CN112134670B - 无线发射/接收单元(wtru)及方法 - Google Patents

无线发射/接收单元(wtru)及方法 Download PDF

Info

Publication number
CN112134670B
CN112134670B CN202010909170.7A CN202010909170A CN112134670B CN 112134670 B CN112134670 B CN 112134670B CN 202010909170 A CN202010909170 A CN 202010909170A CN 112134670 B CN112134670 B CN 112134670B
Authority
CN
China
Prior art keywords
wtru
cell
transmission
transmit
subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010909170.7A
Other languages
English (en)
Other versions
CN112134670A (zh
Inventor
J·A·斯特恩-波科维茨
P·萨迪吉
P·J·图尔
S·考尔
M·鲁道夫
P·M·艾杰佩尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55410216&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN112134670(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Priority to CN202010909170.7A priority Critical patent/CN112134670B/zh
Publication of CN112134670A publication Critical patent/CN112134670A/zh
Application granted granted Critical
Publication of CN112134670B publication Critical patent/CN112134670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线发射/接收单元(WTRU)及方法,该WTRU包括:处理器,被配置为:接收配置,该配置指示是否允许所述WTRU向第一小区传输一类型的数据;确定与所述类型的数据相关联的数据可用于传输;在所述配置指示允许所述WTRU在所述第一小区上传输所述类型的数据的条件下,在所述第一小区上传输与所述类型的数据相关联的所述数据;以及在所述配置指示不允许所述WTRU在所述第一小区上传输所述类型的数据的条件下,在第二小区上传输与所述类型的数据相关联的所述数据。

Description

无线发射/接收单元(WTRU)及方法
本申请是申请日为2016年01月28日,申请号为201680007955.7,发明名称为“用于无授权频带中的LTE的上行链路操作的方法和装置”的发明专利申请的分案申请。
交叉引用
本申请要求享有以下申请的权益:2015年1月28日提交的美国临时申请62/108,934;2015年5月13日提交的美国临时申请62/160,924;以及2015年8月12日提交的美国临时申请62/204,135。所述申请的内容在这里全部引入以作为参考。
背景技术
目前已经出台的无线系统(例如长期演进(LTE)系统)是在授权频谱中使用的。举例来说,运营商可以获取(例如通过政府拍卖)在一个区域中使用频带的一部分来发射和/或接收蜂窝信号的权利。作为示例,通过使用授权频谱,运营商可以独家使用该频谱来向其用户提供服务,而不用顾虑来自其他运营商系统的带内干扰。
作为示例,能在非蜂窝服务和/或应用(例如Wi-Fi)中使用的无授权频谱可以增强服务供应,以便满足对于宽带数据的增长需求。
发明内容
所公开的是用于LTE无授权频谱(LTE-U)中的上行链路操作的系统、方法和手段。LTE-U可以用载波聚合和/或双重连接来实施,并且用于接入LTE-U小区的、可被称为授权辅助接入(LAA)的技术。举例来说,LAA可以包括授权的LTE小区,其用来提供用于接入和/或以其他方式使用无授权小区的配置信息。作为示例,某些数据和/或信号可被配置成在LAA小区上是允许和/或禁止的。WTRU可被配置成遵从一个或多个允许和/或禁止配置。服务小区可被标识和/或配置小区类型,例如LAA和/或非LAA小区。作为示例,在被提供了辅助信息的无授权频谱中工作的小区可被称为LAA小区。在授权频带中工作的小区可被称为非LAA小区。
LTE可以用于在授权频谱或无授权频谱上通信。如果在无授权频谱中使用LTE操作,那么可以考虑LTE与其他无授权技术(例如Wi-Fi)以及LTE运营商之间的共存性,以便尝试将所述频谱的用户间的干扰最小化和/或为其提供公平性。
一个或多个配置或过程可以专用于LAA小区中的操作。例如,动态探测参考信号(SRS)子帧指示可以指示WTRU在子帧中为SRS保留符号和/或是否在子帧中传送SRS。
MAC状态MAC-CE可以向网络提供关于LAA小区传输失败的状态和/或统计信息。例如,MAC状态MAC-CE可以提供归因于拥挤信道的LAA小区传输失败的状态。MAC状态MAC-CE可以提供关于LAA小区传输失败(例如归因于拥挤信道)的统计信息。通过维护参数和/或计数器,可以修改参数和/或追踪MAC PDU传输的成功和/或失败。此外还可以通过标识参数来允许和/或禁止小区或小区类型的非自适应(例如基于未许可的)重传。WTRU可以接收、选择和/或使用一个或多个传输参数集合,例如在空闲信道评估(CCA)中以一个或多个信道状况为基础。WTRU可以传送多个传输块(TB)。WTRU可以在系统帧(SF)中重复TB,例如在CCA中基于信道状况来重复。WTRU可以向eNB通知所选择的一个或多个参数集合和/或重复。用于LAA小区中的操作的功率控制方法可被定义,例如基于干扰源的功率控制。丢弃的UL传输可以通过由WTRU对接收到与已失败的CCA相关的UL许可做出应答和/或通过由WTRU处置与已失败的CCA相关的UL许可而被处理。
在LAA小区或其它小区类型上的传输是可以是被允许的,例如无线电承载(RB)、逻辑信道(LCH)、MAC控制单元(MAC-CE)、无线电链路控制(RLC)状态协议数据单元(PDU)、上行链路控制信息(UCI)。并且关于LAA小区或其他小区类型的传输有可能不被允许,例如RB、LCH、MAC-CE、RLC状态PDU、UCI。在这里将会描述用于与允许传输相符合的WTRU修改,其中包括HARQ处理、功率余量报告以及缓冲器状态报告。在这里还会描述与禁止传输相符合的WTRU修改,其中包括HARQ处理、功率余量报告以及缓冲器状态报告。
小区的小区类型是可以配置的,作为示例,对于为WTRU配置的服务小区来说,其小区类型可以是LAA或非LAA小区。不同的小区类型可以使用单独的参数,例如MAC参数。作为示例,通过对参数进行标识,可以允许基于小区身份标识和/或小区类型的非自适应(例如基于未许可的)重传。用于禁止关于小区或小区类型的非自适应(例如基于未许可的)重传的参数也是可以使用的。
用于LAA小区(或是某种小区类型)或LAA小区(或某种类型的小区)群组的具有和/或不具有单独的MAC实体的传输以及单独的参数有可能会被允许。此外,用于LAA小区(或是某种小区类型)或LAA小区(或某种类型的小区)群组的具有和/或不具有单独的MAC实体的传输以及单独的参数有可能会被禁止。
通过使用用来维护与MAC PDU传输的成功/失败相关的参数/计数器,例如TX-ACK、TX-NACK、NOTX_CNT,可以修改HARQ和/或PHR。
动态的SRS子帧指示可以向WTRU指示在子帧中保留用于SRS的符号。动态的SRS子帧指示可以向WTRU指示是否在子帧中传送SRS。
机会性UL传输可以以(例如在以后的子帧或时间窗口中的)信道可用性为基础。
WTRU可以接收多个传输参数集合。作为示例,考虑到CCA期间的一个或多个信道状况,WTRU可以选择和/或使用一个或多个集合。WTRU可以传送多个TB。作为示例,考虑到CCA期间的信道状况,WTRU可以在SF中重复TB。WTRU可以向eNB通知所选择的参数集合和/或重复。作为示例,考虑到不同的干扰来源,功率控制算法可被改进。丢弃的UL传输可以通过由WTRU对接收到与已失败的CCA相关的UL许可做出应答和/或通过由WTRU处置与已失败的CCA相关的UL许可而被处理。
WTRU可以向eNB提供一个或多个无线电链路(RL)状态报告。WTRU可以提供一个传输指示,该传输指示可以用于(例如供eNB)确定传输的存在性或是成功接收,和/或不会经历CRC处理。
WTRU可以从第二小区接收(例如关于第一小区的)LAA配置信息。所述第一小区可以与无授权频带中的操作相关联,并且第二小区可以与授权频带中的操作相关联。WTRU可以确定第一子帧是不是用于第一小区的SRS子帧。如果第一子帧是用于第一小区的SRS子帧,那么WTRU可以确定用于第一子帧的SRS资源,并且可以确定是否触发所述WTRU在第一子帧中传送SRS传输。如果确定触发所述WTRU在第一子帧中传送SRS传输,那么WTRU可以在用于第一子帧的SRS资源上传送SRS传输。
附图说明
图1A是例示通信系统的系统图示;
图1B是可以在图1A所示的通信系统内部使用的例示无线发射/接收单元(WTRU)的系统图示;
图1C是可以在图1A所示的通信系统内部使用的例示无线电接入网络和例示核心网络的系统图示;
图1D是可以在图1A所示的通信系统内部使用的另一个例示无线电接入网络和另一个例示核心网络的系统图示;
图1E是可以在图1A所示的通信系统内部使用的另一个例示无线电接入网络和另一个例示核心网络的系统图示;
图2示出了一个例示的授权辅助接入(LAA)部署方式;
图3描述了可以应用于基于帧的设备(FBE)的先听后说/空闲信道评估(LBT/CCA)定时的示例;
图4描述了一个例示的MAC PDU;以及
图5描述了响应于下行链路控制信息(DCI)的例示的WTRU传输。
具体实施方式
现在将参考不同附图来描述关于说明性实施例的具体实施方式。虽然本具体实施方式部分提供了关于可能的实施方式的具体示例,然而应该指出的是,这些细节应该是例示性的,并且不会对本申请的范围构成限制。
图1A是例示通信系统100的图示。该通信系统100可以是为多个无线用户提供语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100通过共享包括无线带宽在内的系统资源来允许多个无线用户访问此类内容。作为示例,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c和/或102d(其通常可被统称为WTRU 102),无线电接入网络(RAN)103/104/105,核心网络106/107/109,公共交换电话网络(PSTN)108,因特网110以及其他网络112,但是应该了解,所公开的实施例设想了任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。例如,WTRU 102a、102b、102c、102d可以被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器以及消费类电子设备等等。
通信系统100还可以包括基站114a和基站114b。每一个基站114a、114b可以是被配置成通过与WTRU 102a、102b、102c、102d中的至少一个无线对接来促使接入一个或多个通信网络的任何类型的设备,所述网络则可以是核心网络106/107/109、因特网110和/或网络112。作为示例,基站114a、114b可以是基站收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、站点控制器、接入点(AP)、无线路由器等等。虽然每一个基站114a、114b都被描述成是单个部件,但是应该了解,基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 103/104/105的一部分,并且所述RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可以被配置成在名为小区(未显示)的特定地理区域内部发射和/或接收无线信号。小区可被进一步划分成小区扇区。例如,与基站114a关联的小区可分为三个扇区。由此,在一个实施例中,基站114a可以包括三个收发信机,也就是说,每一个收发信机对应于小区的一个扇区。在另一个实施例中,基站114a可以使用多输入多输出(MIMO)技术,由此可以为小区的每个扇区使用多个收发信机。
基站114a、114b可以经由空中接口115/116/117来与一个或多个WTRU 102a、102b、102c、102d进行通信,该空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、红外线(IR)、紫外线(UV)、可见光等等)。所述空中接口115/116/117可以用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。举例来说,RAN103/104/105中的基站114a与WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,并且该技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA则可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。
基站114a与WTRU 102a、102b、102c可以实施演进型UMTS陆地无线电接入(E-UTRA)之类的无线电技术,该技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)来建立空中接口115/116/117。
基站114a与WTRU 102a、102b、102c可以实施IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM增强数据速率演进(EDGE)、GSM EDGE(GERAN)等无线电接入技术。
作为示例,图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,例如营业场所、住宅、交通工具、校园等等。在一个实施例中,基站114b与WTRU 102c、102d可以通过实施诸如IEEE802.11之类的无线电技术来建立无线局域网(WLAN)。在另一个实施例中,基站114b与WTRU102c、102d可以通过实施诸如IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一个实施例中,基站114b和WTRU 102c、102d可以通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直接连接到因特网110。由此,基站114b未必需要经由核心网络106/107/109来接入因特网110。
RAN 103/104/105可以与核心网络106/107/109通信,所述核心网络可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议的语音(VoIP)服务的任何类型的网络。例如,核心网络106/107/109可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或执行用户验证之类的高级安全功能。虽然在图1A中没有显示,但是应该了解,RAN103/104/105和/或核心网络106/107/109可以直接或间接地和其他那些与RAN103/104/105使用相同RAT或不同RAT的RAN进行通信。例如,除了与使用E-UTRA无线电技术的RAN103/104/105连接之外,核心网络106/107/109还可以与别的使用GSM无线电技术的RAN(未显示)通信。
核心网络106/107/109还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的全球性互联计算机网络设备系统,所述协议可以是TCP/IP互联网协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP)。网络112可以包括由其他服务供应商拥有和/或运营的有线或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个核心网络,所述一个或多个RAN可以与RAN 103/104/105使用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力,换言之,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机。例如,图1A所示的WTRU 102c可以被配置成与使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是例示WTRU 102的系统图示。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、数字键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他周边设备138。应该了解的是,WTRU 102还可以包括前述部件的任何子组合。这里的实施例还设想基站114a和114b和/或基站114a和114b所代表的节点可以包括在图1B中描绘以及在这里描述的一些或所有部件,特别地,基站114a和114b所代表的节点可以是收发信台(BTS)、节点B、站点控制器、接入点(AP)、家庭节点B、演进型家庭节点B(e节点B)、家庭演进型节点B(HeNB)、家庭演进型节点B网关以及代理节点,但其并不局限于此。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)、状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成是独立组件,但是应该了解,处理器118和收发信机120可以集成在一个电子组件或芯片中。
发射/接收部件122可以被配置成经由空中接口115/116/117来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施例中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。在另一个实施例中,作为示例,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施例中,发射/接收部件122可以被配置成发射和接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
此外,虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以使用MIMO技术。因此,在一个实施例中,WTRU 102可以包括两个或多个经由空中接口115/116/117来发射和接收无线电信号的发射/接收部件122(例如多个天线)。
收发信机120可以被配置成对发射/接收部件122将要发射的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助诸如UTRA和IEEE 802.11之类的多种RAT来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合至扬声器/麦克风124、数字键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、数字键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从任何适当的存储器、例如不可移除存储器106和/或可移除存储器132中存取信息,以及将信息存入这些存储器。所述不可移除存储器106可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于WTRU 102的存储器访问信息,以及将数据存入这些存储器,其中举例来说,所述存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可以被配置分发和/或控制用于WTRU 102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当的设备。举例来说,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池、燃料电池等等。
