 chitosan Drugs 0.000 claims description 12
- 230000031891 intestinal absorption Effects 0.000 claims description 10
- 229960001790 sodium citrate Drugs 0.000 claims description 8
- 229940083575 sodium dodecyl sulfate Drugs 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims 4
- 238000009472 formulation Methods 0.000 claims 3
- 239000004141 Sodium laurylsulphate Substances 0.000 claims 1
- 239000003814 drug Substances 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 7
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 53
- 108010011459 Exenatide Proteins 0.000 description 49
- 229960001519 exenatide Drugs 0.000 description 49
- HTQBXNHDCUEHJF-XWLPCZSASA-N Exenatide Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 HTQBXNHDCUEHJF-XWLPCZSASA-N 0.000 description 48
- 210000004369 blood Anatomy 0.000 description 42
- 239000008280 blood Substances 0.000 description 42
- 108090000765 processed proteins & peptides Proteins 0.000 description 18
- 241001465754 Metazoa Species 0.000 description 16
- 241000282472 Canis lupus familiaris Species 0.000 description 14
- 229920001184 polypeptide Polymers 0.000 description 14
- 102000004196 processed proteins & peptides Human genes 0.000 description 14
- 241000700159 Rattus Species 0.000 description 13
- HIMXGTXNXJYFGB-UHFFFAOYSA-N alloxan Chemical compound O=C1NC(=O)C(=O)C(=O)N1 HIMXGTXNXJYFGB-UHFFFAOYSA-N 0.000 description 12
- 229940079593 drug Drugs 0.000 description 11
- 239000002775 capsule Substances 0.000 description 10
- 238000003556 assay Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 230000000968 intestinal effect Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000001990 intravenous administration Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 108090000445 Parathyroid hormone Proteins 0.000 description 5
- 230000000291 postprandial effect Effects 0.000 description 5
- 238000007920 subcutaneous administration Methods 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 102100036893 Parathyroid hormone Human genes 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 241000237891 Haliotidae Species 0.000 description 2
- 208000013016 Hypoglycemia Diseases 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- MCGSCOLBFJQGHM-SCZZXKLOSA-N abacavir Chemical compound C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 MCGSCOLBFJQGHM-SCZZXKLOSA-N 0.000 description 2
- 229960004748 abacavir Drugs 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000000857 drug effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 230000002218 hypoglycaemic effect Effects 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000003285 pharmacodynamic effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 1
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 101001135732 Bos taurus Parathyroid hormone Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 101001135770 Homo sapiens Parathyroid hormone Proteins 0.000 description 1
- 101001135995 Homo sapiens Probable peptidyl-tRNA hydrolase Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 102000043299 Parathyroid hormone-related Human genes 0.000 description 1
- 101710123753 Parathyroid hormone-related protein Proteins 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 108010038051 abaloparatide Proteins 0.000 description 1
- BVISQZFBLRSESR-XSCWXTNMSA-N abaloparatide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NC(C)(C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](C)N)C(C)C)C1=CN=CN1 BVISQZFBLRSESR-XSCWXTNMSA-N 0.000 description 1
- 229950001959 abaloparatide Drugs 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- JLJNENVYAVKECZ-HRXVJLLUSA-N eoxin E4 Chemical compound CCCCC[C@H](O)[C@H](SC[C@H](N)C(O)=O)\C=C\C=C\C=C/C\C=C/CCCC(O)=O JLJNENVYAVKECZ-HRXVJLLUSA-N 0.000 description 1
- 230000010030 glucose lowering effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000012113 quantitative test Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/29—Parathyroid hormone, i.e. parathormone; Parathyroid hormone-related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/20—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Endocrinology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Rheumatology (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention belongs to the field of biological medicine, and particularly relates to an oral pharmaceutical composition of teriparatide or abamectin, which comprises the following components in percentage by weight: teriparatide or Abaprotide, and a pharmaceutical composition for promoting small intestine absorption, wherein the pharmaceutical composition for promoting small intestine absorption comprises sodium dodecyl sulfate, carbomer, chitosan, and sodium citrate; the pharmaceutical composition for promoting small intestine absorption provided by the invention can be prepared into a composite auxiliary material, and the auxiliary material and the teriparatide or the abamectin composition can improve the absorption of the effective components in the small intestine.
Description
Technical Field
The invention belongs to the technical field of biological medicines, and particularly relates to an oral pharmaceutical composition of teriparatide or abamectin.
Background
Teriparatide is a synthetic polypeptide hormone, a 1-34 amino acid fragment of human parathyroid hormone PTH, which is the biologically active N-terminal region of the endogenous parathyroid hormone PTH containing 84 amino acids. The immunological and biological characteristics of the medicine are completely the same as those of endogenous parathyroid hormone PTH and bovine parathyroid hormone PTH (bPTH). Teriparatide stimulates bone formation and resorption, reduces the incidence of fractures in postmenopausal women, and increases or decreases bone density depending on the mode of administration. Continuous infusion results in a sustained increase in parathyroid hormone PTH concentration and therefore greater bone resorption than daily injections which cause only a transient increase in serum parathyroid hormone PTH. In addition, teriparatide does not inhibit platelet aggregation response of either the adenosine diphosphate-induced pathway or the collagen-induced pathway.
Abarotide was originally developed by Ipsen pharmaceutical, France, and was licensed to the U.S. Radius Health biopharmaceutical company for marketing and sale in the United states. The Abarotide is a polypeptide artificially synthesized with 34 amino acids, is an analogue of parathyroid hormone-related protein, regulates metabolism and promotes bone formation by selectively activating a signal pathway of parathyroid hormone type 1 receptors, and is used for treating postmenopausal women at risk of osteoporosis. And the product is approved by the Food and Drug Administration (FDA) to be marketed in 2017, 4 and 28 months, and has the trade name of Tymlos.
Neither teriparatide nor abamectin is orally available, which results in poor patient compliance, and thus, it is of great importance to alter the route of administration of somatostatin and its analogs.
Disclosure of Invention
Based on the reasons, the applicant obtains a novel medicine composition for promoting small intestine absorption through multiple creative researches, the composition is composed of sodium dodecyl sulfate, carbomer, chitosan and sodium citrate, and the researches show that the medicine composition for promoting small intestine absorption can be prepared into a composite auxiliary material, and the auxiliary material and the teriparatide or the abamectin composition can improve the absorption and other effects of the effective components in the small intestine.
The invention is realized by the following technical scheme.
A pharmaceutical composition comprising: the composition is prepared from teriparatide or abalopeptide and a pharmaceutical composition for promoting small intestine absorption, wherein the pharmaceutical composition for promoting small intestine absorption is composed of sodium dodecyl sulfate, carbomer, chitosan and sodium citrate.
The pharmaceutical composition is prepared into an oral preparation.
The medicinal composition for promoting the small intestine absorption is used for ensuring the absorption of teriparatide or abamectin in the small intestine.
The pharmaceutical composition for promoting the small intestine absorption is used for promoting the absorption of teriparatide or abamectin in the small intestine.
Wherein the weight ratio of the sodium dodecyl sulfate to the carbomer to the chitosan to the sodium citrate is 15-25: 5-8: 5-8: 50-80.
Wherein the weight ratio of the teriparatide or the abamectin to the pharmaceutical composition for promoting the intestinal absorption is as follows: 1:5-860.
An oral preparation is prepared from teriparatide or abamectin, sodium dodecyl sulfate, carbomer, chitosan and sodium citrate.
Wherein the weight ratio of the sodium dodecyl sulfate to the carbomer to the chitosan to the sodium citrate is 15-25: 5-8: 5-8: 50-80.
Wherein the weight ratio of the teriparatide or the abamectin to the pharmaceutical composition for promoting the intestinal absorption is as follows: 1:5-860.
The invention discloses a medicinal composition for promoting small intestine absorption, which obtains a novel auxiliary material, and the auxiliary material can be used for: drugs (active ingredients or active ingredients) that cannot be orally administered but can be injected can be orally administered, thereby changing the mode of administration of the drug (active ingredients or active ingredients).
The intestinal absorption-promoting pharmaceutical composition of the present invention can promote the absorption of a drug (active ingredient or active ingredient) that is easily decomposed in the gastrointestinal tract in the intestine.
The pharmaceutical composition for promoting intestinal absorption of the present invention can promote the absorption of a drug (active ingredient or active ingredient) that is not easily absorbed in the gastrointestinal tract in the intestine.