处理器118还可以与GPS芯片组136耦合,该芯片组可以被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或多个附近基站接收的信号定时来确定其位置。应该了解的是,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他周边设备138,这其中可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,周边设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器等等。
图1C是根据一个实施例的RAN 103和核心网络106的系统图示。如上所述,RAN 103可以使用E-UTRA无线电技术并经由空中接口115来与WTRU 102a、102b、102c进行通信。并且RAN 103还可以与核心网络106通信。如图1C所示,RAN 103可以包括节点B 140a、140b、140c,其中每一个节点B都可以包括经由空中接口115与WTRU 102a、102b、102c通信的一个或多个收发信机。节点B 140a、140b、140c中的每一个都可以关联于RAN 103内部的特定小区(未显示)。RAN 103还可以包括RNC 142a、142b。应该了解的是,RAN 103可以包括任何数量的节点B和RNC。
如图1C所示,节点B 140a、140b可以与RNC 142a进行通信。此外,节点B 140c还可以与RNC 142b进行通信。节点B 140a、140b、140c可以经由Iub接口来与相应的RNC 142a、142b进行通信。RNC 142a、142b彼此则可以经由Iur接口来进行通信。每一个RNC 142a、142b都可以被配置成控制与之相连的相应节点B 140a、140b、140c。另外,每一个RNC 142a、142b都可被配置成执行或支持其他功能,例如外环功率控制、负载控制、许可控制、分组调度、切换控制、宏分集、安全功能、数据加密等等。
图1C所示的核心网络106可以包括媒体网关(MGW)144、移动交换中心(MSC)146、服务GPRS节点交换中心(SGSN)148、和/或网关GPRS支持节点(GGSN)150。虽然前述每个部件都被描述成是核心网络106的一部分,但是应该了解,核心网络运营商之外的其他实体也可以拥有和/或运营这其中的任一部件。
RAN 103中的RNC 142a可以经由IuCS接口连接到核心网络106中的MSC 146。MSC146则可以连接到MGW 144。MSC 146和MGW 144可以为WTRU 102a、102b、102c提供针对PSTN108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备间的通信。
RAN 103中的RNC 142a还可以经由IuPS接口连接到核心网络106中的SGSN 148。所述SGSN 148则可以连接到GGSN 150。SGSN 148和GGSN 150可以为WTRU 102a、102b、102c提供针对诸如因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
如上所述,核心网络106还可以连接到网络112,该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
图1D是根据一个实施例的RAN 104以及核心网络107的系统图示。如上所述,RAN104可以使用E-UTRA无线电技术并经由空中接口116来与WTRU 102a、102b、102c进行通信。此外,RAN 104还可以与核心网络107通信。
RAN 104可以包括e节点B 160a、160b、160c,但是应该了解,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c可以包括一个或多个收发信机,以便经由空中接口116来与WTRU 102a、102b、102c通信。在一个实施例中,e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,以及接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、上行链路和/或下行链路中的用户调度等等。如图1D所示,e节点B 160a、160b、160c彼此可以在X2接口上进行通信。
图1D所示的核心网络107可以包括移动性管理网关(MME)162、服务网关164以及分组数据网络(PDN)网关166。虽然上述每一个部件都被描述成是核心网络107的一部分,但是应该了解,核心网络运营商之外的其他实体同样可以拥有和/或运营这其中的任一部件。
MME 162可以经由S1接口来与RAN 104中的每一个e节点B 160a、160b、160c相连,并且可以充当控制节点。例如,MME 162可以负责验证WTRU 102a、102b、102c的用户,激活/去激活承载,在WTRU 102a、102b、102c的初始附着过程中选择特定服务网关等等。所述MME162还可以提供控制平面功能,以便在RAN 104与使用了GSM或WCDMA之类的其他无线电技术的其他RAN(未显示)之间执行切换。
服务网关164可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c。该服务网关164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。此外,服务网关164还可以执行其他功能,例如在e节点B间的切换过程中锚定用户面,在下行链路数据可供WTRU 102a、102b、102c使用时触发寻呼,管理和存储WTRU 102a、102b、102c的上下文等等。
服务网关164还可以连接到PDN网关166,该PDN网关可以为WTRU 102a、102b、102c提供针对诸如因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
核心网络107可以促成与其他网络的通信。例如,核心网络107可以为WTRU 102a、102b、102c提供针对诸如PSTN 108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备之间的通信。作为示例,核心网络107可以包括IP网关(例如IP多媒体子系统(IMS)服务器)或与之通信,其中所述IP网关充当了核心网络107与PSTN 108之间的接口。此外,核心网络107还可以为WTRU 102a、102b、102c提供针对网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
图1E是根据一个实施例的RAN 105和核心网络109的系统图示。RAN 105可以是通过使用IEEE 802.16无线电技术而通过空中接口117与WTRU 102a、102b、102c通信的接入服务网络(ASN)。如以下进一步论述的那样,WTRU 102a、102b、102c,RAN 104以及核心网络109的不同功能实体之间的通信链路可被定义成参考点。
如图1E所示,RAN 105可以包括基站180a、180b、180c以及ASN网关182,但是应该了解,RAN 105可以包括任何数量的基站及ASN网关。每一个基站180a、180b、180c都可以关联于RAN 105中的特定小区(未显示),并且每个基站都可以包括一个或多个收发信机,以便经由空中接口117来与WTRU 102a、102b、102c进行通信。在一个实施例中,基站180a、180b、180c可以实施MIMO技术。由此,举例来说,基站180a可以使用多个天线来向WTRU 102a发射无线信号,以及接收来自WTRU 102a的无线信号。基站180a、180b、180c还可以提供移动性管理功能,例如切换触发、隧道建立、无线电资源管理、业务量分类、服务质量(QoS)策略实施等等。ASN网关182可以充当业务量聚集点,并且可以负责实施寻呼、订户简档缓存、针对核心网络109的路由等等。
WTRU 102a、102b、102c与RAN 105之间的空中接口117可被定义成是实施IEEE802.16规范的R1参考点。另外,每一个WTRU 102a、102b、102c都可以与核心网络109建立逻辑接口(未显示)。WTRU 102a、102b、102c与核心网络109之间的逻辑接口可被定义成R2参考点,该参考点可以用于验证、许可、IP主机配置管理和/或移动性管理。
每一个基站180a、180b、180c之间的通信链路可被定义成R8参考点,该参考点包含了用于促成WTRU切换以及基站之间的数据传送的协议。基站180a、180b、180c与ASN网关182之间的通信链路可被定义成R6参考点。所述R6参考点可以包括用于促成基于与每一个WTRU102a、102b、180c相关联的移动性事件的移动性管理。
如图1E所示,RAN 105可以连接到核心网络109。RAN 105与核心网络109之间的通信链路可以被定义成R3参考点,作为示例,该参考点包含了用于促成数据传送和移动性管理能力的协议。核心网络109可以包括移动IP家用代理(MIP-HA)184、验证-授权-记帐(AAA)服务器186以及网关188。虽然前述每个部件都被描述成是核心网络109的一部分,但是应该了解,核心网络运营商以外的实体也可以拥有和/或运营这其中的任一部件。
MIP-HA可以负责实施IP地址管理,并且可以允许WTRU 102a、102b、102c在不同的ASN和/或不同的核心网络之间漫游。MIP-HA 184可以为WTRU 102a、102b、102c提供针对因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。AAA服务器186可以负责实施用户验证以及支持用户服务。网关188可以促成与其他网络的互通。例如,网关188可以为WTRU 102a、102b、102c提供对于PSTN 108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备之间的通信。另外,网关188还可以为WTRU 102a、102b、102c提供针对网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
虽然在图1E中没有显示,但是应该了解,RAN 105可以连接到其他ASN,并且核心网络109可以连接到其他核心网络。RAN 105与其他ASN之间的通信链路可被定义成R4参考点,该参考点可以包括用于协调WTRU 102a、102b、102c在RAN 105与其他ASN之间的移动性的协议。核心网络109与其他核心网络之间的通信链路可以被定义成R5参考点,该参考点可以包括用于促成归属核心网络与被访核心网络之间互通的协议。
蜂窝运营商可以考虑将先前供非蜂窝服务和应用(例如WiFi)使用的无授权频谱来作为增强服务供应的工具,以便满足对于宽带数据的增长需求。举例来说,通过将LTE(和/或别的授权蜂窝技术)扩展成在无授权频谱中工作,由此可以扩展可用于用户数据传输的带宽。然而,如果要将通常用于授权频带接入的蜂窝技术(例如LTE)扩展成在无授权频带中工作,那么有可能会引入先前在授权频带中工作的时候不会存在的复杂度的问题。例如,蜂窝技术有可能会与其他无线电接入技术(例如Wi-Fi)争用无授权信道资源。
使用无授权频谱的小区可被称为无授权小区(例如无授权载波)。举例来说,无授权小区可以在无授权的工作频带(例如无授权频谱)中接收和/或发射信号和/或消息。无授权小区可以用于(例如主要用于)发射和/或接收数据业务。使用授权频谱的小区可被称为授权小区(例如授权载波)。作为示例,授权小区可以在授权的工作频带(例如授权频谱)中接收和/或发射信号和/或消息。
载波聚合是可被使用的。举例来说,载波聚合可用于将LTE扩展到无授权频带。载波聚合可以允许WTRU连接到一个或多个(例如两个)小区(例如向所述小区发射信号和/或消息,和/或接收来自所述小区的信号和/或消息),其中所述小区可被称为服务小区。举例来说,载波聚合可以将主小区(例如主服务小区)与一个或多个辅小区(例如辅服务小区)相聚合,其中所述主小区可以是授权小区(例如在授权频带和/或频谱中工作的小区和/或载波),所述辅小区可以是无授权小区(例如在无授权频带和/或频谱中工作的小区和/或载波)。通过使用载波聚合而在授权和/或非授权频带中联合支持LTE操作的处理可被称为“授权辅助接入”(LAA)(例如接入到无授权频谱)。主小区或服务小区可被称为P小区。辅小区或服务小区可被称为S小区。小区、载波、服务小区以及分量载波是可以交换使用的。
图2示出了一个例示的授权辅助接入(LAA)部署方式200。如图2所示,在LAA中,主服务小区或载波(例如P小区)(例如202a、202b)可以是或者可以使用授权小区或载波(例如可以使用授权频谱的小区或载波)。辅服务小区或载波(例如S小区)(例如204a、204b)可以是或者可以使用无授权小区或载波(例如可以使用无授权频谱的小区或载波)。一个或多个S小区还可以被配置成在授权频带中工作。通过聚合所述P小区以及一个或多个S小区,可以增大可用于用户传输的带宽。一个或多个无授权S小区以及零个或多个授权S小区可以在与P小区聚合或者不与之聚合的情况下聚合在一起。P小区和S小区可以属于相同的eNB。如图2所示,主小区或载波(例如202a、202b)可以同时用于上行链路和下行链路传输。辅小区或载波既可以用于一个方向(例如下行链路或上行链路)。也可以同时用于所有的两个方向。作为示例,辅载波204a可以是纯下行链路载波,并且辅载波204b可以同时用于上行链路和下行链路传输。
在一个部署场景中,双重连接可被用于针对无授权频谱的LAA。举例来说,接入到使用授权频带或者在授权频带中工作的第一小区的处理可以借助于与第一基站(例如主演进型节点B(MeNB)的通信来执行,和/或接入到使用无授权频带或者在无授权频带中工作的第二小区的处理可以借助于与第二基站(例如辅演进型节点B(SeNB))的通信来执行。在另一个示例中,WTRU可以接入或者与属于第一基站或e节点B(例如MeNB)的第一小区进行通信,其中所述第一小区可以使用授权频带或者在授权频带中工作。该WTRU可以接入或者与属于第二基站或e节点B(例如SeNB)的第二小区进行通信,其中所述第二小区可以使用无授权频带或者在无授权频带中工作。第一基站与第二基站可以不处于相同位置,和/或所述第一与第二基站可以是相互独立的。MeNB可以支持一个或多个小区(例如借助载波聚合原理),并且这些小区可被称为主小区群组(MCG)。MCG中的每一个小区都可以在授权频带中工作,和/或MCG中的一个或多个小区可以在无授权频带中工作。举例来说,用于P小区的MCG可以在授权频带中工作,并且用于MCG的S小区同样可以在授权频带中工作。在一个示例中,用于MCG的P小区可以在授权频带中工作,用于MCG的一个或多个S小区可以在授权频带中工作,并且用于MCG的一个或多个其他S小区可以在无授权频带中工作。在一个示例中,用于MCG的P小区可以在授权频带中工作,并且用于MCG的一个或多个S小区中的每一个可以在无授权频带中工作。
在双重连接部署场景中,SeNB可以与一个或多个小区相关联,并且这些小区可被称为辅小区群组(SCG)。举例来说,SCG可以包括主辅小区(PS小区)以及一个或多个S小区。如果SeNB没有使用载波聚合,那么SCG中的S小区有可能是零个。SCG的PS小区和/或S小区可以是授权小区(例如在授权频带中工作)或无授权小区(例如在无授权频带中工作)和/或授权与无授权小区的某种组合。
LTE可以用于通过授权频谱和/或无授权频谱来进行通信。如果在无授权频谱中使用LTE操作时,那么有可能要考虑LTE与其他无授权技术(例如Wi-Fi、其他无授权频谱LTE运营商等等)的共存性,以便减小频谱用户之间的干扰和/或为其提供公平性。诸如先听后说(LBT)和传输间隙之类的机制可以被使用。对于LBT来说,系统节点(例如接入点(AP)、e节点B(eNB)、用户设备(UE)以及WTRU等等)可以先侦听信道以确定是否还有别的用户正在使用该信道,之后才会在该信道或是该信道的一部分上进行传输。信道可以是具有某个中心频率和/或带宽的频带。侦听和/或确定另一方的使用情况的处理可以包括和/或基于诸如能量检测之类的测量。对于传输间隙来说,可在信道或信道的一部分上传输的系统节点可以包括或者确保在其传输中存在间隙,例如用于允许其他潜在用户来获知所述信道是空闲和/或使用信道。无授权频谱中的LTE操作既可以与授权频谱中的LTE操作相结合,也可以不与之结合(作为示例,其可以与授权P小区和/或PS小区具有或者不具有聚合或双重连接),并且该操作可被称为LTE无授权操作或LTE-U。
作为示例,通过执行和/或使用信道评估,可以支持无授权信道/小区上的传输。举例来说,信道上的潜在发射机(例如具有可用于传输的UL数据的WTRU和/或具有可用于传输的DL数据的eNB)可以确定和/或可以被配置成确定无授权信道是否可用(例如相对没有干扰)。作为示例,无授权信道上的潜在发射机可以评估和/或监视(例如接收)所述信道。该潜在发射机可以通过评估和/或监视信道来测量和/或确定该信道上的信号存在性,和/或识别出在该信道上是否存在干扰(例如另一个传输)。作为示例,信道上的潜在发射机可以在传输之前测量和/或确定信道上的信号存在性或干扰,以便确定该信道是否正被别的系统、用户或信号使用(例如拥挤或者被占用)。这种信道评估和/或监视处理可被称为“先听后说”(LBT)、“空闲频道评估”(CCA)或“LBT/CCA”。LBT、CCA和LBT/CCA在这里是可以交换使用的。
潜在发射机可以(例如作为LBT/CCA的一部分)将接收到的信号和/或来自信道的干扰与某个判据相比较。用于比较的判据可以包括一个或多个阈值等级。潜在发射机可以基于该比较来确定该信道是空闲的还是被占用的。作为示例,如果潜在发射机确定该信道空闲,那么该潜在发射机可以在该信道上进行传输。作为示例,如果潜在发射机确定信道已被占用,那么该潜在发射机不会在该信道上进行传输。作为示例,如果潜在发射机确定信道已被占用,那么该潜在发射机可以推迟或延迟潜在的传输。作为示例,如果潜在发射机确定信道被占用,那么该潜在发射机可以丢弃潜在传输。一旦确定无授权信道被占用,那么潜在发射机可以在授权小区发送所述传输,和/或在授权小区上发送要求传送该传输的请求。
基于帧的设备(FBE)可以是指其发射/接收定时固定和/或已被结构化的设备(例如eNB、WTRU等等)。诸如FBE之类的设备可以是指或者可以包括在授权或无授权信道上执行传送和/或接收的任何节点和/或设备,例如WTRU、UE、eNB、STA或AP。
基于负载的设备(LBE)可以是指发射/接收定时不固定或者未被结构化的设备(例如eNB、WTRU等等)。对于LBE来说,可以基于数据何时可用于传输来发射和/或接收定时。举个例子,对于LBE来说,传输时间会在不规则的间隔出现,而不是使用固定和/或结构化的方式来执行传输。只要设备具有要传送的数据,那么LBE就可以执行LBT/CCA,例如当在有可能被其他各方使用的信道(例如无授权信道)上工作的时候。
图3是可以应用于FBE的LBT/CCA定时的示例。如图3所示,空闲信道评估(CCA)302可以是用于确定信道是否空闲的量度。传输304可以是在信道空闲的情况下进行的传输(例如实际传输)。以下内容可以应用于LBT/CCA。举例来说,以下内容可以应用于某种设备,例如FBE。LBT/CCA可以以周期性的方式执行,例如在依照预定帧结构的预先定义的时间实例上执行。LBT/CCA周期(例如固定帧周期306)可以等同于信道占用时间308加上空闲时段310。用于信道评估的LBT/CCA时段可以是一个固定时间。用于信道评估的LBT/CCA时段可以具有最小时间。信道占用时间308可以是设备在没有重新评估信道可用性的情况下在指定信道上进行传输的总的时间。空闲时段310可以是设备不会在信道上进行传输的时间(例如连续时段)。信道占用时间308可以具有一个允许的范围,例如1毫秒到10毫秒。空闲时段310可以具有与信道占用时间308相对的最小需求,例如信道占用时间308的5%可供设备在当前的固定帧周期306中使用。传输有可能会发生(举例来说,传输有可能会立即发生)。作为示例,如果设备找到一个或多个将要空闲的工作信道时,那么有可能会进行传输。设备可以在一个或多个空闲信道上进行传输。设备可以在LBT/CCA期间或者作为LBT/CCA的结果而找到一个或多个将要空闲的工作信道。举例来说,如果设备发现工作信道已被占用,那么该设备不会在该信道上进行传输(例如在即将到来的或是下一个固定帧周期306中)。在LBT/CCA期间或者作为LBT/CCA的结果,设备有可能会发现已被占用的工作信道。
在这里,术语空闲、自由、未被占用和/或不拥挤是可以交换使用的。术语不空闲、不自由、已被占用和/或拥挤是可以交换使用的。术语信道和工作信道是可以交换使用的。
以下内容可以应用于LBT/CCA。举例来说,以下内容可以适用于某种设备,如LBE。该设备可以执行对信道上的能量进行检测的LBT/CCA检查。作为示例,设备可以先执行用于检查信道上的能量的LBT/CCA检查,之后才会在工作信道上执行传输和/或迸发传输。设备可以在一个或多个空闲的信道上执行传输(例如立即传输)。作为示例,如果设备找到一个或多个将要空闲的工作信道,那么设备可以在所述一个或多个将要空闲的信道上进行传输。在LBT/CCA期间或作为LBT/CCA的结果,设备有可能发现将要空闲的一个或多个工作信道。
最大信道占用时间可以是可供设备将工作信道用于指定传输或迸发传输的总的时间。某些设备的最大信道占用时间可以是小于最大允许值。最大允许值可以由设备制造商设定。例如,最大允许值可以是(13/32)×qms,其中q可被制造商设置成介于4与32之间的值。如果q=32,那么最大信道占用时间可以等于13毫秒。作为示例,在执行可以发现信道空闲的后续LBT/CCA之前,设备不会在信道中执行传输(例如在设备找到被占用的工作信道的时候)。在LBT/CCA期间或者作为LBT/CCA的结果,设备有可能会发现已被占用的工作信道。在发现信道并非空闲的LBT/CCA之后执行的LBT/CCA可以在检查空闲信道之前包含一个等待或回退时间。在发现信道并未空闲的LBT/CCA之后执行的LBT/CCA可以包括一个用于确定信道是否空闲并且直至后续传输的较长时段。
如果在有可能遭遇到基于争用的接入的上行链路信道(例如无授权信道)上执行上行链路传输,那么WTRU可以通过执行信道评估来尝试确保这个存在争用的信道在发送上行链路传输之前是空闲的。举例来说,为UL传输执行信道评估的处理可以包括由WTRU执行LBT/CCA。为UL传输执行LTE信道评估的处理可以包括由WTRU在通过无授权频带中的服务小区执行UL传输之前执行LBT/CCA。WTRU可以执行LBT/CCA。举例来说,WTRU可以在UL LBT/CCA时段(作为示例,或是时间窗口)中执行LBT/CCA。WTRU可以在一些或所有UL传输之前执行LBT/CCA。UL可以被别的链路或方向(例如副链路(sidelink)或下行链路)取代,并且仍旧与本公开相一致。
LBT/CCA时段的长度可以由eNB配置。举例来说,LBT/CCA时段的长度可被配置成一个特定值,例如20微秒。LBT/CCA时段的长度可以用信号动态通告给WTRU。
UL LBT/CCA时段可以位于当前UL子帧的开端。举例来说,UL LBT/CCA时段可以位于UL子帧的第一个SC-FDMA符号之中。UL LBT/CCA时段可以位于当前UL子帧之前的子帧的末端。位于当前UL子帧之前的子帧可以是UL、DL或特殊子帧。UL LBT/CCA时段可以位于当前子帧之前的子帧的最后一个SC-FDMA和/或OFDM符号中。
WTRU可以具有和/或使用用于UL子帧群组(例如连续的UL子帧)的单个UL LBT/CCA时机。UL子帧群组(例如连续的UL子帧)可被称为或者对应于UL块。用于UL块的UL LBT/CCA有可能会失败。举例来说,如果WTRU发现信道拥挤,那么用于UL块的UL LBT/CCA将会失败。WTRU不会在所述UL块内部的任何UL子帧中进行UL传输。作为示例,如果WTRU发现信道拥挤,例如用于UL块的UL LBT/CCA发现信道拥挤,那么所述WTRU不会在所述UL块内部的任何UL子帧中执行UL传输。WTRU可以在UL块内部的UL子帧中执行传输。举例来说,如果WTRU发现某个信道空闲,例如当用于UL块的UL LBT/CCA发现信道空闲时,WTRU可以在该UL块内部的UL子帧中进行传输。
WTRU可以具有和/或使用用于UL子帧(例如每一个UL子帧)的UL LBT/CCA时机。WTRU可以基于UL LBT/CCA在用于UL子帧的UL LBT/CCA时机中发现信道是否拥挤而在或者不在UL子帧中执行传输。UL LBT/CCA有可能会失败。举例来说,如果WTRU发现信道拥挤,那么UL LBT/CCA有可能会失败。WTRU可能不会在相应的UL子帧中执行UL传输。举例来说,如果WTRU发现信道拥挤(例如在UL LBT/CCA时机中),那么WTRU不会在相应的UL子帧(例如与ULLBT/CCA时机相对应)中执行UL传输。WTRU可以在相应的UL子帧中执行传输。举例来说,如果WTRU发现信道空闲(例如在UL LBT/CCA时机之中),那么WTRU可以在相应的UL子帧(例如与UL LBT/CCA时机相对应)中执行传输。特定UL LBT/CCA时机的失败(例如信道拥挤)不会影响到另一个UL子帧中的UL传输。
LTE可被部署成使用多种类型的实施方式和/或配置来支持LAA接入。举例来说,用于LTE-U小区的LAA操作可以用载波聚合和/或双重连接来实施。某些类型的数据和/或信号的传输可被配置成是允许和/或禁止的。举例来说,在LAA小区,数据和/或信号传输可被配置成在LAA小区是被允许和/或禁止的,和/或数据和/或信号传输可被配置成在其他小区或小区类型上是被允许和/或禁止的。关于数据、信道、信息和/或信号(例如无线电承载(RB)、逻辑信道(LCH)、媒体接入控制(MAC)控制元素(CE)、RLC状态PDU和上行链路控制信息(UCI))的传输可被配置成是允许和/或禁止的。举例来说,WTRU可以遵从或者被配置成遵从关于与HARQ处理、从LCH中构建PDU的处理。功率余量报告处理和/或缓冲器状态报告处理有关的允许和/或禁止配置。小区或服务小区(例如用于WTRU的服务小区)的小区类型可被标识和/或配置。举例来说,小区或服务小区可被标识成或者被配置成具有(例如针对WTRU)某种小区类型,例如LAA小区或非LAA小区。
探测参考信道(SRS)子帧是可以调度的,举例来说,除了调度SRS触发器之外,SRS子帧同样是可以调度的。WTRU可被告知某个子帧是不是SRS子帧。举例来说,当在LAA小区接收到关于UL传输的许可时,WTRU可被告知某个子帧是不是SRS子帧。WTRU不会在SRS符号中执行传输。举例来说,如果将SRS子帧告知WTRU,那么除非触发所述WTRU在子帧中传送SRS,否则WTRU不会在SRS符号中执行传输(作为示例,用于指示子帧是SRS子帧与用于指示指定WTRU应该在指定子帧中传送SRS的触发器可以是不同/独立的)。
动态的SRS子帧指示可以指示WTRU在子帧中保留用于SRS的符号。举例来说,动态的SRS子帧指示可被使用,以此来替换或补充高层配置的(例如无线电资源控制(RRC)配置的)静态SRS子帧。动态的SRS子帧指示可以指示以下的一项或多项:指定子帧是否包含SRS时机,和/或指定WTRU是否会在子帧中使用SRS时机来传送SRS(和/或WTRU是否应该“消隐”(blank)一个或多个SRS时机)。
MAC状态MAC-CE可以提供关于LAA小区传输失败的状态和/或统计信息,举例来说,MAC状态MAC-CE可以提供归因于信道拥挤的LAA小区传输失败的状态和/或统计信息。参数和/或计数器可关联于传送MAC PDU的成功和/或失败而被维护,作为示例,其可以由TX-ACK、TX-NACK、NOTX_CNT来指示。举例来说,参数和/或计数器是可被使用的。例如,参数和/或计数器可被用于修改过程,例如HARQ和PHR。不同的小区类型可被标识以参数,例如MAC参数。举例来说,通过标识一个或多个参数,可以在小区和/或小区类型上允许和/或禁止非自适应(例如基于非许可的)重传。
WTRU可以接收多个传输参数集合。WTRU可以依照一个或多个传输参数集合来执行选择和/或传输。举例来说,WTRU可以在考虑了CCA期间的一个或多个信道状况的情况下选择和/或使用一个或多个传输参数集合。WTRU可以传送多个传输块(TB)。WTRU可以在子帧(SF)中重复TB。举例来说,WTRU可以在考虑了CCA期间的信道状况的情况下在SF中重复TB。WTRU可以向eNB通知所选择的参数集合和/或重复。功率控制算法可被改进。举例来说,功率控制算法可以是在考虑了不同的干扰源的情况下被改进的。作为示例,丢弃的UL传输可以通过由WTRU对接收到与已失败的CCA相关的UL许可做出应答和/或通过由WTRU处置与已失败的CCA相关的UL许可而被处理。
在第三代合作伙伴项目(3GPP)长期演进(LTE)无线通信系统中,无线电帧可以由10个大小为1毫秒的子帧组成。一个子帧可以由两个0.5毫秒的时隙组成。每一个时隙可以具有多个(例如七个或六个)正交频分复用(OFDM)符号,其中所述数量可以取决于循环前缀(CP)长度。在OFDM符号间隔中,资源元素(RE)可以对应于子载波。一个时隙期中的十二个(例如十二个连续的)子载波可以构成一个资源块。
用于动态调度的时域单元可以是子帧。子帧可以由两个时隙(例如两个连续的时隙)组成。两个时隙组成的子帧可被称为资源块配对。一些OFDM符号上的子载波可被分配成在时间-频率网格中运送导频信号。一些OFDM符号上的子载波可被分配成在时间-频率网格中运送参考信号。作为示例,位于传输带宽边缘的多个子载波可被保留(例如不会被传送),以便遵从频谱屏蔽需求。
WTRU可被配置成在一个或多个上行链路信道上执行传输。举例来说,WTRU可被配置成使用物理UL共享信道(PUSCH)和/或物理UL控制信道(PUCCH)。WTRU可以在一个或多个上行链路信道上传送上行链路控制信息(UCI)。例如,WTRU可以在PUSCH或PUCCH上的指定子帧中传送UCI。UCI可以部分在PUCCH上传送,以及部分在PUSCH上传送。UCI可以包括HARQACK/NACK、调度请求(SR)和/或信道状态信息(CSI)中的一个或多个。信道状态信息(CSI)可以包括信道质量指示符(CQI)、预编码矩阵指示符(PMI)和/或秩指示符(RI)中的一个或多个。资源可被分配给PUCCH传输。用于PUCCH传输的资源可以位于UL频带边缘或是其附近。
可被提供和/或使用的下行链路信道可以包括物理下行链路共享信道(PDSCH)和/或下行链路控制信道。下行链路控制信道可以包括物理控制格式指示符信道(PCFICH)、物理混合ARQ指示符信道(PHICH)、物理下行链路控制信道(PDCCH)和/或增强型PDCCH(EPDCCH)中的一个或多个。
DL中的子帧的前几个(例如1到3个)OFDM符号可以被PCFICH、PHICH以及PDCCH中的一个或多个占用。举例来说,依照控制信道开销,DL中的子帧的前几个(例如1到3个)OFDM符号可以被PCFICH、PHICH以及PDCCH中的一个或多个占用。所占用的符号可被称为DL控制区域。PCFICH可以在子帧的OFDM符号(例如符号0)中被传送。PCFICH可以指示用于子帧中的DL控制区域的OFDM符号的数量。WTRU可以从PCFICH中检测控制格式指示符(CFI)。DL控制区域可以在子帧中被定义,例如依照CFI值来定义。PCFICH可被跳过。举例来说,如果子帧被定义成是不可支持PDSCH的子帧,那么可以跳过PCFICH。不属于DL控制区域的DL符号可被称为数据和/或PDSCH区域。在PDSCH区域中可以提供和/或使用EPDCCH。EPDCCH在该区域中的位置可以用信号通告。EPDCCH在该区域中的位置可以用信号(例如,借助高层信令)通告给WTRU。WTRU可以(作为示例,或者预计将会)监视、接收和/或使用EPDCCH。高层信令可以包括无线电资源控制(RRC)信令。PDCCH和/或EPDCCH可以提供用于UL和/或DL传输等等的控制信息、资源分配(例如许可)。
eNB可以提供或传送DL信号和/或DL信道。WTRU可以接收DL信号和/或DL信道。DL信号和/或DL信道可供WTRU使用。UL信号和/或UL信道可以由WTRU提供。UL信号和/或UL信道可以由WTRU发送。UL信号和/或UL信道可以由eNB接收。UL信号和/或UL信道可以被eNB使用。
信号和/或信道可以与小区相关联。小区可以对应于载波频率。小区可以对应于地理区域。载波频率可以是小区的中心频率(例如小区支持的带宽的中心频率)。eNB可以具有与之相关联的一个或多个小区。在这里描述的示例中,eNB和小区是可以交换使用的。
同步信号可以包括主同步信号(PSS)和/或辅同步信号(SSS)。同步信号可被提供和/或传送。举例来说,同步信号可以由eNB或小区提供和/或传送。WTRU可以使用此类信号来获取与eNB或小区的时间同步。WTRU可以使用此类信号来获取与eNB或小区的频率同步。所述PSS和/或SSS可以存在于子帧0和/或5中。所述PSS和/或SSS可以存在于无线电帧(例如每一个无线电帧)之中。传输将会在位于小区带宽中心的多个子载波上进行。该数量可以是62。位于所述62个子载波的一个或多个(例如每一个)侧面的五个子载波可被保留或者不被使用。同步信号可以传达与小区的物理小区标识(例如小区ID)有关的信息。
物理广播信道(PBCH)可以由eNB传送。PBCH可以携带小区信息。PBCH可以携带诸如主信息块(MIB)之类的小区信息。所述PBCH可以在一个或多个无线电帧(例如在每一个无线电帧)的子帧0中提供和/或传送。所述PBCH可以在一个或多个无线电帧(例如在每一多个无线电帧)中被重复。PBCH可以在四个无线电帧中的一个或多个(例如每四个)无线电帧中被重复。作为示例,PBCH可以在四个连续无线电帧中的一个或多个(例如每四个)无线电帧中被重复;40ms的时段。PBCH可以在子帧0的第二个时隙的前四个OFDM符号中被传送。PBCH可以在72个中心子载波上传送。MIB可以提供如下信息,例如小区的DL带宽、PHICH信息和/或系统帧编号(SFN)的至少一部分(例如10比特SFN中的8个最高有效比特)。
下行链路参考信号可以包括小区专用参考信号(CRS)、信道状态信息参考信号(CSI-RS)、解调参考信号(DM-RS)和/或定位参考信号(PRS)。WTRU可以接收和/或使用DL参考信号。WTRU可以将CRS用于信道估计。WTRU可以将CRS用于信道状态信息测量,例如用于报告CQI、PMI和/或RI。作为示例,如果WTRU被配置成具有将CRS用于PDSCH解调的传输模式,那么WTRU可以将CRS用于信道状态信息测量,以便报告CQI、PMI和/或RI。WTRU可以将CRS用于小区选择和/或移动性相关测量。所述CRS可以是在子帧(例如任何子帧)中被接收的。天线端口(例如多达四个天线端口)可以得到支持。WTRU可以使用DM-RS来解调信道(例如某些信道)。用于解调的信道可以包括EPDCCH和/或PDSCH中的至少一个。可用于解调信道(例如EPDCCH或PDSCH之类的某些信道)的DM-RS可以在指配给该信道(例如EPDCCH或PDSCH)的资源块中传送。CSI-RS可被传送。所述CSI-RS可以用一个占空比来传送。WTRU可以将CSI-RS用于信道状态信息测量。举例来说,如果WTRU被配置了可将DM-RS用于PDSCH解调的传输模式,那么WTRU可以将CSI-RS用于信道状态信息测量。CSI-RS可以用于小区选择和/或移动性相关测量。举例来说,如果WTRU被配置了某一传输模式(例如TM10),那么可以将CSI-RS用于小区选择和/或移动性相关测量。WTRU可以将PRS用于与位置相关的测量。
在某些子帧中,WTRU可以传送探测参考符号(SRS)。对于一些小区(例如授权频带中的小区),WTRU可以周期性地传送SRS。举例来说,WTRU可以基于调度来周期性地传送SRS。WTRU可以基于传输参数来周期性地传送SRS。eNB可以半静态地将可定义SRS周期性传输的一个或多个传输参数提供给WTRU。举例来说,传输参数可以借助广播和/或RRC专用信令(例如借助广播和/或RRC专用信令的组合)而被半静态地提供给WTRU。小区专用SRS配置可以标识或定义子帧(例如小区专用的SRS子帧)。举例来说,小区专用的SRS配置可以标识或定义可允许WTRU传送关于指定小区的SRS的子帧(例如小区专用SRS子帧)。WTRU专用的SRS配置可以标识或定义子帧(例如WTRU专用的SRS子帧)和传输参数。WTRU专用的SRS配置可以标识或定义可供特定WTRU使用的子帧(例如WTRU专用的SRS子帧)和传输参数。所述参数可以包括起始资源块、SRS带宽和/或跳频带宽中的一个或多个。在其WTRU专用子帧中,WTRU可以在感兴趣的频带(例如整个频带)上的符号(例如最后一个符号)中传送SRS。WTRU可以在一个符号中(例如在感兴趣的频带上)用单个SRS传输来传送SRS。WTRU可以用频域中的跳频而在跨越了频带的一部分的符号中传送SRS。举例来说,WTRU可以以这样一种方式来使用频域中的跳频在跨越频带一部分的符号中传送SRS,其中一系列的SRS传输可以联合覆盖感兴趣的频带。
WTRU可被配置成确定用以传送SRS的频带。举例来说,用于SRS传输的感兴趣的频带可以从WTRU专用的起始资源块中确定。所述感兴趣的频带可以从WTRU专用的SRS带宽中确定。WTRU可以按需传送SRS。作为示例,WTRU可以响应于源自eNB的非周期性SRS请求来按需传送SRS。源自eNB的非周期SRS请求可被包含在UL许可下行链路控制信息(DCI)格式中。作为示例,单独的WTRU专用SRS配置可被提供给WTRU,以便执行周期性和/或非周期性的SRS传输。多个WTRU专用的SRS配置可被提供给WTRU,以便执行非周期性SRS传输。所述非周期性请求可以指示可应用于该请求的配置。SRS可以(例如只可以)在小区专用的SRS子帧的符号(例如最后一个符号)中被传送。WTRU可以(例如只可以)在WTRU专用的SRS子帧中传送SRS。WTRU专用的SRS子帧可以是小区专用的SRS子帧的子集。用于SRS传输的符号可以是SC-FDMA符号。假定定义了SRS子帧的SRS配置的处理可被用于非LAA小区,而LAA小区则可以使用关于SRS子帧/SRS传输时机的按需或动态信号传递(如这里更详细描述的那样)。
WTRU可以遵循规则来确定传送什么和/或如何传送。举例来说,在可供WTRU调度PUSCH和/或PUCCH以进行传输的小区专用SRS子帧中,WTRU可以依照规则来确定传送什么以及如何发送。WTRU可以缩短PUSCH传输。举例来说,如果可以在小区专用的SRS子帧中调度PUSCH以进行传输,那么WTRU可以缩短PUSCH传输。WTRU可以不将PUSCH映射到最后一个符号。举例来说,如果PUSCH传输与小区专用的SRS带宽部分或完全重叠,那么WTRU不会将PUSCH映射到最后一个符号。相同的规则可以应用于所调度的PUCCH传输。所调度的PUCCH可以在没有缩短的情况下被传送。SRS可被丢弃(例如不传送)。是否缩短PUCCH和/或丢弃SRS可以依照配置和/或PUCCH格式来确定。
多个TDD上行链路-下行链路子帧配置可被支持。举例来说,LTE TDD可以支持多个TDD上行链路-下行链路子帧配置。在eNB中可以使用一个或多个TDD上行链路-下行链路子帧配置。一个或多个(例如每一个)TDD上行链路-下行链路子帧配置可以包含一个或多个下行链路子帧‘D’、上行链路子帧‘U’和/或特殊子帧‘S’。特殊子帧可以包括DL部分和/或UL部分。特殊子帧可以包括介于DL部分和/或UL部分之间的保护时段。举例来说,特殊子帧可以包含DL部分和/或UL部分之间的保护时段,以便提供用于从DL转换到UL的时间。在表1中显示了例示的上行链路-下行链路子帧配置。上行链路-下行链路子帧配置与上行链路-下行链路配置是可以交换使用的。
表1:例示的TDD上行链路-下行链路配置
WTRU可以具有和/或被配置成具有一个或多个无线电承载和/或一个或多个逻辑信道。举例来说,WTRU可被eNB配置成具有一个或多个无线电承载和/或一个或多个逻辑信道。无线承载(RB)可以是信令无线承载(SRB)。无线承载(RB)可以是数据无线承载(DRB)。SRB可以对应于控制平面。SRB可以运送RRC信令消息。信令消息可被认为是数据。举例来说,信令消息可被认为是媒体访问控制(MAC)和/或物理层的数据。术语数据可以包括SRB数据以及DRB数据等等。DRB可以对应于演进型分组系统(EPS)承载。RB可以是UL和/或DL。UL RB和/或DL RB可被提供和/或使用单独的配置。
RB可以通过来自eNB的配置而被指配和/或映射。举例来说,RB可被指配和/或映射到至少一个逻辑信道。逻辑信道可以具有和/或可以被配置成具有逻辑信道优先级(作为示例,和/或优先等级)。逻辑信道可以具有和/或被配置成具有一个或多个(例如附加的)优先级相关参数。WTRU可以使用逻辑信道优先级(作为示例,和/或优先等级)和/或一个或多个优先级相关参数来确定用于供应可用于逻辑信道的数据的顺序。为逻辑信道提供服务可以包括预备可供该逻辑信道用于传输的数据。预备可供逻辑信道用于传输的数据可以将数据包含在RLC PDU和/或MAC SDU中。预备可供逻辑信道用于传输的数据可以包括将数据映射到传输信道。预备可供逻辑信道用于传输的数据可以包括传送所述数据。所述参数可以包括优先排序比特率(PBR)和/或令牌桶持续时长(BSD)。逻辑信道可被编组到逻辑信道群组中。逻辑信道(LCH)可以是UL和/或DL。UL和/或DL LCH可被提供和/或使用单独的配置。