Since the pharmaceutical composition for promoting small intestine absorption of the invention is used for promoting the absorption of the drug (effective component or active component) in the small intestine, and the drug is required to be released in the small intestine to exert the efficacy, when the pharmacodynamic test and the pharmacokinetic test are carried out, rodents adopt small intestine catheters for administration, and mammals adopt enteric capsules for oral administration.
The invention combines the drug combination and the drug (effective component or active component) which can promote the intestinal absorption on rodents one by one to carry out the bioavailability detection, and simultaneously, part of the polypeptide is selected to carry out the detection of the drug effect and the pharmacokinetics on different animals.
Drawings
1. FIG. 1 is a PD test of Exenatide in STZ rats
Wherein: the abscissa is time (h) and the ordinate is blood glucose lowering efficiency (%).
Wherein: the solid circular solid line indicates 2ml/kg of physiological saline for intestinal injection, the solid square dotted line indicates 1 μ g/kg of subcutaneous Exenatide, the solid circular dotted line indicates 250 μ g/kg of subcutaneous Exenatide, the solid triangular dotted line indicates 1mg/kg of subcutaneous Exenatide, the hollow triangular solid line indicates the pharmaceutical composition for intestinal administration test 1 + Exenatide (dose of Exenatide 30 μ g/kg), the hollow circular solid line indicates the pharmaceutical composition for intestinal administration test 1 + Exenatide (dose of Exenatide 40 μ g/kg), the hollow square solid line indicates the pharmaceutical composition for intestinal administration test 1 + Exenatide (dose of Exenatide50 μ g/kg), and the hollow diamond solid line indicates the pharmaceutical composition for intestinal administration test 1 + Exenatide (dose of Exenatide60 μ g/kg).
2. FIG. 2 is an iv PK assay of Exenatide in rats
Wherein: the abscissa is time (min) and the ordinate is the concentration of Exenatide (ng/ml) in rat plasma.
3. FIG. 3 is the ei PK test of Exenatide/test 1 pharmaceutical composition on rats
Wherein: the abscissa is time (min) and the ordinate is the concentration of Exenatide (ng/ml) in rat plasma.
4. FIG. 4 is an iv PK assay for Exenatide on beagle dogs
Wherein: the abscissa is time (min) and the ordinate is the concentration of Exenatide (ng/ml) in plasma of beagle dogs.
5. FIG. 5 is a po PK test on beagle dogs for Exenatide/test 1 pharmaceutical compositions
Wherein: the abscissa is time (min) and the ordinate is the concentration of Exenatide (ng/ml) in plasma of beagle dogs.
6. FIG. 6 is a PD test of Exenatide on Alloxan beagle dogs
Wherein: the abscissa is time (h) and the ordinate is beagle blood glucose (mM).
Wherein: the solid circular solid line is the postprandial blood glucose profile of Alloxan beagle dogs, the solid square solid line is the postprandial blood glucose profile of Alloxan beagle dogs swallowed Exenatide/test 1 pharmaceutical composition, and the solid diamond solid line is the postprandial serum profile of normal beagle dogs.
Concrete examples of the test
The technical means of the present invention will be described below with reference to specific test examples, but the scope of the present invention is not limited thereto.
The contents of the test examples in the specification are only lists of implementation forms of the inventive concept, and the protection scope of the invention should not be considered to be limited to the specific forms set forth in the test examples, and the protection scope of the invention is equivalent to the technical means which can be thought of by those skilled in the art according to the inventive concept. While the following embodiments of the invention have been described, the invention is not limited to the specific embodiments and applications described above, which are intended to be illustrative, instructive, and not limiting. Those skilled in the art, having the benefit of this disclosure, may effect numerous modifications thereto without departing from the scope of the invention as defined by the appended claims.
The following tests are conclusion tests of research personnel based on multiple creative tests and on the technical scheme to be protected by the invention. In the quantitative tests in the following test examples, three replicates were set, and the data are the mean value or the mean value ± standard deviation of the three replicates.
The pharmaceutical composition for promoting the absorption of the small intestine comprises: sodium dodecyl sulfate, carbomer, chitosan and sodium citrate in a weight ratio of: 20: 6.5: 6.5: 65.
mixing Exenatide and the pharmaceutical composition according to the weight ratio of 1:5 fully and uniformly for later use;
test animals: injecting 45mg/kg STZ into the abdominal cavity of SD male rats to construct a hyperglycemia model;
small intestine efficacy test: blood samples were taken at 0h, 3h, 6h and 9h for testing of blood glucose, administered subcutaneously (sc) or via small intestine catheter (ei).