MAC层(例如WTRU MAC层)可以执行和/或负责以下功能。MAC层(例如WTRU MAC层)可以执行和/或负责逻辑信道和/或传输信道之间的映射。MAC层(例如WTRU MAC层)可以执行和/或负责将SDU(例如MAC SDU)从一个和/或不同的逻辑信道复用到可以在传输信道上被递送至物理层的传输块(TB)。MAC层(例如WTRU MAC层)可以执行和/或负责从来自物理层且在传输信道上递送的传输块(TB)中解复用来自一个或不同逻辑信道的SDU(例如MACSDU)。MAC层(例如WTRU MAC层)可以执行和/或负责调度信息报告。MAC层(例如WTRU MAC层)可以通过HARQ来执行和/或负责纠错处理。MAC层(例如WTRU MAC层)可以执行和/或负责(例如一个MAC实体的)逻辑信道之间的优先级处理。MAC层(例如WTRU MAC层)可以执行和/或负责逻辑信道优先排序。MAC层(例如WTRU MAC层)可以执行和/或负责传输格式选择。
WTRU可以具有一个或多个MAC实体。例如,WTRU的MAC层可以具有一个或多个MAC实体。WTRU的一个或多个MAC实体可以对应于调度器,和/或一个或多个MAC实体可以对应于eNB,例如某一个eNB或是与WTRU进行通信的eNB。在一个示例中,一个或多个MAC实体可以对应于一个或多个小区的集合。MAC实体可以对应于一个或多个小区的集合,其中该集合可以是服务小区的集合,例如用于WTRU的服务小区的集合。MAC实体可以对应于调度器、eNB和/或小区集合中的一个或多个。
一个或多个小区的集合可以对应于调度器和/或eNB。小区可以是宏小区,和/或小区可以是小型小区。小区集合可以对应于小区群组。小区集合可以对应于诸如主小区群组(MCG)和/或辅小区群组(SCG)之类的小区群组。小区集合(例如小区群组)可以包括主小区和/或一个或多个辅小区。主小区可以在UL中运送UL控制信息或控制信道,例如PUCCH。主小区可以是可在UL中运送UL控制信息和/或控制信道(例如PUCCH)的小区。该控制信息和/或控制信道可以是由WTRU传送的。在一些示例中(例如双重连接),小区集合(例如SCG之类的小区群组)可以包括主辅小区。主辅小区可以运送关于该小区集合或小区群组的UL控制信息和/或UL控制信道(例如PUCCH)。小区集合和小区群组是可以交换使用的。
RB可被映射和/或关联于一个或多个小区群组的逻辑信道。举例来说,RB可被映射和/或关联于一个或多个小区群组中的每一个小区群组的逻辑信道。SRB可以(例如可以只)被映射到MCG中的小区、在所述小区中被调度、由所述小区传送和/或在所述小区中被接收。DRB可被映射到MCG和/或SCG中的小区,在所述小区中被传送和/或在所述小区中被接收。所述映射和/或关联可以由eNB(例如通过信令)来配置。该信令可以是可被广播给一个或多个WTRU和/或专用于所述WTRU的RRC信令。举例来说,DRB可以在MCG和/或SCG上被拆分,例如在被配置成允许该处理的时候。WTRU可以使用可由eNB提供的配置。
HARQ实体可以与小区相关联。一个或多个HARQ实体可以与一个MAC实体相关联。小区可以属于MAC实体的小区群组。举例来说,HARQ实体可以与属于MAC实体的小区群组的小区相关联。
响应于接收到关于小区群组中的小区的UL许可,WTRU可以从与该小区群组相关联的一个或多个逻辑信道获取数据,以便通过所许可的UL资源来执行传输。
术语层、子层和实体是可以交换使用的。这里描述的层、子层和实体是用于例示目的的。其他的层、子层、方面和/或WTRU组件、或是其他设备、或是WTRU或其他设备都可以取代这些术语,并且与这里描述的示例相一致。eNB、小区和服务小区是可以交换使用的。这里描述的实体以及层可以是WTRU或eNB的实体以及层。
图4是例示的MAC协议数据单元(PDU)400。MAC PDU 400可以包括以下的至少一个:MAC报头402、零个或多个MAC服务数据单元(MAC SDU)406a、406n、零个或多个MAC控制元素(MAC-CE)404a、404b、以及可选地包括填充位408。一个MAC PDU(例如MAC PDU 400)可以依照传输块(TB)以及依照MAC实体来传送。对于服务小区来说,WTRU可以在每一个传输时间间隔(TTI)接收到关于一个或多个(例如多达两个)TB的许可。TTI可以对应于子帧。UL MIMO传输可被许可至一个或多个(例如两个)TB。作为示例,如果没有使用UL MIMO,那么可以采用别的方式来许可TB(例如一个TB)。
MAC SDU(例如MAC SDU 406a)可以包括一个或多个RLC PDU和/或RLC PDU分段。MAC报头402可以包含子报头。所述子报头可以提供关于MAC SDU的信息,例如包含在一个或多个(例如每一个)MAC SDU中的LCH(LCID)和/或LCH的标识。MAC SDU(例如MAC SDU 406a)可以包括用于应答模式(AM)传输的RLC状态PDU。该状态PDU可以被接收端的AM RLC使用(例如发送)。举例来说,接收端的AM RLC可以使用所述状态PDU来向其对等发射AM RLC通告已被成功接收的RLC PDU和/或已被对等接收端AM RLC检测到丢失的RLC PDU。
MAC-CE(例如MAC-CE 404a)可以是和/或可以包括功率余量报告(PHR)和/或缓冲器状态报告(BSR)中的至少一个。
如果使用LBT/CCA来允许或禁止服务小区上的传输,那么有可能导致传输延迟。如果使用LBT/CCA来允许或禁止服务小区上的传输,那么有可能导致无法在特定、预期和/或指定的时间在该服务小区上传输数据和/或信号。信号、状态、消息以及数据等等有可能会被延迟。信号、状态、消息以及数据等等有可能无法在其被配置、调度、期望或需要的时候得到传输。
WTRU可被配置成使用无授权小区来执行UL传输,同时尝试避免和/或减小对于传输的影响(例如使用无授权频谱或LBT/CCA的影响)。该影响可以包括延迟。该影响可以包括无法在被配置、调度、期望和/或需要的时候进行传输。WTRU可被配置成使用一个与别的小区(例如旧有小区以及所配置的小区等等)具有不同特性或属性的小区来执行UL传输,例如WTRU的P小区,同时尝试避免和/或减小对于传输的影响。
eNB可以使用由WTRU实施的一个或多个SRS传输来做出UL调度决定。SRS传输可以(例如可以只)在所调度或配置的SRS传输时机中进行。这些传输时机可以是周期性的(例如小区专用和/或WTRU专用的SRS子帧)。LAA操作中的信道可用性有可能是不可预测的。所配置和/或调度和/或请求的一些UL信号传输(例如SRS、PUSCH和/或CSI报告)有可能因为信道拥挤而未被传送。
信道可用性(例如不可预测的信道可用性)有可能会影响SRS传输的可用性。SRS传输的可用性(例如受限或降低的可用性)有可能会影响eNB做出适当调度决策的能力。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么允许和/或禁止在LAA小区或其他小区类型上的传输(例如RB、LCH、MAC-CE、RLC状态PDU、UCI)的处理将可以用于避免和/或减小对一些(例如重要)传输的影响。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以使用WTRU修改(例如过程修改)来遵从传输的允许和/或禁止,作为示例,所述修改可以是针对HARQ处理、功率余量报告和/或缓冲器状态报告的修改,并且所述修改可以用于避免和/或减小对一些(例如重要)传输的影响。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以通过识别小区的小区类型(例如识别为WTRU配置的服务小区是LAA还是非LAA小区)的处理来避免和/或减小对一些(例如重要)传输的影响。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以通过分离针对不同小区类型的参数(例如MAC参数)的处理来避免和/或减小对于一些(例如重要)传输的影响。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以通过识别用于在小区或小区类型上允许和/或禁止非自适应(例如不以许可为基础的)重传的参数的处理来避免和/或减小对于一些(例如重要)传输的影响。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以通过用于允许和/或禁止传输的处理和/或为具有和/或不具有用于LAA小区(或某种类型的小区)或是LAA小区(或某种类型的小区)群组的单独的MAC实体使用或配置单独的参数的处理,来避免和/或减小对一些(例如重要)传输的影响。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以通过产生和/或报告可提供关于LAA小区传输的状态和/或统计信息的MAC状态(例如使用MAC-CE)的处理来避免和/或减小对于一些(例如重要)传输的影响。举例来说,如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以通过产生和/或报告可以提供与由信道拥挤所导致的LAA小区传输失败有关的状态和/或统计信息的MAC状态(例如使用MAC-CE)的处理来避免和/或减小对一些(例如重要)传输的影响。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以使用与传送MAC PDU的成功/失败相关联的参数和/或计数器(例如TX-ACK、TX-NACK、NOTX_CNT)来避免和/或减小对于一些(例如重要)传输的影响,其中所述参数和/或计数器可以用于修改HARQ和PHR。
如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以使用动态的SRS子帧指示来避免和/或减小对一些(例如重要)传输的影响,其中所述动态的SRS子帧指示可以指示WTRU在子帧中保留用于SRS的符号。如果WTRU可被配置成具有可在无授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以使用动态的SRS子帧指示来避免和/或减小对于一些(例如重要)传输的影响,其中所述动态的SRS子帧指示可以指示WTRU是否在子帧中传送SRS。
如果WTRU可被配置成具有可在授权频带中工作和/或可具有不同于别的小区的特性或属性的小区,那么可以使用基于信道可用性(例如未来的子帧或时间窗口中)的机会性UL传输来避免和/或减小对一些(例如重要)传输的影响。
在这里描述的一些示例中,eNB和小区是可以交换使用的。在一些示例中,无授权和免授权(LE)是可以交换使用的。在一些示例中,工作是可以与发射和/或接收交换使用的。分量载波是可以与服务小区交换使用的。
LTE-U eNB可以是能在无授权或非授权信道上或是无授权或免授权(LE)频带中发射和/或接收一个或多个LTE信道(例如物理信道)和/或LTE信号的eNB或小区。LTE-U eNB可以是能在无授权或免授权(LE)频带中工作(例如发射和/或接收信号)的eNB或小区。LTE-UeNB可以在授权频带和/或LE频带中发射和/或接收一个或多个LTE信道和/或LTE信号。在可供LTE-U eNB工作的LE频带中有可能会存在和/或运作有一个或多个其他无线接入技术(RAT),例如Wi-Fi、一个或多个其他LTE-U eNB和/或一个或多个WTRU。LTE-U eNB和eNB是可以交换使用的。WTRU可以替换eNB,反之亦然,并且仍与这里描述的示例相一致。在一些示例中,UL可以替换DL,反之亦然,并且仍与这里描述的示例相一致。LTE-U和LAA是可以交换使用的,并且仍与这里所述的示例相一致。
这里描述的示例可以涉及正被WTRU或eNB使用的信道。在一些示例中,术语信道可以是指可具有中心频率、载波频率和/或信道带宽的频带。授权和/或无授权频谱可以包括一个或多个信道。这些频道既可以重叠也可以不重叠。术语信道可以指频率信道、无线信道和/或LE信道中的一个或多个。信道、频率信道、无线信道以及LE信道是可以交换使用的。术语接入信道可以是指在信道上或者通过信道来执行传输和/或接收,和/或以其他方式来使用信道。在一些示例中,信道可以指代LTE信道或LTE信号。LTE信道或LTE信号可以包括可以为LTE操作定义或使用的上行链路物理信道、下行链路物理信道、上行链路物理信号和/或下行链路物理信号。下行链路信道和下行链路信号可以包括PSS、SSS、PBCH、PDCCH、EPDCCH和/或PDSCH等等中的一个或多个。上行链路信道和上行链路信号可以包括PRACH、PUCCH、SRS以及PUSCH中的一个或多个。出于说明目的,一些示例可以依照LTE信道来描述,但是这些示例也可以更普遍地适用于其他类型的信道。在这里,术语信道和信号是可以交换使用的。
在一些示例中,术语数据/控制可以是指数据和/或控制信号。在一些示例中,术语数据/控制可以是指数据和/或控制信道。控制可能包括同步。数据/控制可以是LTE数据/控制。数据/控制、数据/控制信道和数据/控制信号是可以交换使用的。信道和信号是可以交换使用的。LTE和LTE-A是可以交换使用的。
在一些示例中,信道资源可以是诸如时间和/或频率资源之类的资源(例如3GPPLTE或LTE-A资源)。时间和/或频率资源可以(例如至少会有时)运送一个或多个信道和/或信号。在一些示例中,信道资源与信道和/或信号是可以交换使用的。
参考信号、CSI-RS、CRS、DM-RS、DRS、测量参考信号、用于测量的参考资源,CSI-IM以及测量RS是可以交换使用的。S小区、辅小区、LTE-U小区,授权辅助小区、无授权小区以及LAA小区是可以交换使用的。P小区、主小区、LTE小区以及授权小区是可以交换使用的。
干扰和干扰加噪声是可以交换使用的。
WTRU可以确定一个或多个子帧的UL和/或DL方向。例如,WTRU可以依照所接收和/或配置的一个或多个TDD UL/DL配置来确定一个或多个子帧的UL和/或DL方向。
在非LAA和/或其他类型的小区上可以传送一个或多个信号、状态、消息以及数据等等。与一个小区或小区类型(例如可以在授权频带中工作的小区)中的传输相关联的参数有可能不适合别的小区或小区类型(例如可以在无授权频带中工作的小区)中的传输或者对于所述传输而言是次最优的。
在这里描述了用于配置、标识和/或确定什么可以或者不可以在特定小区或小区类型(例如具有已配置的UL的LAA小区)上传送的示例。在这里描述了用于依照配置、标识和/或判定来执行传输的示例。
这里描述的示例可以是对照UL传输描述的,但其也可应用于DL传输,反之亦然。
这里描述的一个或多个示例可以对照LAA小区中的操作来描述。这里描述的过程和/或架构也可适用于其他类型的小区中的操作,例如在授权频带中工作的小区。对于这里描述的诸多示例来说,别的小区或别的小区类型可以替换或以其他方式取代LAA小区,并且仍与这里描述的示例相一致。
在LAA小区上可以允许某些类型的传输,并且在LAA小区上有可能禁止某些类型的传输。举例来说,WTRU可被配置成致使该WTRU做出这样一种假设,其中除非确定和/或接收到在LAA小区上禁止一个或多个类型的传输的配置,否则在该LAA小区上允许任何类型的传输。在一个示例中,WTRU可被配置成致使该WTRU做出这样一种假设,除非确定和/或接收到允许在LAA小区上进行一种或多种类型的传输的配置,否则在该LAA小区上将不允许传输。WTRU可以具有默认的配置,其中该配置允许在LAA小区进行一些类型的传输,并且禁止在LAA小区上进行其他类型的传输。该默认配置可以由用于改变在LAA小区上允许/禁止的传输类型的后续配置来进行修改。
举例来说,在LAA小区上可以允许或禁止传输一个或多个RB和/或RB类型。在LAA小区上可以允许或禁止传输一个或多个逻辑信道和/或逻辑信道类型。举例来说,如果正在配置无线承载或逻辑信道,那么该配置可以指示是否允许通过LAA小区来传送RB/逻辑信道。在一个示例中,在LAA小区上可以允许或者禁止传输MAC控制元素和/或某些类型的MAC控制元素。在一个示例中,在LAA小区上可以允许或禁止传输RLC状态PDU和/或用于某些RLC实体的RLC状态PDU。在一个示例中,在LAA小区可以允许或禁止传输上行链路控制信息(例如CQI、PMI、RI、ACK/NACK等等)和/或某些类型的UCI。
作为示例,无线电承载和/或逻辑信道可被配置成允许或禁止通过LAA小区传输。一个或多个RB和/或逻辑信道可被允许在LAA小区传送。eNB可以向WTRU提供配置。该配置可以标识可供WTRU在LAA小区传送的RB和/或逻辑信道。该配置可以标识WTRU不能在LAA小区上传送哪些RB和/或逻辑信道。该配置可以专用于LAA小区,LAA小区群组或是所有LAA小区。
WTRU可以接收和/或使用用于指示在LAA小区上允许和/或禁止的传输类型的配置。该配置可以源于eNB。eNB可以标识可供WTRU在LAA小区上传送的一个或多个RB和/或逻辑信道。该eNB可以标识WTRU不能在LAA小区上传送的一个或多个RB和/或逻辑信道。
WTRU可以确定其是否可以在LAA小区传送RB或逻辑信道。举例来说,如果WTRU确定其可以在LAA小区传送RB或逻辑信道,那么WTRU可以允许和/或执行该传输。WTRU可以至少基于从eNB所接收到的配置(例如允许或禁止该传输)来做出所述确定。
WTRU可以获知在LAA小区上允许还是禁止RB或逻辑信道。举例来说,WTRU可以在没有来自eNB的显性配置的情况下获知在LAA小区上允许还是禁止RB或逻辑信道。RB可以是SRB。举例来说,在LAA小区上可以(例如可以始终)禁止SRB或某个SRB,例如SRB0或SRB1。WTRU可以至少基于已知的允许或禁止情况来确定其是否可以传送RB或逻辑信道。
在LAA小区上可以允许或者禁止传输一种或多种类型的MAC控制元素(MAC-CE)。在LAA小区上允许还是禁止传送某种类型的MAC-CE可以是已知和/或可被配置的。举例来说,在LAA小区允许还是禁止传送某种类型的MAC-CE可以由eNB获知和/或配置。一个配置可以允许或禁止某种类型或类型集合。WTRU是否可以在LAA小区上传送某种类型的MAC-CE可以基于是否允许该WTRU在LAA小区传送该类型的MAC-CE,其中允许还是禁止传输(例如在该小区)可以是已知或是可被配置的。
WTRU可以(例如可以只)将某种类型的MAC-CE包含在MAC PDU中,该MAC PDU能在不是LAA小区的小区上传送和/或意图在该小区上传送。举例来说,如果WTRU确定禁止在LAA小区上传输某种类型的MAC-CE,和/或WTRU想要向eNB传送某种类型的MAC-CE,那么WTRU可以将该类型的MAC-CE包含在MAC PDU中,该MAC PDU能在不是LAA小区的小区上传送和/或打算在该小区上传送。WTRU可以基于已知的信息或配置来确定允许还是禁止通过某个小区或小区类型进行传输。
在LAA小区上可以禁止传送PHR MAC-CE。举例来说,功率余量报告可被修改,以便能在(例如只能在)别的小区或小区类型(例如可以在授权频带中工作的小区)可以提供UL许可(例如为新传输)的时候触发和/或报告PHR。
PHR MAC-CE可以是和/或可以包括正常(例如LTE第8版)PHR MAC-CE、扩展PHRMAC-CE和/或双连接PHR MAC-CE等等中的一个或多个。
LAA小区上有可能不允许传送(例如具有某种类型的)BSR MAC-CE。缓冲器状态报告可被修改,以便可以(例如可以只)在非LAA小区上传送一种或多种类型的BSR。
在LAA小区上可以允许或禁止传输RLC状态PDU。关于允许还是禁止在LAA小区上传输RLC状态PDU可以是已知或是可被配置的。举例来说,可以是通过eNB来获知和/或配置在LAA小区上允许还是禁止传输RLC状态PDU。一个配置可以专用于一个LAA小区、一个LAA小区集合或所有LAA小区。关于允许/禁止LAA小区上的RLC状态PDU传输的配置可以专用于RLC实体、RLC实体群组和/或所有RLC实体。关于允许/禁止LAA小区上的RLC状态PDU传输的配置可以特定于RLC AM。举例来说,关于允许/禁止LAA小区上的RLC状态PDU传输的配置可以是为以下各项配置的:AM、可以为AM配置的RLC实体群组、可以为AM配置的所有RLC实体、和/或一般意义上的AM。
WTRU可以在LAA小区上传送RLC状态PDU。WTRU可以基于是否允许该WTRU在LAA小区传送RLC状态PDU而在该LAA小区传送RLC状态PDU。是否允许WTRU在LAA小区传送RLC状态PDU可以是已知或可被配置的。
WTRU可以确定存在将要传送到eNB的RLC状态PDU。WTRU可以确定在LAA小区上禁止传输RLC状态PDU或是特定的RLC状态PDU。所述特定的RLC状态PDU可以以RLC实体为基础。WTRU可以(例如可以只)将RLC状态PDU映射到可以允许在具有别的小区类型的小区(例如非LAA小区)上传送、可以在该小区上传输和/或被在该小区上传送的逻辑信道(或逻辑信道PDU)。小区类型可以是可允许RLC状态传输的小区类型。
作为示例,如果WTRU确定在LAA小区上禁止传输RLC状态PDU或是特定的RLC状态PDU(例如基于RLC实体),那么WTRU可以将RLC状态PDU映射到可意图在具有别的小区类型的小区(例如非LAA小区)上传送和/或用于在所述小区上传送的逻辑信道(或逻辑信道PDU)。