The result shows that the blood sugar reducing effect of Exenatide administered in small intestine is very weak under the condition that the pharmaceutical composition is not added, and when the dosage reaches 1mg/kg, the blood sugar reducing efficiency after 9 hours is only about 70 percent and is far lower than about 50 percent of that of the subcutaneous dosage of 1 mug/kg. After the pharmaceutical composition is added, the blood sugar reducing effect of subcutaneous 1 mug/kg can be achieved by the administration dosage of 50 mug/kg. See figure 1.
Mixing Exenatide and the medicinal composition for promoting small intestine absorption of the test 1 according to the weight ratio of 1: 5;
test animals: adult male SD rats;
small intestine PK assay: on an adult SD rat in a fasting state, the Exenatide is administrated by a small intestine catheter according to the administration volume of 1ml/kg to ensure that the dose of Exenatide is 200 mug/kg, the Exenatide is divided into another group, the Exenatide is injected (ei) by the small intestine catheter for 200 mug/kg or the Exenatide added with the pharmaceutical composition of the invention, the blood is collected at the tail part after 0h, 0.5h, 1h, 1.5h, 2h, 2.5h and 3h after the administration, the blood sample is anticoagulated by 10mM EDTA, the blood sample is centrifuged at 3000rpm at 4 ℃ for 5min, and the plasma is collected and quickly frozen.
To avoid hypoglycemia in the animals, 1g/kg glucose was administered prior to administration.
The ELISA detection method comprises the following steps: coating with mouse monoclonal antibody of anti-target polypeptide, blocking with 1% BSA, adding blood sample or standard substance diluted with 0.1% BSA for incubation, capturing rabbit polyclonal antibody of anti-target polypeptide labeled by Biotin, incubating with HRP-conjugated streptavidin, finally developing TMB, terminating HCl, and reading at 450 nm. And calculating the concentration of the target polypeptide in the plasma according to the standard curve obtained by the standard substance.
The AUC was calculated from the PK profile, and the bioavailability for small intestine dosing was calculated as 100% bioavailability for intravenous (iv).
The results show that the AUC of the PK curve of Exenatide after 1 mu g/kg of iv injection is 0.93ng/ml.h, and the blood concentration of Exenatide after 200 mu g/kg of iv injection is lower than the lower detection limit of ELISA. Whereas, the AUC of the PK profile after addition of the test 1 pharmaceutical composition was 1.47ng/ml. h, the bioavailability of intestinal administration was about 0.79%. The test results are shown in fig. 2 and 3.
Mixing Exenatide 0.7mg and test 1 small intestine absorption promoting pharmaceutical composition 200mg, lyophilizing, and making into No. 3 enteric capsule;
mixing Exenatide 0.7mg and test 1 small intestine absorption promoting pharmaceutical composition 400mg, lyophilizing, and making into No. 0 enteric capsule;
mixing Exenatide 0.7mg and test 1 intestinal absorption promoting pharmaceutical composition 600mg, lyophilizing, and making into No. 00 enteric-coated capsule;
mixing Exenatide 0.7mg and test 1 small intestine absorption promoting pharmaceutical composition 200mg, lyophilizing, and making into No. 3 common capsule;
mixing Exenatide 0.7mg and mannitol 200mg, lyophilizing, and making into No. 3 enteric-coated capsule;
test animals: adult male beagle dog
Oral PK assay: in the state of empty stomach of animals, blood samples are collected at 0.5,1,1.5,2,2.5 and 3 hours after the enteric capsule is orally taken. Blood samples were anticoagulated with 10mM EDTA, centrifuged at 4 ℃ and 3000rpm for 5min, and plasma was collected and snap frozen.
Intravenous PK assay: animals were fasted and blood samples were collected by intravenous injection of 0.3. mu.g/kg Exenatide at 5, 15, 30, 60, 90, 120 min. Blood samples were anticoagulated with 10mM EDTA, centrifuged at 4 ℃ and 3000rpm for 5min, and plasma was collected and snap frozen. See fig. 4 and 5.
To avoid hypoglycemia in the animals, 1g/kg glucose was administered prior to administration.