WTRU可以(例如可以只)将RLC状态PDU映射到可被允许在具有允许RLC状态传输的小区类型的小区(例如非LAA小区)上传输和/或可在该小区传输和/或用于在该小区传输的传输信道(作为示例,或是MAC PDU)。举例来说,如果WTRU确定在LAA小区上禁止传输RLC状态PDU或是特定的(例如基于RLC实体的)RLC状态PDU,那么WTRU可以将RLC状态PDU映射到一个传输信道(例如MAC PDU),其中该传输信道(例如MAC PDU)可被允许在允许传送RLC状态的小区或小区类型上传输,和/或可以在所述小区或小区类型上传输,和/或被在所述小区或小区类型上传送。WTRU可以基于已知的信息或配置来确定允许还是禁止通过某个小区或小区类型进行传输。
在LAA小区上的传输可以禁止传送一种或多种(例如所有)类型的上行链路控制信息(UCI)。这种禁止可以应用于针对一种或多种小区或小区类型的UCI。关于允许还是禁止在LAA小区传送UCI可以是已知的或是可被配置的。举例来说,WTRU可以预先配置或获知在LAA小区上允许还是禁止传输UCI,和/或这一点也可以由eNB来配置。该配置可以专用于一个LAA小区、LAA小区群组或所有LAA小区。关于在LAA小区允许还是禁止传输UCI可以特定于该UCI所对应的UCI类型和/或DL小区。举例来说,在LAA小区上可能不允许ACK/NACK(例如针对任何小区)。在一个示例中,在LAA小区可以允许针对LAA小区的ACK/NACK。LAA小区可能不允许针对非LAA小区的ACK/NACK。WTRU是否可以在LAA小区传送特定UCI还可以基于是否允许该WTRU在LAA小区传送特定UCI。是否允许WTRU在LAA小区传送某个UCI可以是已知的或可被配置的。
WTRU可以确定存在某个将要传送到eNB的UCI。WTRU可以(例如可以只)将UCI包含在可被传送或者意图用于在具有(或者不具有)某种小区类型的小区上传送的PUSCH中。举例来说,如果WTRU确定不允许在LAA小区上传送某种UCI,那么WTRU可以将UCI包含在可被传送的或者意图用于在具有(或者不具有)特定小区类型的小区上的传输的PUSCH中。该小区不会是LAA小区。WTRU可以在PUCCH上传送UCI。举例来说,如果没有要在非LAA小区上传送的PUSCH,那么WTRU可以在PUCCH上传送UCI。WTRU可以基于已知的信息或配置来确定允许还是禁止在某个小区或小区类型上进行传输。
WTRU可以在关于特定小区的小区群组中的小区的PUSCH上传送该特定小区的UCI。举例来说,如果WTRU具有要在TTI或者子帧中传送的某个小区的UCI,那么WTRU可以在关于该小区的小区群组中的小区的PUSCH上传送UCI。如果存在关于特定小区的小区群组中的至少一个小区的PUSCH的许可,那么WTRU可以在关于该特定小区的小区群组中的小区的PUSCH上传送UCI。WTRU可以在P小区(或PS小区)的PUSCH上传送UCI。举例来说,如果存在关于小区群组中的P小区(或PS小区)的PUSCH许可,那么WTRU可以在P小区(或PS小区)的PUSCH上传送UCI。WTRU可以在小区群组中的别的小区的PUSCH上发送UCI。例如,WTRU可以在小区群组中具有最小S小区索引的辅小区的PUSCH上传送UCI。S小区索引可以由eNB配置。
作为示例,所要传送UCI有可能会因为其类型和/或所述UCI所对应的小区而禁止在LAA小区上传送。在确定可以传送UCI的小区的时候,例如当在LAA小区上禁止传送UCI时,LAA小区(作为示例,或是某些LAA小区)可被排除。举例来说,如果没有关于P小区或PS小区的PUSCH许可,那么WTRU可以在小区群组中可具有最小S小区索引的非LAA辅小区的PUSCH上传送UCI。作为示例,如果没有关于P小区或PS小区的PUSCH许可和/或没有关于非LAA辅小区的许可,那么WTRU可以在PUCCH上传送UCI。
UCI类型可以包括HARQ ACK/NACK、信道质量指示符(CQI)、预编码矩阵指示符(PMI)和/或秩指示符(RI)中的一个或多个。
UCI传输的禁止不会应用于非周期性的CSI报告。对于非周期性和周期性CSI报告来说,UCI传输的禁止可以是分开配置的。
ACK/NACK以及一个或多个(例如所有)其他类型的CSI是可以分离的。举例来说,在使用LAA小区工作时,ACK/NACK以及一个或多个(例如所有)其他类型的CSI可被分离。在LAA小区上可以禁止ACK/NACK报告。WTRU可以在PUCCH上传送ACK/NACK。举例来说,当子帧中的一个或多个PUSCH许可是对应于LAA小区时,则WTRU可以在PUCCH上传送ACK/NACK。WTRU可以在LAA小区中的PUSCH上传送UCI的剩余部分,例如在子帧中的一个或多个PUSCH许可可能是对应于LAA小区的时候(例如在不存在对应于非LAA小区的任何PUSCH许可的时候)。
跨载波调度可被用于非周期性的CSI报告。WTRU可以接收关于小区(例如LAA小区)的CSI报告的非周期性许可和/或触发。该小区有可能已经配置和/或激活了能够分配用于传送别的小区的上行链路上的报告的资源的上行链路。
小区可被标识成某种小区类型。该类型可以是特定的,例如LAA小区。该类型可被给予一个标识符,例如类型0、1以及2等等。这种标识可以借助而被提供给WTRU。例如,这种标识可以由eNB借助配置提供给WTRU。在为WTRU配置(例如添加或修改)小区的时候,这种标识可以由eNB借助配置提供给WTRU。小区可以具有可不(例如不需要)借助配置而提供的固定和/或已知的类型。某个小区(例如P小区)可以具有固定的类型,例如小区类型0。
在小区上可以依照小区类型来允许传输。在小区上可以依照小区类型来禁止传输。举例来说,eNB可以向WTRU提供配置。该配置可以允许在某种小区类型上传送某种RB和/或LCH。该配置可以禁止在某种小区类型上传送某种RB和/或LCH。例如,该配置可以允许或禁止在被标识成小区类型X的小区上传送某种RB和/或LCH,其中所述X可以是0、1和2等等。LAA小区可以对应于小区类型。该类型可以是固定的,例如小区类型1。
在LAA小区上可以禁止传输SRB。在某种类型的小区上有可能禁止传送SRB。用于LAA小区的一个或多个传输参数和/或传输技术有可能不同于用于非LAA小区的。举例来说,如果在LAA小区中执行传输,那么用于该传输的默认参数可以采用不同于借助非LAA小区执行的传输的某个值。作为示例,对于不同的小区来说,MAC、HARQ、PHR和/或BSR参数可以单独配置和/或确定的,其中LAA小区会使用第一参数集合,而非LAA小区则会使用第二参数集合。
被配置成具有不同参数集合的小区可以与相同或不同的MAC实体关联和/或对应。这些MAC实体可以位于WTRU内部。举例来说,如果使用载波聚合来实施LAA(例如将LAA小区作为S小区来实施),那么同一个MAC实体内部的不同小区可以用不同的参数(例如MAC、HARQ、PHR和/或BSR参数)来执行传输。如果使用双重连接来实施LAA(例如将第二MAC实体用于LAA),那么WTRU上的不同MAC实体可以利用不同的参数(例如MAC、HARQ、PHR和/或BSR参数)来执行传输。
对于不同的小区和/或小区类型来说,参数可以是单独配置和/或确定的。对于不同的小区和/或小区类型,例如LAA小区以及并非LAA小区的小区来说,以下参数可被单独配置和/或确定。这些参数可以包括:用于UL HARQ的最大传输或重传次数(例如最大HARQ传输);与BSR报告相关联的一个或多个定时器,例如周期性BSR-定时器、重传BSR-定时器;与PHR报告相关联的一个或多个定时器,例如周期性PHR定时器、禁止PHR定时器;可用于触发PH报告的路径损耗阈值和/或P-MPR变化阈值,例如下行链路路径损耗变化;和/或是否可以允许非自适应(例如不以许可为基础的)重传。
WTRU可以使用为不同类型的小区单独配置的相关联的参数。举例来说,在执行相关联处理(例如HARQ、BSR和/或PHR)的时候,WTRU可以使用为不同类型的小区单独配置的相关联的参数。这些小区可以是LAA小区还可以是非LAA小区的小区。
WTRU可以使用通常是为一个或多个LAA小区配置(例如单独配置)的一个或多个参数。举例来说,在为有可能属于LAA小区的HARQ实体执行HARQ处理时,WTRU可以使用通常是为一个或多个LAA小区配置(例如单独配置)的一个或多个参数。
对于HARQ进程来说,WTRU可以确定与之对应的小区或小区类型。WTRU可以确定所述小区或小区类型是否允许非自适应重传。关于小区或小区类型是否允许非自适应重传可以是已知或可被配置的。某个小区或小区类型有可能禁止非自适应重传。作为示例,如果某个小区或小区类型禁止非自适应重传,那么WTRU不会为该小区或小区类型执行HARQ处理的一个或多个(例如所有)方面。WTRU不会执行的HARQ处理的方面可以与用于HARQ进程的非自适应重传相关联,其可以是与某个小区或小区类型相关联。WTRU可以(例如可以只)响应于许可来重传HARQ进程的MAC PDU。该许可可以指示重传(例如自适应重传)。
用于实施LAA小区的MAC架构是可以改变的。举例来说,WTRU可以具有一个或多个MAC实体。在这里,WTRU、UE、MAC实体以及WTRU MAC实体是可以交换使用的。具有某种类型的一个或多个LAA小区可以具有单独的MAC实体或子实体。举例来说,每一个小区类型可以具有一个MAC实体。主MAC实体可以与非LAA小区相关联,并且辅MAC实体可以与LAA小区相关联。
一个小区集合或小区群组可以属于一个eNB。该小区集合或小区群组可以细分成一个或多个小区子集。作为示例,该小区集合或小区群组可以依照一种或多种小区类型而被细分成一个或多个小区子集。一个子集可以包含一个或多个(例如所有)LAA小区。一个子集可以包括一个或多个(例如全部)非LAA小区。P小区可被包含在非LAA小区的子集中。
在这里可以提供一种配置。举例来说,eNB可以提供一种配置。作为示例,WTRU可以使用某种配置。该配置可以向WTRU通知某个小区或小区类型所归属的小区子集。
一个或多个(例如每一个)小区子集可以使用单独的MAC实体。一个或多个(例如每一个)小区子集可以具有单独的MAC子实体。可以为一个或多个(例如每一个)MAC实体或子实体提供和/或使用单独的配置。该配置可以标识某个MAC实体或子实体可被允许传输些什么。该配置可以标识某个MAC实体或子实体可被禁止传输些什么。该配置可以将RB和/或LCH与MAC实体或子实体相关联。该配置可以标识和/或提供允许一个或多个RB、LCH、一种或多种类型的MAC-CE、RLC状态PDU等等的传输。该配置可以标识和/或提供禁止关于一个或多个RB、LCH、一种或多种类型的MAC-CE、RLC状态PDU等等的传输。一个配置可以提供多个参数,例如MAC、HARQ、PHR和/或BSR参数。RB到LCH的映射可以是针对一个或多个(例如每一个)MAC实体或子实体单独配置的。
LAA小区(作为示例,或是其他小区)可被定义新的小区群组类型。新的小区群组类型可以是LAA小区群组(LACG)。LACG可以是MCG或SCG中的小区的子集。WTRU可被配置成具有小区。当WTRU被配置了小区时,该配置可以识别该小区是否处于LACG之中。该配置可以识别小区的LACG标识。WTRU可被配置一个或多个LACG。一个小区可以(例如可以只)属于一个LACG。LACG中的小区不会是P小区和/或PS小区。用于LACG中的小区的PUCCH可以在相关联的P小区或PS小区上传送。
通过使用单独的MAC实体或子实体,可以分离用于LAA和非LAA小区的配置。使用单独的MAC实体或子实体的效率有可能会很低。MCG或SCG中的LAA小区可以共享调度器(例如不需要其自己的调度器)。
用于一个小区群组(例如MCG或SCG)中的小区的PHR触发会引起针对所有这两个小区群组的eNB的PHR传输。例如,在双重连接中,用于一个小区群组(例如MCG或SCG)中的小区的PHR触发会引起针对所有这两个小区群组的eNB的PHR传输。小区群组可以属于相同的eNB。对于同一个eNB的LAA和非LAA小区群组来说,一个对应于触发的PHR传输即可满足需要,因为小区群组可以属于相同的eNB。
单个MAC实体可被配置成支持不同类型的小区。例如,不同类型的小区可以是LAA小区和非LAA小区。由此,单个MAC实体可以处理一个或多个非LAA小区以及一个或多个LAA小区。作为示例,MAC实体可以支持载波聚合,并且一个或多个S小区可以对应于LAA小区。单独的参数和/或规则可以应用于不同的小区或小区类型。这些规则和/或参数可以是已知或是可被配置的。在这里可以配置一个或多个参数。作为示例,配置可以由eNB提供。作为示例,WTRU可以使用配置。该配置可以向WTRU告知是否可以在某种小区或小区类型(例如LAA小区)上传送一个或多个RB、LCH、一种或多种类型的MAC-CE、RLC状态PDU等等。配置可以提供特定于某个小区或小区类型(例如LAA小区)的一个或多个参数。这些参数可以是MAC、HARQ、PHR和/或BSR参数。
WTRU(例如WTRU MAC层或实体)可以确定、维护和/或使用可接收到的UL许可的小区类型。物理层(例如或低层)可以向MAC层(例如MAC或HARQ实体)提供小区类型。物理层可以使用许可或HARQ信息来向MAC层提供小区类型。小区类型可以与HARQ实体相关联。HARQ实体可以对应于服务小区。
WTRU可以基于该WTRU可接收到的UL许可的小区的类型来构建MAC PDU。WTRU可以基于该WTRU在TTI和/或子帧中可接收到的UL许可的一个或多个小区的类型来构建MACPDU。对于所接收的一个或多个许可(例如每一个许可),WTRU可以确定可被允许传送的逻辑信道。对于一个或多个(例如每一个)许可和/或TB,WTRU(作为示例,或是MAC实体)可以(作为示例,或者可以只)从可被允许在与所述许可或TB相对应的小区传送的逻辑信道中构建MAC PDU。HARQ实体可以(作为示例,或者可以只)包含来自可被允许在与所述HARQ实体相关联的小区类型上传送的逻辑信道的数据。WTRU(作为示例,或是MAC实体)可以(作为示例,或是可以只)在MAC PDU中包含一种类型的MAC-CE,例如在该类型的MAC-CE可被允许在与所述MAC PDU所对应的许可和/或TB相对应的小区上传送的时候。
最大HARQ重传可以依照具有所配置的UL的服务小区而被配置和/或使用。最大HARQ重传可以依照HARQ实体而被配置和/或使用。默认值可以是为服务小区所属的MAC实体所配置的值。该默认值可以是为HARQ实体所属的MAC实体所配置的值。
MAC实体可以遵从一组用于将逻辑信道装配成所要传送的MAC PDU的规则。这些规则可以与传输许可的优先级、参数和/或能力中的一项或多项有关。MAC实体可被要求传送多个MAC PDU,例如在一个TTI中。要求传送MAC PDU的请求可以源自或者依照UL许可。这些规则可以独立应用于一个或多个许可(例如每一个许可),或者这些规则也可以应用于所述许可的能力的总和。处理许可的顺序可以依照WTRU实施方式来确定。MAC实体可被请求发送多个MAC PDU,例如在一个TTI中。作为示例,在请求MAC实体在一个TTI中传送多个MAC PDU的时候,将MAC控制部件包含在哪一个MAC PDU中可以是由WTRU实施方式决定的。WTRU可被要求在一个TTI中在一个或多个(例如两个)MAC实体中产生MAC PDU,WTRU的实施方式可以决定处理所述许可的顺序。作为示例,如果有一个或多个许可针对某种类型的小区,例如LAA小区,那么这些规则有可能无法满足需要。
用于将逻辑信道装配成所要传送的MAC PDU的规则是可以被修改的。作为示例,可以顾及信道类型来修改用于将逻辑信道装配成所要传送的MAC PDU的规则。
WTRU和/或MAC实体可以单独和/或共同处理用于不同小区类型的许可。举例来说,在将逻辑信道装配成所要传送的MAC PDU时,WTRU或MAC实体可以单独处理针对不同小区类型的许可。作为示例,如果要求MAC实体在一个TTI中传送多个MAC PDU,那么对于(例如每一个)小区类型来说,这些规则可以独立应用于一个或多个许可(例如每一个许可),或者这些规则可以应用于所述许可的能力的总和。对于不同的小区类型来说,这些规则可以是以不同的方式应用的。来自不同小区类型的许可的能力可以是分离的(例如没有组合在一起)。在一个示例中,处理许可的顺序可以视小区类型而定。举例来说,关于非LAA小区的许可可以在用于LAA小区的许可之前被处理。关于非LAA小区的许可可以在关于LAA小区的许可之后被处理。
MAC控制元素可被包含在MAC PDU中。WTRU的实施方式可以决定将MAC控制元素包含在哪一个MAC PDU中(例如来自与所允许的小区类型相对应的MAC PDU)。WTRU的实施方式可以决定何时可以请求MAC实体在TTI中传送多个MAC PDU。如果可以请求WTRU在一个TTI中在一个或多个(例如两个)MAC实体中生成MAC PDU,那么处理所述许可的顺序可以视小区类型而定。举例来说,关于非LAA小区的许可可以在关于LAA小区的许可之前被处理。关于非LAA小区的许可可以在关于LAA小区的许可之后被处理。
MAC-CE有可能在任何类型的小区上都被允许。对于MAC-CE传输来说,某些小区类型(例如非LAA小区)有可能优先于其他小区类型(例如LAA小区)。
这里描述的关于具有一个MAC实体的架构(例如WTRU架构)的示例可以应用于具有分离的或是多个MAC实体的架构,反之亦然。
在小区类型上有可能允许或者不允许传输功率余量报告(PHR)。举例来说,在诸如LAA小区之类的小区类型上有可能允许或者不允许传输功率余量报告(PHR)。关于是否在某个小区和/或小区类型上允许PH报告可以是已知的和/或可被配置的。在(例如仅仅在)某些小区或小区类型(例如非LAA小区)可以允许PHR传输,并且在其他小区或小区类型(例如LAA小区)上可以禁止PHR传输。一个或多个PHR触发事件可被修改,例如在某些小区或小区类型不允许PHR传输的时候。触发处理有可能受到限制。举例来说,在可以允许PHR传输的服务小区具有用于新传输的UL资源的时候,触发处理可被限制。作为示例,在可允许PHR传输的服务小区上具有用于新传输的UL资源的时候,可以通过修改一个或多个PHR触发事件以限制触发处理。
路径损耗变化和/或P-MPR变化有可能会触发PHR。路径损耗变化触发和/或P-MPR变化触发可以连同其他判据、关于新传输的UL资源的可用性一起用于产生PHR触发。路径损耗变化触发和/或P-MPR变化触发是可以修改的。通过修改路径损耗改变触发和/或P-MPR改变触发,可以使得WTRU或MAC实体在或者仅仅在可以允许PHR传输的服务小区(例如非LAA小区)具有用于新传输的UL资源的时候触发PHR。
周期性PHR定时器的终止将会触发PHR。周期性的PHR定时器终止触发是可以修改的。WTRU和/或MAC实体可以或者可以只在允许PHR传输的服务小区(例如非LAA小区)存在用于新传输的新资源的UL资源的时候触发PHR。所述周期性PHR定时器终止触发可被修改,以使WTRU和/或MAC实体可以或者仅仅可以在可允许PHR传输的服务小区(例如非LAA小区)存在可用于新传输的UL资源的时候才触发PHR。
WTRU和/或MAC实体可以在TTI中执行(例如只执行)PHR过程的一个或多个部分(例如所有部分)。举例来说,当WTRU和/或MAC实体在一个TTI中具有为新传输分配的UL资源的时候,所述WTRU和/或MAC实体可以在该TTI中执行PHR过程的一个或多个部分。
在某些小区和/或小区类型(例如非LAA小区)上可以允许(例如仅仅在其上允许)PHR传输。WTRU和/或MAC实体可以执行(例如只执行)PHR过程的一个或多个部分(例如所有部分)。对于可以允许在TTI中执行PHR传输的小区类型(例如非LAA小区)来说。WTRU和/或MAC实体可以在该TTI为新传输分配的UL资源。在某些小区和/或小区类型(例如非LAA小区)上可以允许(例如仅仅在其上允许)PHR传输。作为示例,对于可以允许在TTI中执行PHR传输的小区类型(例如非LAA小区)来说,如果WTRU和/或MAC实体在该TTI具有为新传输分配的UL资源,那么WTRU和/或MAC实体可以执行(例如只执行)PHT过程的一个或多个部分(例如所有部分)。关于具有某种类型的小区上的PHR传输的许可可以特定于可通过一个或多个特定事件(例如所有事件)而被触发的PH报告。关于具有某种类型的小区上的PHR传输的禁止可以特定于可通过一个或多个特定事件(例如所有事件)触发的PH报告。
举例来说,PHR传输可以基于或者因为一个或多个事件(例如事件类型)而被触发,例如路径损耗变化、P-MPR变化和/或周期性定时器终止。在某种小区类型上可以因为(例如每一个)单独的事件类型以及所有事件类型来允许(例如通过配置和/或其他知识和/或判定)PHR传输。在某个小区类型上可以因为(例如每一个)单独的事件类型或所有事件类型而禁止PHR传输(例如通过配置和/或其他知识和/或判定)。