The ELISA detection method comprises the following steps: coating with mouse monoclonal antibody of anti-target polypeptide, blocking with 1% BSA, adding blood sample or standard substance diluted with 0.1% BSA for incubation, capturing rabbit polyclonal antibody of anti-target polypeptide labeled by Biotin, incubating with HRP-conjugated streptavidin, finally developing TMB, terminating HCl, and reading at 450 nm. And calculating the concentration of the target polypeptide in the plasma according to the standard curve obtained by the standard substance.
The AUC was calculated from the PK profile, and the bioavailability for small intestine dosing was calculated as 100% bioavailability for intravenous (iv).
The PK data for beagle dogs showed that the AUC for Exenatide at 0.3. mu.g/kg was about 0.82ng/ml. hour for intravenous injection and about 1.36ng/ml. hour for 0.7mg of oral Exenatide/test 1 drug composition. The bioavailability of the oral Exenatide/test 1 pharmaceutical composition is about 0.83%.
Exenatide cannot successfully enter blood without the assistance of the pharmaceutical composition, and the blood entering efficiency is remarkably improved after the pharmaceutical composition is added. Although the blood entry efficiency of Exenatide increases slightly with the increase in the weight of the test 1 pharmaceutical composition, the magnitude of the increase is limited. The capsule No. 3 is suitable in quantity by combining the consideration of two aspects of oral convenience and drug effectiveness.
Table 1 Exenatide/test 1 po PD test of intestinal absorption-promoting pharmaceutical composition on beagle dogs
Mixing Exenatide 0.7mg and test 1 small intestine absorption promoting pharmaceutical composition 200mg, lyophilizing, and making into No. 3 enteric capsule;
test animals: adult male beagle dogs;
animal physical examination and adaptation: collecting animal fasting blood sample to detect blood biochemical index, after determining that all the blood biochemical indexes are normal, placing the animal in a quieter room to adapt for 1 week, and requiring that the feeding time and the feeding amount are consistent every day;
data acquisition before modeling: blood samples were collected at 4 time points (2 h, 4h, 6h before and after feeding) every day for 5 days;
and (3) molding test: injecting 60mg/kg Alloxan solution into vein in fasting state, collecting blood samples at 4 time points (2 h, 4h and 6h before and after feeding) every day after one week, and continuously collecting for 5 days; and judging whether the model is qualified or not according to the acquired data. If the test is qualified, starting the drug effect test;
and (3) pharmacodynamic test: the test capsules were swallowed before feeding and blood samples were collected at 4 time points (2 h, 4h, 6h before and after feeding).
The results show that the Exenatide/test 1 intestinal absorption-promoting pharmaceutical composition can obviously inhibit the postprandial blood glucose increase on Alloxan modeled beagle dogs. See fig. 6.
And (4) test conclusion: the tests show that the medicinal composition for promoting the absorption of the small intestine has good effect of promoting the absorption of the effective components which can not be orally taken in the intestine, and can be used as a novel medicinal auxiliary material.
Test example 5 the pharmaceutical composition of the present invention can significantly improve the bioavailability of teriparatide (teriparatide) administered to the small intestine
The pharmaceutical composition of the invention comprises: the weight ratio of the sodium dodecyl sulfate to the carbomer to the chitosan to the sodium citrate is as follows: 20: 6.5: 6.5: 65.
mixing teriparatide and the pharmaceutical composition of the invention according to the weight ratio of 1: 5;
test animals: adult male SD rats;
small intestine PK assay: on an adult SD rat in a fasting state, the injection is carried out by a small intestine catheter according to the administration volume of 1ml/kg, so that the teriparatide dosage is 200 mug/kg, the teriparatide is divided into another group, 200 mug/kg of the teriparatide of the pharmaceutical composition is added in small intestine catheter injection (ei), 0h, 0.5h, 1h, 1.5h, 2h, 2.5h and 3h after the administration, tail blood collection is carried out, blood samples are anticoagulated by 10mM EDTA, and are centrifuged at 4 ℃ and 3000rpm for 5min, and plasma is collected.
Intravenous PK assay: animals were fasted and injected intravenously with 1. mu.g/kg teriparatide, and blood samples were collected at 5, 15, 30, 60, 90, 120 min. Blood samples were anticoagulated with 10mM EDTA, centrifuged at 4 ℃ and 3000rpm for 5min, and plasma was collected and snap frozen.