在某些类型的小区上可以允许或禁止发送缓冲器状态报告(BSR)。举例来说,WTRU可被配置成允许或禁止LAA小区上BSR。WTRU和/或WTRU MAC可以向MAC PDU中添加MAC-CE,例如缓冲器状态报告(BSR)MAC-CE。举例来说,如果PDU中可能具有用于MAC-CE的空间,那么WTRU和/或WTRU MAC可以向MAC PDU中添加MAC-CE,例如BSR MAC-CE。在一个示例中,在某个小区类型(例如LAA小区)上可以允许或禁止传输某种类型的BSR(作为示例,或是BSR MAC-CE)。在LAA小区上有可能会禁止传输一种或多种类型的BSR。在一个示例中,一种或多种类型的BSR MAC-CE可被禁止包含在可用于传输和/或可以在LAA小区上传输的MAC PDU中。BSR(作为示例,或者是BSR MAC-CE)类型可以包括常规BSR、填充BSR和/或周期性BSR中的一个或多个。关于是否可以允许在特定小区和/或小区类型上传送某种类型的BSR(作为示例,或者是BSR MAC-CE)可以是已知和/或可被配置的。
在某些小区和/或小区类型(例如非LAA小区)上可以允许(作为示例,或者仅仅允许)一种或多种类型的BSR传输。缓冲器状态报告是可被修改的。举例来说,通过修改缓冲器状态报告,可以确保当在某个小区和/或小区类型(例如在其中一个上)传送BSR时候可以(例如仅仅可以)触发和/或传送所述一种或多种类型的BSR。在某些小区和/或小区类型上可以允许一种或多种类型的BSR传输。作为示例,缓冲器状态报告可被修改成可以当在某些小区和/或小区类型之一传送BSR的时候确保可以(例如只可以)触发和/或传送所述一种或多种类型的BSR。
MAC实体可以(例如只可以)在TTI中产生具有某种类型的BSR MAC-CE。作为示例,对于至少一个服务小区来说,MAC实体可以在该TTI具有为新传输分配的UL资源。举例来说,对于可以允许BSR MAC CE类型的传输的至少一个服务小区来说,如果MAC实体在一个TTI中具有为新传输分配的UL资源,那么MAC实体可以(例如只可以)在该TTI产生某种类型的BSRMAC-CE。
eNB可以在子帧n中传送关于子帧n中的DL许可的数据。WTRU可以接收数据。WTRU可以在子帧n+k1中发送肯定或否定ACK。eNB可以在(例如在最早的)子帧n+k2执行重传。在一个示例中,作为示例,对于FDD来说,k1可以是4,k2可以是8。从第一许可到重传第一许可(有可能与第二许可相关联)的时间可被称为往返时间。对于同步重传来说,往返时间可以是k2。对于非同步重传来说,往返时间的最小值可以是k2,举例来说,重传许可和/或重传可以在第一许可经过了大于或等于k2个子帧之后的时间(例如,任何时间)发生。
(作为示例,每一个)数据传输(例如新数据传输)可以与HARQ进程相关联。数据重传可以与相同的HARQ进程相关联。WTRU可以维护一个往返时间(RTT)定时器(例如用于DLHARQ进程)。DL HARQ进程可以与所配置和/或指定的值相关联,例如HARQ RTT定时器。定时器可以始于所配置或指定的值。作为示例,定时器可以在某些时间递减,例如在每一个子帧和/或每一个PDCCH子帧中。当定时器终止时,作为示例,WTRU可以采用一个或多个操作。PDCCH子帧可以是可用以接收PDCCH和/或EPDCCH的子帧。PDCCH和EPDCCH是可以交换使用的。在一个示例中,用于DL HARQ进程的往返定时器可以始于子帧n。PDCCH(和/或EPDCCH)可以指示已经为所述子帧许可和/或配置了DL传输和/或DL指配。启动定时器的处理可以基于一个或多个条件。关于启动定时器的条件的示例可以是配置了DRX定时器。定时器可以(例如可以只)在DRX活动时间期间启动。
用于DRX周期(例如在被配置了DRX的时候)的活动时间可以包括与UL和/或DL传输相关联的处于运行的一个或多个定时器的时间。作为示例,定时器可以包括持续时间定时器、无活动定时器和/或一个或多个重传定时器。在一个示例中,只有在至少一个或多个(例如全部)定时器停止、终止和/或在其他方面没有运行的时候,WTRU才会进入省电模式。作为示例,活动时间有助于确保在WTRU进入省电模式之前完成正在执行的处理(例如重传)。
WTRU可以针对DL HARQ进程维护一个重传定时器,其中该定时器可以与一个配置值相关联,例如Drx重传定时器。作为示例,当往返定时器终止时,这时可以在这个值上启动重传定时器。重传定时器可以在某些时间递减(例如在每一个子帧和/或PDCCH子帧中)。作为示例,如果接收到关于DL HARQ进程的重传许可,那么可以停止该定时器。作为示例,当该定时器终止时,WTRU可以采取行动。
UL重传可以是同步的。在DRX活动时间中可以不考虑UL重传。作为示例,在非LAA小区的DRX活动时间,UL重传将不会被考虑。在确定DXR周期何时处于活动时间时(例如为LAA小区),这时可以考虑UL重传。DRX配置参数是可以独立配置的。举例来说,DRX配置参数可以是被独立配置于每一小区群组(例如MCG和/或SCG)。作为示例,对于指定小区群组中的P小区和/或S小区来说,DRX配置参数可以是公共的。
UL HARQ进程可以具有往返定时器和/或重传定时器。为UL HARQ处理定时器设置的指定和/或配置值可以不同于用于DL HARQ进程的值。
作为示例,诸如UL HARQ RTT定时器之类的参数可以是在配置DRX的时候配置的。该参数可以指示在用于相同HARQ进程的在先UL许可之后的(例如由WTRU MAC实体)预期处于UL HARQ重传许可之前的最小往返时间(例如以子帧数量为单位)。作为示例,该参数可以由eNB通过RRC信令预先定义和/或可配置的。UL HARQ RTT参数可以被独立配置于每一小区、每一小区群组(例如MCG相比于SCG)和/或每一小区类型(例如LAA小区和/或非LAA小区)。在一个示例中,UL HARQ RTT定时器参数可以是为用于MCG的LAA小区和/或用于SCG的LAA小区独立配置的。UL HARQ RTT定时器参数可以被配置用于(例如仅仅被配置用于)某些小区,例如LAA小区和/或具有非同步UL HARQ的小区。
WTRU可以针对UL往返时间(例如针对每一UL HARQ进程)而维护的定时器。举例来说,在(例如仅仅在)配置DRX时,WTRU可以维护一个定时器。WTRU可以为(例如仅仅为)LAA小区和/或为UL HARQ异步的小区维护该定时器。作为示例,定时器的值在某些时间可被设置成是参数UL HARQ RTT定时器的值。
上行链路Drx重传定时器(Uplink-DrxRetransmissionTimer)可被配置。作为示例,在配置DRX的时候可以配置Uplink-DrxRetransmissionTimer。作为示例,在经过了ULHARQ往返时间之后以及在可接收到UL重传许可(例如关于UL HARQ进程的许可)之前,该参数可以指定一个或多个连续子帧和/或一个或多个PDCCH子帧的最大数量。作为示例,该参数可以是独立配置于每一小区、每一小区群组(MCG与SCG)和/或每一小区类型(例如LAA小区和/或非LAA小区)。在一个示例中,Uplink-DrxRetransmissionTimer参数可以(例如只可以)被配置用于和/或适用于LAA小区。Uplink-DrxRetransmissionTimer可以是为用于MCG的LAA小区和/或用于SCG的LAA小区而独立配置的。参数UL HAAR RTT定时器和/或参数Uplink-DrxRetransmissionTimer可以(例如可以共同)定义UL HARQ进程等待重传(例如为了满足允许进入节电模式的条件)的最大时段。
WTRU可以维护一个关于UL HARQ重传时间的定时器,例如为每一UL HARQ进程维护一个定时器。WTRU可以在(例如仅仅在)配置了DRX的时候维护该定时器。作为示例,WTRU可以在某些时候(例如在启动该定时器的时候)将该定时器的值设置成是参数Uplink-DrxRetransmissionTimer的值。WTRU、WTRU MAC实体和/或MAC实体是可以相互替代的。
WTRU可以更新一个或多个UL HARQ进程定时器。举例来说,WTRU可以在满足一个或多个条件的时候和/或可以依照LBT成功与否来更新一个或多个UL HARQ进程定时器。所述条件可以包括以下的一个或多个:(a)子帧n-k(例如k=4)中的PDCCH指示了关于子帧n中的UL数据传输的UL许可,(b)该许可针对的是新数据传输(例如切换NDI),或者该许可并未针对新数据传输(例如没有切换NDI),并且HARQ缓冲器为空,和/或(c)所述时间(例如TTI或子帧)是处于DRX周期的活动时间,其中该时间是子帧n和/或子帧n-k。在关于与许可相关联的HARQ进程的示例中,如果满足一个或多个(例如全部)条件和/或在子帧n中和/或对应于子帧n的LBT进行成功,那么WTRU可以:(a)将UL往返定时器设置成UL HARQ RTT定时器,并且在子帧n中启动UL往返定时器;和/或(b)在子帧n中停止用于相应的UL HARQ进程的UL HARQ重传定时器。
UL RTT定时器有可能不被启动和/或UL HARQ重传定时器有可能未被停止。举例来说,如果子帧n中的LBT没有成功,那么将不会启动UL RTT定时器,和/或不会停止UL HARQ重传定时器。用于传输的数据不会被置于HARQ缓冲器中。数据可以被放回到复用和/或装配队列中。在关于与许可相关联的HARQ进程的示例中,作为示例,如果满足一个或多个(例如全部)条件(例如与LBT成功无关),那么WTRU可以:(a)将UL往返定时器设置成UL HARQ RTT定时器,和/或在子帧n或n-k中启动UL往返定时器;和/或(b)在子帧n和/或n-k中停止用于相应的UL HARQ进程的UL HARQ重传定时器。在一个示例中,作为示例,在满足一个或多个条件时,WTRU可以依照是否成功完成LBT来更新一个或多个UL HARQ处理定时器。所述条件可以包括以下的一个或多个:(a)子帧n-k(例如k=4)中的PDCCH指示了关于子帧n中的UL数据传输的UL许可,(b)该许可针对的是新数据传输(例如切换NDI),和/或(c)所述时间(例如TTI或子帧)是处于DRX周期的活动时间,其中该时间是子帧n和/或子帧n-k。在一个示例中,如果满足了一个或多个(例如全部)条件,和/或UL HARQ缓冲器不为空,那么作为示例,WTRU可以:(a)将UL往返定时器设置成UL HARQ RTT定时器和/或在子帧n和/或n-k中启动UL往返定时器;和/或(b)在子帧n和/或n-k中停止用于相应的UL HARQ进程的UL HARQ重传定时器。
举例来说,当UL HARQ往返定时器终止时(例如在DRX周期的活动时间期间,对于子帧n中的HARQ进程,WTRU可以将用于UL HARQ进程的UL HARQ重传定时器设置成参Uplink-DrxRetransmissionTimer的值,和/或可以在子帧n中启动UL HARQ重传定时器。
当UL HARQ进程的UL HARQ重传定时器终止时,WTRU可以冲洗用于UL HARQ进程的UL HARQ缓冲器。作为示例,WTRU的操作可以取决于在WTRU中配置DRX。
UL HARQ往返定时器和/或UL HARQ重传定时器可被递减。举例来说,UL HARQ往返定时器和/或UL HARQ重传定时器可以在每一个子帧和/或每一个PDCCH子帧中递减。DRX活动时间可被修改成包含UL HARQ重传定时器(例如用于与LAA小区和/或具有同步UL HARQ的小区相关联的UL HARQ进程)处于运行的时间。在上行链路HARQ重传定时器运行的同时,WTRU可以监视用于UL许可指配的PDCCH(和/或EPDCCH)。
WTRU可以在PDCCH上监视UL许可指配。举例来说,WTRU可以在UL许可指配时间窗口中就UL许可指配而对PDCCH进行监视。活动时间(例如在DRX操作期间的)可以包括UL许可指配时间窗口。WTRU可以在PDCCH上监视UL许可指配,例如在UL许可指配时间窗口中进行监视。WTRU可被配置成(例如借助专用的RRC信令、系统信息广播和/或MAC CE)具有UL许可指配时间窗口。
UL许可指配时间窗口可以是预先定义给WTRU和/或为WTRU所知的。例如,UL许可指配时间窗口可以通过规范而被预先定义给WTRU和/或为WTRU所知晓。作为示例,UL许可指配时间窗口大小可以以子帧数量为单位来定义和/或配置。UL许可指配时间窗口的位置可以依照参考子帧编号和/或帧编号而被定义和/或配置。UL许可指配时间窗口可以是周期性的。WTRU(例如在DRX操作期间)可以监视可供eNB向WTRU告知UL许可指配定时的时间实例。WTRU可被配置成具有这种时间实例(例如借助专用的RRC信令、系统信息广播和/或MACCE)。用于获取UL许可指配定时的时间实例可以依照子帧编号来定义,和/或可以是关联于参考子帧和/或帧。
一个或多个消息可被定义,以使WTRU提供与使用LAA小区的尝试相关的状态信息。举例来说,可以定义MAC状态MAC-CE,以便由WTRU来提供关于LAA接入的信息。WTRU和/或MAC实体可以使用MAC状态MAC-CE来向eNB提供状态。提供给eNB的状态可以与WTRU尝试在一个或多个LAA信道上发送MAC PDU的成功和/或失败有关。MAC状态MAC-CE可以包括与WTRU如何在一个或多个LAA小区上成功(作为示例,或是未成功)发送MAC PDU有关的数据和/或统计信息。MAC状态MAC-CE可以包括与是否无法在一个或多个LAA小区发送MAC PDU有关的数据和/或统计信息。WTRU可以(例如可以只)在非LAA小区上发送MAC状态MAC-CE。举例来说,WTRU可被配置成避免在LAA小区上发送MAC状态MAC-CE。在另一个示例中,WTRU可以在LAA小区上发送MAC状态CE。
MAC状态CE可以包括更多与经由LAA小区尝试执行接入或传输有关的统计信息或其他信息。例如,MAC状态CE可以包括或指示一个或多个LAA小区上的取得成功和/或失败的传输(例如MAC PDU)尝试的次数(或其他统计信息)。包含在MAC状态CE中的报告可以从最后一次传输MAC状态时起和/或基于其他某个时间范围的成功和/或失败传输次数(作为示例,或者是统计信息)。MAC状态CE可以包括或指示在用于一个或多个LAA小区的所有和/或每一个HARQ实体和/或HARQ进程中丢弃的PDU的数量(例如一个或多个HARQ缓冲器被冲洗的次数)。举例来说,该统计可以是从最后一次传输MAC状态时起或是以其他某个时间范围为基础启动或开始的。MAC状态CE可以包括或指示与LAA接入相关联和/或与所提供的统计信息相关联的HARQ接入信息(例如ID)。MAC状态CE可以包括或指示与报告相对应的时段T,作为示例,其中T可以是子帧或帧的数量,例如最后T个子帧和/或最后T个帧。MAC状态CE可以包括或指示用于特定LAA小区的特定HARQ进程的失败的传输(例如MAC PDU)尝试的次数,其中所述次数可以是从最后一次针对该HARQ进程而传输MAC PDU起开始的次数(和/或统计信息)。MAC状态CE可以包括或指示一个用于表明关于LAA小区的特定HARQ进程的先前(例如最近)传输尝试(例如MAC PDU)发生失败的指示。在指定的MAC状态CE中可以包含统计信息的不同组合。
WTRU可以传送MAC状态MAC-CE。WTRU可以周期性地传送MAC状态MAC-CE。作为示例,WTRU可以基于所配置的周期来周期性地传送MAC状态MAC-CE。作为示例,WTRU可以基于被触发的事件来传送MAC状态MAC-CE。被触发的事件可以是一个或多个数字、计数和/或统计值(例如成功和/或失败统计值)超出阈值。所述阈值是可以是被配置的。
在WTRU试图在LAA小区上传送的上行链路传输受到阻碍(例如LBT失败)或者是不成功的情况下,WTRU可被配置成实施一个或多个过程。举例来说,WTRU可以在LAA小区使用重传来传送MAC状态MAC CE,例如在所述重传所对应的HARQ进程针对的是被阻止传输的新数据的时候(例如因为WTRU确定信道拥挤而被阻止)。
WTRU可以在TTI和/或UL子帧中具有潜在的传输。WTRU既有可能能够也有可能无法在TTI和/或UL子帧中传送潜在的传输。举例来说,WTRU有可能会因为该WTRU所做出的判定而能够或者不能在TTI和/或UL子帧中传送潜在的传输。WTRU可以基于LBT/CCA处理来确定信道拥挤。
WTRU可以执行用于UL传输的处理和/或做出与之有关的决定。WTRU可以预备一个传输。该传输可以是和/或可以包括处于子帧和/或LBT/CCA之前的以下的一项或多项:传输块、MAC PDU和/或MAC-CE。WTRU可以在实际传输之前执行LBT/CCA。所述LBT/CCA有可能会阻止传输。作为示例,基于WRU实际是否执行了传输,可以由MAC执行和/或维护对一个或多个过程、计数器、定时器、参数、标志等等进行修改。举例来说,WTRU可以基于该WTRU实际是否执行了传输来修改HARQ处理和/或PHR报告和/或有可能与HARQ处理和/或PHR处理相关联的一个或多个相关计数器、定时器、参数、标志。在一个示例中,WTRU可以具有、维护和/或使用采用标志、状态、计数器、其他参数(作为示例,或是这其中一种形式中的零个、一个和/或多个形式的组合)的一定形式的信息,其中所述信息涉及的是所尝试的(例如由WTRU)传输HARQ处理缓冲器中的MAC PDU的次数和/或所述尝试失败的次数(例如因为LBT/CCA)。
WTRU可以确定传输是否失败。WTRU内部的一个方面或实体(例如物理层)可以确定该传输是否失败。WTRU内部的一个方面和/或实体(例如物理层)可以向WTRU内部的其他方面和/或实体提供信息。所述WTRU内部的其他方面和/或实体可以是MAC层和/或MAC实体。举例来说,物理层可以向MAC提供指示。该指示可以是TX-ACK。该指示可以是TX-NACK。作为示例,物理层可以通过向MAC提供诸如TX-ACK之类的指示来向其告知已经传送被请求传输的MAC PDU和/或TB。物理层可以通过向MAC提供诸如TX-NACK之类的指示来向其告知没有传送要求传输的MAC PDU和/或TB。所述指示可以对应于一个或多个MAC PDU和/或TB。
WTRU和/或MAC实体可以维护一个计数器。该计数器可以是NOTX_CNT。该计数器可以针对的是HARQ处理缓冲器中的MAC PDU的传输(或是被请求的、预定的和/或被调度的传输)失败的次数。作为示例,关于HARQ处理缓冲器中的MAC PDU的传输有可能会因为LBT/CCA而失败。WTRU可以在一个或多个决定中使用传输成功和/或失败(例如由TX-ACK和/或TX-NACK指示)和/或NOTX_CNT计数器。这些决定可以与HARQ重传相关联。所述决定可以调整HARQ重传计数器。这些决定还可以是修改何时和/或为何递增、递减和/或复位HARQ重传计数器。
作为示例,如果信道拥挤,那WTRU不会在LAA小区传送UCI。WTRU可以确定其在某个子帧中不会在LAA小区传送UCI。WTRU可以在别的小区传送UCI(作为示例,或是UCI的一部分),例如在非LAA小区或是P小区和/或PS小区。对于一种或多种类型的UCI(例如ACK/NACK和/或CQI),作为示例,如果WTRU确定其在某个子帧中不会在LAA小区传送UCI,那么该WTRU可以在别的小区传送该UCI(作为示例,或是该UCI的一部分),例如在非LAA小区和/或P小区和/或PS小区。
WTRU可以确定用于传送一些UCI的小区有可能是LAA小区。WTRU可以基于P小区和/或PS小区上的PUSCH的可用性(例如不可用性)和/或可具有PUSCH资源的一个或多个S小区的S小区索引来做出该判定。WTRU可以确定LAA信道拥挤。WTRU可以基于LBT/CCA来确定LAA信道拥挤。作为示例,如果WTRU确定LAA信道拥挤,那么WTRU可以确定(例如重新确定)用于传送UCI的小区可以是其他小区。所述其他小区可以是具有PUSCH资源和/或更高的S小区索引的小区。作为示例,如果一个或多个小区都不适合UCI传输,那么WTRU可以进行尝试(例如再次进行尝试),直至确定适合UCI传输的小区。不适合的小区可以是信道拥挤的LAA小区。作为示例,如果不存在具有用于传输的PUSCH的适当小区,那么WTRU可以丢弃(例如不传送)UCI(作为示例,或是UCI的一部分)。在另一个示例中,WTRU可以确定用于传送一些UCI的小区可以是LAA小区。WTRU可以基于P小区和/或PS小区的可用性(例如不可用)来做出该判定。WTRU可以基于具有PUSCH资源的一个或多个S小区的S小区索引来做出该判定。作为示例,WTRU可以基于LBT/CCA来确定LAA信道拥挤。WTRU可以丢弃(例如不传送)UCI(或是UCI的一部分),和/或可以在P小区和/或S小区的PUCCH上传送UCI,例如在WTRU确定LAA信道拥挤的时候。
由于LAA小区上的信道使用情况具有不可预测的特性,因此很难配置预先定义的子帧集合和/或传输资源(例如SRS传输时机),或者这种配置是非常低效的。举例来说,如果SRS传输时机本质上是周期性的,那么LAA信道在连续的SRS传输时机(和/或在用于指定WTRU的SRS传输时机)都有可能处于拥挤状态,由此导致eNB无法通过接收SRS传输来估计上行链路信道。由此,作为接收关于周期性SRS传输子帧/时机的指示的补充或替换,对于LAA小区(和/或非LAA小区)来说,用于LAA小区的SRS传输时机可以是动态指示的。eNB可被配置成动态指示何时会出现SRS传输时机,并且可以动态指示哪个或哪些WTRU可以依照所述SRS传输时机来传送SRS。WTRU可被配置成接收用于表明有可能出现SRS传输时机的动态指示,以及确定该WTRU是否应该在动态指示的时机传送SRS,或者确定该WTRU是否应该消隐所述SRS传输时机(例如不使用该时机来执行传输)。如果动态指示的SRS传输时机被指示成是在可供WTRU用于PUSCH传输的资源上出现的,并且如果该WTRU未被触发传送SRS,那么该WTRU可以围绕用于SRS的资源来执行关于其PUSCH传输的速率匹配处理。
SRS资源集合可以是指可以运送SRS信息和/或符号的资源元素(RE)和/或符号(例如SC-FDMA符号)的集合。SRS资源集合可以通过关于(UL)子帧的指示来指示和/或标引。关于(UL)子帧的指示可以是UL子帧的索引。关于(UL)子帧的指示可以包括SRS资源集合。该SRS资源集合可以位于子帧(例如UL子帧)的一个或多个符号(例如最后一个符号)上。包含SRS资源的子帧(例如UL子帧)可被称为SRS子帧。
WTRU可以在所指示的SRS资源中传送(例如仅仅传送)SRS。WTRU不会在所指示的SRS资源中传送UL信号(作为示例,除了SRS之外)。举例来说,如果WTRU接收到与SRS资源集合相对应的周期性和/或非周期性的SRS传输请求,那么WTRU可以在所指示的SRS资源中传送SRS。
WTRU可以接收SRS指示。该SRS指示可以隐性和/或显性地向WTRU通告以下的至少一个指示:UL子帧是否可被认为是SRS子帧(作为示例,这将会意味着WTRU不能使用该子帧的最后的符号);是否特定WTRU(例如接收到SRS的特定WTRU)可以在UL子帧中发送SRS,和/或是否特定WTRU(例如接收到SRS指示的特定WTRU)不会在UL子帧中发送SRS(例如在该子帧的最后的符号中消隐SRS);关于SRS传输的配置和/或参数(作为示例,如果有的话);和/或前述各项的任何组合。举例来说,SRS指示可以表明所述UL子帧可被视为SRS子帧。如果SRS指示表明可以将UL子帧视为SRS子帧,那么可以由一个指示来指示WTRU(例如接收到SRS指示的特定WTRU)是否可以传送SRS。如果该指示表明所述特定的WTRU不能发送SRS,和/或如果SRS指示表明所述UL子帧不能被视为SRS子帧,那么WTRU(例如接收到SRS指示的特定WTRU)不会发送SRS。如果该指示表明特定WTRU可以发送SRS,那么该WTRU(例如接收到SRS指示的特定WTRU)可以在所指示的子帧中发送SRS。如果该指示表明特定的WTRU可以发送SRS,并且该指示(或别的指示)表明可以将该子帧视为SRS子帧,那么WTRU(例如接收到SRS指示的特定WTRU)可以在所指示的子帧中发送SRS。如果WTRU确定用于该子帧或者至少用于该子帧中的SRS资源的信道未处于拥挤状态(例如基于LBT/CCA),那么WTRU可以在所指示的子帧中发送SRS。
所述最后一个符号是关于SRS资源的示例。最后一个符号也可以被别的位置所取代,例如别的符号、多个符号或是一个或多个局部符号,并且仍旧与这里描述的示例相一致。
SRS指示可以依照将要在UL子帧中传送的信号类型来获得。举例来说,当WTRU可以在子帧中传送PUSCH信号时,作为示例,当WTRU可以在子帧中传送PUCCH信号时,该WTRU可以将所述子帧视为SRS子帧。WTRU可以在可供其发送PUCCH的UL子帧中发送SRS。
从小区接收的指示可以适用于相同小区和/或别的小区。从小区接收的指示可以包括SRS指示,和/或从小区接收的指示可以包括关于特定WTRU是否可以发送SRS的指示(例如特定WTRU是否可以在UL子帧中发送SRS,或者特定WTRU是否会在子帧中消隐SRS)。从小区接收的指示可以包括关于所述小区和/或其他小区是否与授权和/或无授权频带(例如授权频谱和/或无授权频谱)相关联的指示。从小区接收的指示可以包括授权辅助接入(LAA)配置信息,其中作为示例,该信息可以包括无授权小区是否会与无授权小区相关联的指示。在子帧中消隐SRS的处理可以指示不在处于该子帧的SRS资源中执行传输。在子帧中消隐SRS的处理可以包括对UL传输(例如PUSCH或PUCCH传输)进行适配,以使SRS资源中没有传输。举例来说,在子帧中消隐SRS的处理可以包括缩短PUSCH或PUCCH传输,以使子帧的最后的符号中没有传输。
SRS指示可以作为以下各项而被WTRU所接收:DCI的一部分,群组DCI(例如可以运送关于一个以上的WTRU的信息的DCI);UL许可,和/或前述各项的组合。在DCI中可以运送SRS指示。SRS指示可以被一个和/或多个WTRU接收。SRS指示可以被一个和/或多个WTRU所接收,其中作为示例,不同WTRU对所接收的指示及其运送的信息的解释可以是不同的(例如取决于WTRU的个体和/或群组ID)。当WTRU接收到表明UL子帧(例如与UL许可相关联的UL子帧)是SRS子帧的指示(例如作为UL许可的一部分)时,该WTRU不会在UL子帧的SRS资源(例如最后一个符号)中传送UL信号。
被指示成SRS子帧(例如通过DCI或UL许可)的子帧不会是被配置成小区专用或WTRU专用的SRS子帧的子帧。通过动态指示为WTRU许可了UL资源的子帧是否为SRS子帧,能够让(例如任何)子帧变成SRS子帧。
在一个示例中,WTRU可以接收带有UL许可的DCI。该DCI或UL许可可以包括SRS指示。该SRS指示可以表明(例如隐性或显性地)子帧n+k可以是SRS子帧。子帧n+k可以是被许可的资源的子帧。该DCI或许可可以指示SRS资源的位置,或者所述SRS资源的位置可以采用其他方式来配置或获知。该DCI或许可可以一个表明WTRU可以在SRS资源中发送SRS的指示(例如另一个指示)。作为示例,当WTRU确定信道并不拥挤时(例如基于传输时间之前的LBT/CCA评估),该WTRU可以基于所述一个或多个指示而在子帧n+k中在SRS资源中传送SRS。WTRU可以或者还可以将SRS子帧(例如可被分配和/或许可的PUSCH)中的传输适配成不在SRS资源中传送(举例来说,WTRU可以围绕SRS资源来为所述PUSCH传输执行速率匹配处理,和/或可以在SRS资源上执行消隐处理)。当WTRU确定信道并不拥挤时(例如基于传输时间之前的LBT/CCA评估),该WTRU可以在SRS子帧中执行传输(例如所适配的传输)。
在另一个示例中,WTRU可以接收带有UL许可的DCI。该DCI或UL许可可以包括SRS指示。该SRS指示可以表明(例如隐性或显性地)子帧n+k可以是SRS子帧。子帧n+k可以是被许可的资源的子帧。所述DCI或许可可以指示SRS资源的位置,或者所述SRS资源的位置也可以通过其他方式配置或获知。所述DCI或许可可以包括用于指示WTRU不能在SRS资源中传送SRS的指示(例如另一个指示)。所述DCI或许可可以不包含用于指示WTRU可以在SRS资源中传送SRS的指示(例如另一个指示)。基于所述一个或多个指示,WTRU可以将SRS子帧中的传输(例如可被分配和/或被许可的PUSCH)适配成不在SRS资源中传送。当WTRU确定信道未处于拥挤状态时(例如基于传输时间之前的LBT/CCA评估),该WTRU可以在SRS子帧中进行传输(例如所适配的传输)。
在图5中显示了响应于DCI的例示的WTRU传输。在502,WTRU可以接收DCI。该DCI可以包括SRS指示。在504,WTRU可以确定DCI显性或隐性指示了所述子帧是否包括SRS时机(例如该WTRU是否可以在SRS资源中传送SRS)。如果该子帧不包含SRS时机,那么在506,WTRU可以依照DCI来执行传输。如果该子帧包含SRS时机,那么在508,WTRU可以基于该DCI来确定WTRU是否应该在该SRS时机传送SRS。在508,如果WTRU确定不应该在所述SRS时机传送SRS,那么WTRU可以围绕该SRS时机来适配传输,并且在510,WTRU可以依照DCI来执行传输。在508,如果WTRU确定该WTRU应该在SRS时机传送SRS,那么在512,WTRU可以依照DCI来执行传输,并且传送SRS。当WTRU确定信道不处于拥挤状态时(例如基于传输时间之前的LBT/CCA评估),该WTRU可以在SRS子帧中执行传输(例如仅仅在其中执行传输)。
WTRU可以依照TDD UL/DL配置(例如所接收和/或配置的TDD UL/DL配置)和/或其他参数来确定SRS子帧集合。例如,在接收到TDD UL/DL配置之后,WTRU可以将UL子帧(例如连续的UL子帧集合)的一个或多个(例如每一个)连续块中的UL子帧(例如最后一个UL子帧)视为SRS UL子帧。具有一个UL子帧块的TDD UL/DL配置可以具有一个SRS子帧(例如在TDDUL/DL配置#3中,子帧#4可被认为是唯一的SRS子帧)。具有两个UL子帧块的TDD UL/DL配置可以具有多个SRS子帧(例如一个或两个SRS子帧,举例来说,在TDD UL/DL配置#1中,子帧#3和#8可被认为是SRS子帧)。
WTRU可以依照UL LBT时机(例如所接收和/或配置的UL LBT时机)来确定SRS子帧集合。举例来说,处于UL LBT/CCA时机之后(例如紧随其后)的第k个(UL)子帧可被视为SRS子帧。UL LBT/CCA时机的位置可以被WTRU获知。例如,WTRU可以将处于UL LBT/CCA时机之后(例如紧随其后)的第一个UL子帧解释成是SRS子帧。
WTRU可以接收UL许可。该UL许可可以运载SRS指示。WTRU可以接收关于所接收的SRS指示所能应用的UL子帧的指示。举例来说,通过使用在子帧n中接收的UL许可或者作为所述UL许可的一部分,WTRU可以接收用于表明所接收的SRS指示可以应用哪一个UL子帧的指示。该指示可以是隐性的。SRS指示可以(例如隐性地)应用于UL许可所针对的子帧。该SRS指示可以应用于子帧n+k,其中k的值可以用SRS指示(例如在UL许可中或是用UL许可)来指示(例如显性指示)。
WTRU可以接收作为所接收的DCI的一部分的SRS指示。该DCI可以隐性或显性地指示SRS子帧的位置。SRS子帧的位置可以与所接收的DCI的子帧索引相关的。举例来说,在子帧n中接收的DCI可以带有另一个参数。该参数可以是参数k。WTRU可以将(UL)子帧n+k视为SRS子帧。在另一个示例中,SRS子帧与DCI子帧的相对位置可以是已知或可被配置的。
WTRU可以接收DCI(例如具有多个SRS的DCI)。该DCI可以指示哪些子帧和/或UL子帧可被视为SRS子帧。举例来说,DCI可以运载比特映射。在该比特映射中,一个或多个(例如每一个)比特可以对应于一个和/或多个(UL)子帧和/或无线电帧。WTRU可以被配置成解释所接收的一个或多个(例如每一个)DCI比特。作为示例,在子帧n中可以接收具有多个SRS的DCI。所述具有多个SRS的DCI可被WTRU检测。WTRU可以将所述具有多个SRS的DCI应用于下一个无线电帧(例如无线电帧n+1)的子帧。作为示例,具有多个SRS的DCI可以携带m个比特,其中m可以等于10。一个或多个(例如每一个)比特可以代表一个子帧。该子帧可以位于下一个无线电帧之中。在一个示例中,举例来说,在将比特设置成1时,相应的UL子帧(作为示例,如果有的话)可被认为是SRS子帧。WTRU可以假设它不会在所指示的SRS子帧之后的n个子帧中传送UL信号。作为示例,WTRU可以假设跟随在所指示的SRS子帧之后(例如紧随其后)的子帧(例如对于n=1来说)可以是DL子帧和/或静默子帧。静默子帧可以是不具有来自其eNB和/或与该eNB相关联的其他WTRU的UL和/或DL传输的子帧。
WTRU可以执行LBT/CCA。举例来说,WTRU可以在SC-FDMA符号时段中执行LBT/CCA。该SC-FDMA符号时段可被配置成是用于一个或多个WTRU的SRS资源。WTRU可以接收关于UL子帧中的UL传输的UL许可。举例来说,当WTRU接收到关于UL子帧中的UL传输的UL许可时,WTRU可以执行LBT/CCA。WTRU可以在SRS资源中执行LBT/CCA,例如在所许可的UL子帧之前的子帧的最后一个SC-FDMA符号中。作为示例,如果信道在前述的LBT/CCA时段中似乎是拥挤,那么WTRU不会传送所许可的UL传输。WTRU可以在SRS资源时段(例如在为SRS传输配置的SC-FDMA符号)中执行LBT/CCA。
eNB可以配置UL子帧。作为示例,eNB可以将UL子帧配置成SRS子帧。eNB不会配置/请求WTRU传送SRS。eNB可以使用未被使用的SRS SC-FDMA符号。举例来说,eNB可以使用未被使用的SRS SC-FDMA符号来创建符合规定的信道空闲时间。作为示例,eNB可以使用未被使用的SRS SC-FDMA符号来创建允许其他用户接入该信道的信道空闲时间。
WTRU可被调度成通过在前的下行链路传输时段中的PDCCH而在即将到来的UL传输时段中执行多个UL传输。该下行链路传输周期可以是LAA S小区获得用于下行链路传输的信道的子帧周期。WTRU可被调度成通过P小区上传送的PDCCH和/或通过在先的周期性配置而在即将到来的UL传输时段中执行多个UL传输。这些UL传输可以包括以下的至少一项:用于数据传输(例如用户平面和/或控制平面)的PUSCH;用于非周期性CSI报告的PUSCH;用于周期性的CSI报告的PUCCH;用于A/N报告的PUCCH;周期性或非周期性SRS;PRACH;和/或忙信号。
UL传输可以被调度和/或配置。举例来说,UL传输(例如所调度和/或配置的UL传输)定时可以与调度处理的定时相关联。UL传输的定时可以在配置中被定义。举例来说,ULPUSCH许可定时可以与提供所述许可的子帧相联系。在子帧n+k中可以进行UL传输,其中k可以是固定的,和/或可以取决于n,例如当在子帧n中提供调度许可的时候。在一个示例中,WTRU可被配置成具有周期性的UL传输(例如周期性的CSI报告)。UL传输定时可以基于周期和/或子帧偏移来定义。LAA UL传输的定时可以与调度处理的定时相关联。并且LAA UL传输的定时可以在配置中被定义。举例来说,如果LAA UL传输定时与调度处理的定时相联系和/或是在配置中被定义的,那么当WTRU没有获取用于恰当子帧的LAA信道的时候,该WTRU可以丢弃传输。
LAA信道上的UL传输的定时可以与WTRU获取的下一个UL时段的定时相联系。WTRU可以在子帧n中接收调度许可。该调度许可会在即将到来的UL时段中生效,例如在子帧m中开始(例如在m>n的情况下)。UL传输可被定义成在子帧m+k中进行。作为示例,WTRU可被配置成具有周期性的UL传输(例如周期性的CSI报告)。所述周期性UL传输的定时可以与所获取的UL时段开端的定时相联系。作为示例,WTRU可以被配置成在子帧m+k中报告RI,其中m可以是所获取的UL时段中的第一个子帧。k的值可以由以下的至少一项来确定:半静态配置;调度许可中的显性指示;n的函数,可以发送调度请求的子帧;和/或m的函数,UL时段开始时所在的子帧。不同的UL传输和/或传输类型可以具有不同的半静态的k值。举例来说,周期性的传输配置可以包括专用于周期性传输的k值。
对于所配置的周期性UL传输,该配置可以包括周期和/或子帧偏移。这样做可以向WTRU指示有可能发生这种UL传输的子帧(例如第一个子帧)。配置可以包括延迟/丢弃规则(例如在WTRU无法获取用于该子帧的信道的时候)。在这里的示例中可以延迟规则进行描述。作为示例,WTRU可以在子帧m+k中执行UL传输,其中m可以是所配置(例如初始配置但未被成功获取的)子帧之后是有效UL子帧(例如第一个有效UL子帧),并且其中k可以是偏移。
WTRU可以接收一个指示。该指示可以包括是否应该在固定的子帧中传送UL传输。该指示可以包括是否应该丢弃UL传输。举例来说,如果没有成功获取信道,那么可以丢弃UL传输。该指示可以包括UL传输是否在所获取的UL时段(例如在以后成功获取的UL时段)中生效。WTRU可被配置成具有有效的UL传输窗口。作为示例,当WTRU无法在预先配置的时间窗口中获取信道时,UL传输可被丢弃。通过以下的至少一项,可以确定UL传输许可和/或周期性传输配置是否会在预定时间和/或以后的UL时段中生效:调度许可和/或周期性传输配置中的指示(例如显性指示);传输类型;高层配置;和/或传送调度许可的载波。一个比特可以指示UL传输定时是否可以是固定的。一个比特可以指示是否可以在WTRU没有获得信道的情况下丢弃UL传输。一个比特可以指示UL传输定时是否与WTRU成功获取UL时段的时间相关。忙信号可以(例如可以只)在一个子帧中生效。子帧可能不与未来的UL时段相关。非周期性CSI报告可以在UL时段(例如任何未来的UL时段)中有效。一旦配置了LAA S小区,那么WTRU可被配置成具有UL传输行为。跨载波调度可以是指UL传输对于固定定时(例如仅仅对于固定定时)而言是有效。跨载波调度可以是指UL传输不会在所获取的UL时段(例如任何将来成功获得的UL时段)生效。
UL传输可以被延迟。作为示例,UL传输可被延迟至WTRU得到UL时段。举例来说,如果UL传输被延迟至WTRU获取UL时段,那么多个UL传输可以使用相同的子帧。作为示例,WTRU可被调度成在子帧n_1中执行非周期性CSI报告。WTRU可被调度子帧n_2中的PUSCH资源。作为示例,WTRU可以依照供定时使用的公式(例如k的值)而具有多个UL传输。WTRU可能无法在所预期的子帧中传送一个或多个UL传输。WTRU可被配置成具有关于一个或多个(例如全部)UL传输的优先级排序。UL传输可以是从以下的至少一项中确定的:UL传输类型;子帧编号;和/或UL传输会因为WTRU没有获得信道而被延迟的次数。在所调度的UL许可和/或所配置的周期性UL传输之间可以存在优先级排序。在一个示例中,一个或多个(例如每一个)信道类型可以具有不同的优先级。举例来说,使用信道有可能会影响优先级。PUSCH上的非周期性CSI与PUSCH上的数据相比可具有更高/更低的优先级。不同的UL传输可能有不同的优先级。例如,不同的UL传输可以依照子帧编号而具有不同的优先级。作为示例,子帧编号可以基于系统子帧编号。子帧编号之间可以互为基础。子帧编号可以处于在UL时段以内。周期性传输有可能未被延迟。周期性传输可以在被期望的UL时段中传送。所调度的UL许可有可能会因为x个在前的未成功信道获取处理而被延迟。所调度的UL许可可以具有优先级。
延迟的UL传输可以在相同UL时段内部的一个子帧(例如后续子帧)中被传送。延迟的UL传输可以在有效的UL时段(例如有效的UL时段之后)中被传送。延迟的UL传输可以被丢弃。
传输是可以被延迟的。举例来说,传输有可能会因为没有成功获取信道而延迟。传输有可能会因为由于与其他UL传输发生冲突而被延迟。延迟的传输可以在以后被传送。被延迟的传输可以重新使用与所指示的相同传输参数。例如,被延迟的传输可以使用一组延迟传输参数。该延迟传输参数可以确保调度器在调度其他WTRU时保持灵活性。
对于周期性CSI报告来说,一些报告类型(例如RI、PMI、CQI、子帧和/或频带子集)可能与其他报告的报告类型存在依赖关系。例如,PMI和/或CQI有可能依赖于所报告的RI(例如最近报告的RI)。作为示例,如果WTRU有可能延迟和/或丢弃周期性报告类型,那么这也有可能会受到影响。举例来说,WTRU可能会用已被延迟的较高优先级的报告类型来替换较低优先级的报告类型。作为示例,WTRU可能无法获得用于传送RI的信道。在以后的UL时段中,WTRU可被配置成定期传送CQI。RI有可能已被延迟。RI可以具有比CQI更高的优先级。用于传输CQI的资源可以重新用于传输RI。用于传输CQI的资源可以重新用于传输组合报告(例如用于RI和/或CQI)。较低优先级的报告类型有可能会因为传送较高优先级的报告类型而被延迟。WTRU可以将较低优先级的报告类型延迟或丢弃到UL时段内部的子帧(例如以后的子帧)。WTRU可以将较低优先级的报告类型延迟和/或丢弃到UL时段(例如以后的UL时段)。作为示例,在因为传送较高优先级的报告类型而延迟较低优先级的报告类型的情况下,WTRU可以将较低优先级的报告类型延迟和/或丢弃到UL时段内部的以后的子帧和/或以后的UL时段。
周期性的CSI报告配置可以包括以UL时段为基础的定时。举例来说,该定时可以以对WTRU获取用于UL传输(作为示例,无论其成功与否)的子帧(例如所有可能的子帧)所做的计数为基础的。该定时可以以对WTRU获得用于UL时段的信道的子帧(例如仅仅是此类子帧)的计数为基础。这种信道处理获取会导致WTRU将其用于UL传输。这种信道获取处理的目的可以是对用于周期性CSI报告的子帧进行倒数计数。作为示例,网络可以基于其是否接收到来自WTRU的UL传输来获知WTRU获取UL传输的时段。WTRU可以获得信道。WTRU可能不具有为UL时段调度的UL传输。作为示例,WTRU可以将这种情况告知eNB,由此eNB可以获知何时预期会有来自WTRU的周期性CSI报告。