The ELISA detection method comprises the steps of coating a mouse monoclonal antibody resisting target polypeptide, blocking by 1% BSA, adding a blood sample or a standard substance diluted by 0.1% BSA for incubation, capturing rabbit polyclonal antibody resisting the target polypeptide marked by Biotin, incubating streptavidin coupled with HRP, finally developing TMB, stopping HCl, and reading at 450 nm. And calculating the concentration of the target polypeptide in the plasma according to the standard curve obtained by the standard substance.
The AUC was calculated from the PK profile, and the bioavailability for small intestine dosing was calculated as 100% bioavailability for intravenous (iv).
The results show that teriparatide is administered at 200. mu.g/kg via the small intestine and that the blood concentration is below the lower limit of ELISA detection. After the pharmaceutical composition is added, the bioavailability of the small intestine administration can reach 2.08%.
The pharmaceutical composition for promoting small intestine absorption: the weight ratio of the sodium dodecyl sulfate to the carbomer to the chitosan to the sodium citrate is as follows: 20: 6.5: 6.5: 68.
the abacavir peptide and the pharmaceutical composition are fully and uniformly mixed according to the weight ratio of 1:5 for later use;
test animals: adult male SD rats;
small intestine PK assay: on an adult SD rat in a fasting state, the administration volume of 1ml/kg is administered through a small intestine catheter, so that the dosage of the abalones peptide is 200 mug/kg, the abalones peptide (200 mug/kg) of the pharmaceutical composition for promoting the intestinal absorption is added into the rat in a small intestine catheter injection (ei) in another group, 0h, 0.5h, 1h, 1.5h, 2h, 2.5h and 3h after the administration, tail blood is collected, blood samples are anticoagulated by 10mM EDTA, centrifuged at 4 ℃ and 3000rpm for 5min, and plasma is collected and frozen.
Intravenous PK assay: animals were fasted, injected intravenously with 1. mu.g/kg of Abarotide, and blood samples were collected at 5, 15, 30, 60, 90, 120 min. Blood samples were anticoagulated with 10mM EDTA, centrifuged at 4 ℃ and 3000rpm for 5min, and plasma was collected and snap frozen.
The ELISA detection method comprises the steps of coating a mouse monoclonal antibody resisting target polypeptide, blocking by 1% BSA, adding a blood sample or a standard substance diluted by 0.1% BSA for incubation, capturing rabbit polyclonal antibody resisting the target polypeptide marked by Biotin, incubating streptavidin coupled with HRP, finally developing TMB, stopping HCl, and reading at 450 nm. And calculating the concentration of the target polypeptide in the plasma according to the standard curve obtained by the standard substance.
The AUC was calculated from the PK profile, and the bioavailability for small intestine dosing was calculated as 100% bioavailability for intravenous (iv).
The results show that when the abacavir peptide is injected into the small intestine at 200 mug/kg, the blood concentration is lower than the lower detection limit of ELISA. After the medicinal composition for promoting the small intestine to absorb the abamectin is added, the bioavailability of the abamectin for small intestine administration can reach 1.66%.
Claims (9)
1. A pharmaceutical composition characterized in that it comprises: the composition is prepared from teriparatide or abalopeptide and a pharmaceutical composition for promoting small intestine absorption, wherein the pharmaceutical composition for promoting small intestine absorption is composed of sodium dodecyl sulfate, carbomer, chitosan and sodium citrate.
2. The pharmaceutical composition of claim 1, wherein the pharmaceutical composition is formulated for oral administration.
3. A pharmaceutical composition according to claim 1 or 2, for use in ensuring the absorption of teriparatide or abamectin in the small intestine.
4. A pharmaceutical composition according to claim 1 or 2 for promoting the absorption of teriparatide or abamectin in the small intestine.
5. A pharmaceutical composition according to claim 1 or 2, wherein the weight ratio of sodium lauryl sulfate, carbomer, chitosan, sodium citrate is 15-25: 5-8: 5-8: 50-80.
6. A pharmaceutical composition according to claim 1 or 2, wherein the weight ratio of teriparatide or abamectin to the pharmaceutical composition for promoting intestinal absorption is: 1:5-860.
7. An oral formulation characterized by: the oral preparation is prepared from teriparatide or abamectin, sodium dodecyl sulfate, carbomer, chitosan and sodium citrate.
8. An oral formulation according to claim 7, wherein the weight ratio of sodium lauryl sulphate, carbomer, chitosan, sodium citrate is from 15 to 25: 5-8: 5-8: 50-80.
9. An oral formulation according to claim 7, wherein the weight ratio of teriparatide or abamectin to the pharmaceutical composition for promoting intestinal absorption is: 1:5-860.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910498364.XA CN112138167A (en) | 2019-06-10 | 2019-06-10 | Oral pharmaceutical composition of teriparatide or abamectin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910498364.XA CN112138167A (en) | 2019-06-10 | 2019-06-10 | Oral pharmaceutical composition of teriparatide or abamectin |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112138167A true CN112138167A (en) | 2020-12-29 |
Family
ID=73868330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910498364.XA Pending CN112138167A (en) | 2019-06-10 | 2019-06-10 | Oral pharmaceutical composition of teriparatide or abamectin |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112138167A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116211827A (en) * | 2023-03-17 | 2023-06-06 | 浙江大学 | Teriparatide solid lipid nanoparticle and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012130193A1 (en) * | 2011-03-31 | 2012-10-04 | Zentiva, K.S. | Non-covalent soluble complexes of teriparatide with polysaccharides and a dosage form of teriparatide for oral administration |
-
2019
- 2019-06-10 CN CN201910498364.XA patent/CN112138167A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012130193A1 (en) * | 2011-03-31 | 2012-10-04 | Zentiva, K.S. | Non-covalent soluble complexes of teriparatide with polysaccharides and a dosage form of teriparatide for oral administration |
Non-Patent Citations (1)
Title |
---|
金朝辉等: "口服吸收促进剂研究进展概述", 《华西医学》, vol. 23, no. 4, 31 December 2008 (2008-12-31), pages 940 - 942 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116211827A (en) * | 2023-03-17 | 2023-06-06 | 浙江大学 | Teriparatide solid lipid nanoparticle and preparation method and application thereof |
CN116211827B (en) * | 2023-03-17 | 2024-04-05 | 浙江大学 | Teriparatide solid lipid nanoparticle and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5424289A (en) | Solid formulations of therapeutic proteins for gastrointestinal delivery | |
CN101969928B (en) | Delivery of active agents | |
Johnson et al. | A month–long effect from a single injection of microencapsulated human growth hormone | |
CN101969927A (en) | Method of preventing adverse effects by glp-1 | |
US20220313773A1 (en) | Terlipressin compositions and their methods of use | |
WO2020248742A1 (en) | Composition | |
CN112138167A (en) | Oral pharmaceutical composition of teriparatide or abamectin | |
CN112057619A (en) | A pharmaceutical composition with blood sugar lowering effect | |
CN112972659A (en) | Oral pharmaceutical composition of teriparatide or abamectin | |
CN112057607A (en) | Oral medicine composition of glucagon-like peptide-2 or analogue thereof | |
WO2003092725A1 (en) | Method for control of depression using c terminal growth hormone (gh) fragment | |
CN112138148A (en) | Oral pharmaceutical composition of growth hormone or its analogue | |
CN112138168B (en) | Oral pharmaceutical composition of insulin or analogue thereof | |
CN113058039A (en) | Oral medicine composition of thymalfasin or thymopentin | |
CN112138147B (en) | Oral pharmaceutical composition of thymalfasin or thymalpentapeptide | |
CN112972691A (en) | Oral pharmaceutical composition of insulin or insulin analogue | |
CN112138141B (en) | Oral pharmaceutical composition of somatostatin or analogue thereof | |
CN112972650B (en) | Oral pharmaceutical composition of somatostatin or analogue thereof | |
CN112972656A (en) | Oral medicine composition of glucagon-like peptide-2 or analogue thereof | |
AU2018275545B2 (en) | Rapid-acting insulin compositions | |
CN112972692A (en) | Pharmaceutical composition for promoting intestinal absorption | |
CN113509544A (en) | A pharmaceutical composition with blood sugar lowering effect | |
CN112972658A (en) | Oral pharmaceutical composition of growth hormone or its analogue | |
CN116570619A (en) | Application of bismuth agent in promoting bioavailability of oral medicine | |
Geho et al. | Oral Delivery of Peptide Hormones: Insulin, Interferon, Growth Hormone and Calcitonin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201229 |