WTRU可以接收非周期性的CSI请求。该WTRU可能必须延迟非周期的CSI报告。举例来说,WTRU可能会因为无法获取下一个UL时段而必须延迟非周期性CSI报告。供WTRU用于CSI测量的参考资源有可能并不明确。例如,用于测量的子帧、CRS资源、CSI-RS资源和/或参考资源有可能与非周期性CSI请求的定时相联系(例如始终与之相联系)。用于测量的子帧、CRS资源、CSI-RS资源和/或参考资源有可能与非周期性CSI报告的传输定时相联系。参考资源可被确定成在子帧m-k中,其中k可以是半静态和/或动态配置的,例如当在UL时段的子帧m中传送非周期性CSI请求的时候配置。该参考资源可以与传送非周期性CSI报告的UL时段的预定子帧(例如第一个子帧)相联系。所述非周期性CSI报告可以处于与用于确定参考资源位置的子帧不同的子帧之中。子帧可以具有多个子帧。WTRU可以假设不同的量度。参考资源可以用这里描述任一示例来确定。该参考资源可以由包含了CSI请求的任一子帧子集来确定。该参考资源可以由包含非周期性CSI报告的任一子帧子集来确定。参考资源可以由包含UL时段的任一子帧子集来确定。对于延迟的周期性报告,类似的规则可以应用于确定参考资源。举例来说,无论周期性报告是否延迟,预定的参考资源都是可供使用的。在一个示例中,参考资源可以取决于关于周期性报告的实际传输的定时。
WTRU可以在LAA小区尝试RACH。例如,WTRU可能必须获取该信道。WTRU可以尝试在PRACH上进行传输。WTRU可以尝试在PRACH上进行重传。例如,当被配置成用于多个PRACH传输时,WTRU可以尝试在PRACH上执行重传。举例来说,WTRU可以在先前的RACH尝试失败的时候尝试在PRACH上进行重传。该重传可以处于相同的UL时段。作为示例,WTRU可以在重传处于相同UL时段的时候传送(例如自主传送)忙信号。WTRU可以在其预期会有随机接入响应的时间之前一直传送忙信号。WTRU可以在其可以重传PRACH的时间之前一直传送忙信号。作为示例,WTRU可以在(例如仅仅在)有效的UL时段(例如以后的有效UL时段)内部重传PRACH前序码。WTRU可能无法在UL时段(例如下一个UL时段)中获得该信道。WTRU可以被配置成将不成功的信道获取处理计数成失败的PRACH尝试。在一个示例中,PRACH前序码传输(例如只有PRACH前序码的实际传输)可被计数成失败的PRACH尝试。作为示例,即使关于PRACH前序码的传输被多个未获取(non-acquired)的UL时段分离,也可以将所述PRACH前序码的传输计数成失败的PRACH尝试。WTRU可以向eNB指示被延迟的PRACH传输的数量。例如,WTRU可以向eNB指示因为无法获得信道而被延迟的PRACH传输的数量。这样做可以向eNB提供与免授权信道上的当前业务量负载有关的信息。
WTRU功率控制技术可以适用于PUSCH、PUCCH和/或SRS传输功率中的一个或多个。
WTRU能够针对已被其解码的许可来执行传输。作为示例,如果确定信道拥挤和/或被其他无线实体(例如其他LAA、Wi-Fi用户和/或其他无线发射机)使用,那么LAA小区中的WTRU有可能无法获取用于UL传输的无授权信道。
WTRU可以确定信道状况和/或可用性。例如,WTRU可以通过在CCA时段中监视信道来确定信道状况和/或可用性。WTRU可以测量所接收的功率和/或干扰,并且可以将其与一个或多个阈值等级相比较。量度可以包括来自其他LAA发射机、其他Wi-Fi发射机和/或其他无线干扰源的接收功率。作为示例,所述比较可以通过使用固定阈值和/或软阈值机制来执行。举例来说,固定阈值可以包括为WTRU设置和/或配置一个或多个干扰和/或接收功率阈值。作为示例,如果测量到的干扰和/或接收功率没有超过一个或多个阈值,那么WTRU可以确定该信道是空闲和/或可用的。作为示例,WTRU可以通过传送UL信号(例如遵从旧有过程)来使用空闲和/或可用的信道。作为示例,如果测量到的干扰和/或接收功率超出一个或多个阈值,那么WTRU可以确定该信道拥挤。WTRU可以不传送UL信号(例如被许可的PUSCH)和/或可以不使用拥挤的信道。
软阈值机制可以被称为“可调节阈值”、“灵活阈值”等等。作为示例,软阈值可以包括由WTRU在一个或多个(例如大多数)信道干扰状况中传送UL信号。例如,UL信号可以是在CCA过程中测得的干扰和/或接收功率超出阈值的时候传送的。作为示例,所传送的UL信号的UL传输参数可以取决于在CCA过程中测得的干扰和/或接收功率。作为示例,用于UL信号的UL传输参数可以包括以下的一个或多个:传输UL功率、传输块(TB)大小、调制编码方案(MCS)、资源元素(RE)映射、参考信号(RS)(例如DMRS、CRS)和/或所分配的物理资源块(PRB)。作为示例,WTRU可以确定UL子帧块中的最大允许发射功率。例如,可允许的传输功率可以依照在UL子帧块之前的CCA处理中的测量到的干扰和/或接收功率来确定。
WTRU“请求的UL传输功率”可以是指通过计算和/推导得到的WTRU传输功率。举例来说,WTRU“请求的UL传输功率”可以是指使用旧有过程和/或参数计算和/或推导的WTRU传输功率。作为示例,旧有过程和/或参数可以包括旧有的TPC累加器、WTRU最大传输功率(例如不用考虑信道状况的WTRU最大功率)、被请求的MCS索引(例如在UL许可中提供的MCS索引)、针对eNB的路径损耗等等。作为示例,WTRU可以在其遵从旧有过程的时候使用UL功率。
WTRU可以确定其在LAA小区中的实际UL传输功率。例如,WTRU可以依照可允许的传输功率来确定其在LAA小区中的实际UL传输功率。作为示例,UL子帧块中的实际传输功率可被计算成是最大可允许传输功率和/或被请求的UL传输功率中的最小值。
作为示例,当在CCA处理过程中测得的干扰和/或接收的功率低于所设置和/或配置的阈值时,WTRU可以将UL块的最大可允许传输功率设置成是实际的WTRU最大传输功率和/或其他任何功率级别。功率级别可由eNB配置。作为示例,功率级别可以是以半静态的方式配置的。在一个示例中,WTRU可以将其最大可允许UL传输功率(例如用于CCA之后的UL传输周期/块)设置成减小了XX dB的最大WTRU传输功率。举例来说,所述最大可允许UL传输功率可以是在测量到的干扰和/或接收功率(例如在CCA期间)比所设置和/或配置的阈值高出XX dB的时候设置的。
WTRU可被设置和/或配置成具有一个固定的功率参数,其中该参数可被称为fixed_power(固定功率)。WTRU可以将UL块(例如在CCA处理之后)的最大可允许传输功率计算成是实际的WTRU最大传输功率和/或所述fixed_power的差值和/或在CCA处理过程中测得的干扰和/或接收功率中的最小值。这种算法和/或机制会导致信道中的实际传输功率和/或测量得到的干扰和/或接收功率的总数值等于或小于fixed_power参数。WTRU可以通过一个用于指示最小UL传输功率的参数来配置。举例来说,如果计算得到的最大可允许功率小于最小传输功率,那么WTRU可以不传送UL信号。
WTRU可以请求UL传输功率。被请求的UL传输功率可以小于最大可允许UL传输功率。由此,作为示例,信道干扰和/或接收功率不会影响到WTRU UL传输,WTRU可以将实际的UL传输功率设置成被请求的UL传输功率,和/或WTRU可以在不做修改(例如依照相关的UL许可所许可的那样)的情况下传送UL信号(例如PUSCH)。被请求的UL传输功率有可能高于最大可允许UL传输功率。由此,作为示例,WTRU可以将实际的UL传输功率设置成是最大可允许UL传输功率。作为示例,功率可以通过使用一个或多个机制并依照一个或多个其他UL信号特性(例如MCS、重复)来减小。
每一个WTRU可以在每一个子帧传送单个TB。WTRU可被配置成(例如被隐性和/或显性地配置成)具有一个或多个TB大小、MCS、资源块指配、预编码器和/或TPC命令。作为示例,WTRU可以依照在CCA处理过程中测得的干扰和/或接收功率来选择组合
WTRU可被配置成(例如被隐性和/或显性地配置成)具有一个或多个传输参数集合。WTRU可以配备第一参数集合,其中作为示例,该集合可以指示第一资源块指配、第一MCS、第一预编码器和/或第一TPC命令中的一项或多项。WTRU可以配备第二参数集合,其中作为示例,该集合可以指示第二资源块指配、第二MCS、第二预编码器和/或第二TPC命令中的一个或多个。
WTRU可被提供UL许可。举例来说,WTRU可被提供一个许可,该许可包含了多个传输参数集合以及多个MCS值,其中所述MCS值可以映射到用于(例如相同)资源块指配的不同TB大小。作为示例,作为UL许可的一部分,WTRU可以接收单个MCS和/或传输参数集合。作为示例,WTRU可以通过考虑资源块指配来计算相应的TB大小。作为示例,WTRU可以通过使用预先定义和/或可配置的规则来推导一个或多个TB大小、MCS值和/或传输参数集合。所推导的TB和/或MCS可以对应于较低的UL传输功率值。在关于所述算法和/或机制的示例中,WTRU和/或eNB可以依照任何顺序来遵从一个或多个过程。WTRU可以接收单个MCS,例如mcs_0,并且该WTRU可被分配一定数量的PRB,例如n_prb。
WTRU可以使用旧有过程来确定与所接收的mcs_0和n_prb相对应的TB大小,其中所述TB大小可被称为tb_0。
WTRU可以接收一个用于隐性推导数量为x(例如x=2)的其他UL传输参数集合的配置,例如从所接收的单个UL参数集合中推导。WTRU可被配置成具有TB大小缩放因子sc_x。作为示例,X可以是所推导的一个或多个(例如每一个)UL传输参数集合的集合索引(例如sc_1=2和sc_2=4)。第一集合可以用它的参数来标引,例如{mcs_1,tb_1,sc_1},第二集合可以用它的参数来标引,例如{mcs_1,tb_1,sc_1}等等。
WTRU可以确定tb_1=func(tb_0/sc_1)。举例来说,对于第一UL传输参数集合,WTRU可以确定tb_1=func(tb_0/sc_1)。作为示例,Func(inp)可以返回关于inp的紧挨着的更高或更低的TB块大小条目(作为示例,如在为相同数量的层以及PRB大小指定的TB块大小表格中定义的那样)。
WTRU可以确定mcs_1是与大小为tb_1的TB大小相对应的MCS。举例来说,WTRU可以确定mcs_1是与用于第一UL传输参数集合的大小为tb_1的TB大小相对应的MCS。TB大小可以在指定的TB大小表格中被定义,例如在为相同数量的层和/或PRB大小指定的TB大小表格中。作为示例,如果存在针对相同的tb_1、n_prb和/或层数的两个相应的MCS索引,那么WTRU可以选择mcs_1作为最低索引。WTRU可以为其他UL参数集重复一个或多个过程(例如为第二UL参数集合重复一个或多个过程,以便确定{mcs_2,tb_2,sc_2})。
WTRU可被配置成具有用于确定其他传输参数集合的偏移值。例如,WTRU可被配置成具有用于以一个或多个传输参数集合为基础来确定其他传输参数集合的偏移值。作为示例,WTRU可以用MCS值、预编码器、TPC命令和/或固定或可配置偏移中的一个或多个来调度。作为示例,WTRU可以确定一个或多个MCS值、预编码器和/或TPC命令。作为示例,WTRU可以接收带有MCS索引的UL许可。所述MCS索引可以映射到依照MCS索引和/或资源块指配大小获取的调制阶数和/或TBS。作为示例,WTRU可以基于MCS索引来推导传输参数集合(例如可能的调制阶数和/或TB大小配对的集合)。作为示例,WTRU可以通过对所许可的MCS索引应用一个或多个偏移来从所许可的MCS索引中获取新的我MCS索引,以便推导出一个集合。一个或多个新的MCS索引可以映射到相同或不同的调制阶数和/或TB大小。在一个示例中,UL许可中的MCS索引可以映射到TBS索引。作为示例,WTRU可以通过将一组偏移值应用于TBS索引来获取可能的TBS索引集合,由此获取一组TBS大小。在一个示例中,MCS索引可以映射到TB大小。作为示例,WTRU可以通过对从UL许可中获取的TB大小应用偏移值来获取一组TB大小。
WTRU可以预先准备一个或多个可能的TB(例如为每一个传输参数集合预备一个)。WTRU可以选择TB和/或与之对应的传输参数(例如MCS和/或TPC命令),以便在UL实例中执行传输。
用于在CCA中尝试获取关于一个或多个可能的UL传输的信道(例如为每一个传输参数集合获取一个信道)的阈值可以是不同的。举例来说,用于在CCA中尝试为一个或多个可能的UL传输获取信道(例如为每一个传输参数集合获取一个信道)的阈值可依照所需要的UL传输功率而存在差异。
对于MCS、TB大小和/或传输参数集合中的一个或多个所做的选择可以取决于位于WTRU的以下的一项或多项信息:测量得到的干扰/接收功率、最大可允许UL传输功率、所请求的UL传输功率、所设置/配置的参数和/或表格。
传输参数集合可被选择。作为示例,对传输参数集合所做的选择可以取决于每一个集合和/或参数的优先级。WTRU可以为优先级最高的传输参数集合尝试执行带有阈值的CCA。作为示例,在确定信道空闲的时候,WTRU可以使用最高优先级的参数集合来执行传输,和/或可以忽略其他传输参数集合。CCA量度有可能没有实现与优先级最高的传输参数集合的传输有关的阈值。WTRU可以将CCA量度与关于次最高优先级的传输参数集合的阈值相比较,诸如此类,直至可以使用一个参数集合来执行传输,和/或直至该许可被丢弃,例如在CCA量度没有实现与优先级最高的传输参数集合的传输有关的阈值的时候。
WTRU可被配置成具有一组可能的目标接收功率(PO,PUSCH,c)。作为示例,WTRU可以使用一组目标接收功率来获取一组用于UL许可的可能的UL传输功率。一个或多个UL传输功率可以具有不同的CCA阈值。WTRU可以具有关于目标接收功率的优先级列表,其中该列表可以是可配置的。作为示例,在满足CCA阈值的同时,WTRU可以基于该优先级列表来确定可以实现最高优先级目标接收功率的UL功率。
WTRU可以确定(例如自主确定)关于UL许可的一个或多个传输参数(例如传输功率)。WTRU可以向服务小区指示自主确定的传输参数。
WTRU可以修改和/或忽略UL许可中的TPC命令。WTRU可以向服务小区指示其是否忽略或修改过TPC命令。作为示例,当WTRU修改TPC命令时,WTRU可以向服务小区指示功率偏移。功率偏移可以向服务小区指示WTRU所使用的实际TPC命令。
在闭环功率控制累积(例如用于TPC命令累积)处理中可以忽略已被修改和/或丢弃的TPC命令。作为示例,无论WTRU是否实际使用和/或修改了来自服务小区的所建议的TPC命令,所述TPC命令都可以用于累积处理。
所使用的传输参数可以用一种或多种技术来指示。
eNB可以盲解码用信号传递给WTRU的一个或多个可能的MCS值、TB大小和/或传输参数集合。WTRU可以指示使用的TB大小和/或MCS,例如将其作为可以在授权小区传送的UL信令的一部分来指示(例如借助PUCCH信令)。作为示例,WTRU可以向服务小区通告一个或多个传输参数集合和/或可供一个或多个(例如每一个)传输使用的传输功率,其中所述传输具有多个UL传输功率潜在候选。作为示例,关于UL传输参数和/或所使用的传输功率的指示可以是与UL传输同时产生的,和/或可以是在以后的时间产生的。
可以向P小区传送一个指示。作为示例,该指示可以是用于多个LAA S小区的UL传输参数集合。在UL传输中可以传送指示。作为示例,在PUSCH内部可以保留一个RE集合,以便包含关于传输参数的指示。作为示例,RE集合可以使用预先配置和/或固定的MCS(例如QPSK)。作为示例,RE集合可以位于DM-RS附近,以便确保适当的解调处理。举例来说,PUSCH可被截断,以便能够包含用于指示一个或多个传输参数的RE集合。在用于指示一个或多个传输参数集合的RE集合内部传送的符号上可以使用CRC。指示可以与UL传输(例如隐性地)包含在一起。关于UL传输的一个或多个参数可以取决于所使用的传输参数集合。在一个示例中,WTRU可以具有依照UL许可的n个可能的传输参数集合。作为示例,WTRU可以通过使用用于确定UL传输中的别的参数的索引来指示在传输中使用n个可能的集合中的哪一个。作为示例,DM-RS基础序列、循环移位和/或DM-RS OCC可以通过所使用的参数集合的索引来确定。作为示例,eNB可以盲检测可能的指示参数(例如可能的DM-RS)的集合,以便确定WTRU使用的传输参数集合。指示可以在稍后的子帧中被传送,例如在PUCCH传输之中。
WTRU可以在实现当前和/或其他CCA阈值的同时向服务小区告知可用的功率余量,例如在关于被使用的传输参数集合的指示和/或其他指示中。作为示例,假设WTRU具有一个或多个(例如两个)参数集合。WTRU能够以介于一个或多个(例如两个)量化值之间的功率电平来执行传输。WTRU可以指示用于一个或多个可能的CCA阈值的功率余量。作为示例,所报告的指示可以是在干扰景观(landscape)快速变化的时候做出响应(例如高速响应)(例如尽可能快地提供)。
作为示例,WTRU有可能会因为CCA处理过程中的很高的干扰量度和/或接收功率而以低于被请求的UL传输功率的UL功率来执行传输。一种或多种技术可以用于改进eNB接收UL信号的处理。
每个WTRU可以在每个子帧传送多个TB。WTRU可以从eNB接收在一个或多个(例如相同)子帧中发送多个(例如两个或更多)TB的指示和/或(例如相同)TB的多个实例。作为示例,TB的多个实例可以具有相同的TB大小、相同的MCS、相同的净荷、相同数量的已指配PRB和/或相同的信息比特。所传送的TB可以具有相同的MCS和/或可以具有相同的大小。TB和/或相同TB的多个实例可被映射到可用资源,例如通过频率优先(frequency first)和/或时间优先(time first)的映射布置来映射。不同TB的传输和/或相同TB的多个实例的传输是可以交换使用的。作为示例,通过频率优先和/或时间优先布置,可以将TB按照RE映射的顺序映射到最后一个包含了在先TB的SC-FDMA符号之后立即可用的RE。作为示例,通过频率优先布置,可以按照RE映射的顺序将TB映射到在该子帧中最后一个包含在前TB的SC-FDMA符号之后的SC-FDMA符号中的第一个可用的RE。作为示例,通过时间优先布置,可以按照RE映射的顺序将TB映射到处于该子帧中包含在先TB的最后一个子载波之后的子载波中的第一个可用RE。作为示例,通过PRB优先布置,可以按照RE映射的顺序将TB映射到处于该子帧中最后一个包含在前TB的PRB之后的PRB中的第一个可用RE。作为示例,在用于相同TB的PRB和/或PRB集合内部,RE可以通过频率优先和/或时间优先布置来映射。作为示例,可用的RE可以是指可用于运送PUSCH符号的RE,并且所述可用RE不会被分配给其他信号,例如PDCCH、DMRS、CRS、CSI等等。
WTRU可以接收一个或多个TB大小和/或MCS。举例来说,作为UL许可的一部分,WTRU可以接收一个或多个TB大小和/或MCS。在一个示例中,在包含多个(例如不同数量)的PRB指示的UL许可中可以具有一个或多个(例如仅仅一个)MCS。举个例子,一个许可可以运送一个序列{2,1,3},该序列可以指示2个PRB可被分配给相同的TB,1个PRB可被分配给单个TB,以及3个PRB可被分配给另一个TB。考虑到相同的接收MCS,每一个分配都可以对应于相同或不同的TB大小。WTRU可以预先准备一个或多个TB大小。
WTRU可以接收一个或多个(例如仅仅一个)MCS。举例来说,作为UL许可的一部分,WTRU可以接收一个或多个(例如仅仅一个)MCS。作为示例,WTRU可以遵从某些规则。WTRU可以在一个以上的PRB集合中划分已分配的全部数量的PRB。WTRU可以通过考虑PRB的数量和/或用信号通告的MCS来确定(例如为一个或多个PRB集合)TB大小。举个例子,WTRU可以接收具有6个PRB的PRB指配。WTRU可以将6个PRB划分成具有3个PRB的一个或多个(例如两个)集合。WTRU可以为每一个集合使用所接收的相同MCS。WTRU可以确定要在这其中的每一个集合(例如具有3个PRB的两个集合)传送的TB大小。WTRU可以在一个或多个相同子帧中指示和/或被配置一个以上的TB。举例来说,如果最大可允许UL传输功率高于所请求的UL传输功率,那么WTRU可以传送所请求的一个或多个TB。UL传输功率可以依照在CCA处理过程中测得的干扰和/或接收功率来计算。
WTRU可以传送所许可的TB中的一个或多个TB(例如其子集)、在一个或多个相同或不同的子帧中重复一个或多个TB、和/或丢弃剩余的TB,例如在最大可允许UL传输功率低于所请求的UL传输功率的时候。作为示例,最大可允许UL传输功率可以依照在CCA处理过程中测得的干扰和/或接收功率来计算。作为示例,通过在相同的子帧中重复相同的TB,可以改进eNB接收UL信号的处理。作为示例,WTRU可以依照以下各项来确定一个或多个重复的数量:所请求的UL传输功率、实际UL传输功率、最大可允许UL传输功率、在CCA处理过程中测得的干扰和/或接收功率、所接收的一个或多个许可等等。干扰有可能源于一个或多个来源,例如其他LAA、Wi-Fi以及其他干扰源。在一个示例中,被配置了多个TB的WTRU可以发送(例如决定发送)一个或多个(例如全部)TB,例如依照信道状况来发送。作为示例,WTRU可以将该处理重复一次或多次(例如若干次),以便改进eNB上的TB接收处理。WTRU和/或eNB可以按照任何顺序来执行一个或多个操作或功能。在这里提供了关于操作和/或功能的示例。
WTRU可以在子帧编号(例如sf_n)中接收UL许可。一个许可可以向WTRU分配多个PRB(例如n_prb个),作为示例,n_prb=4。MCS可以由许可来指示。
WTRU可以假设有tb_n个TB,作为示例,tb_n=n_prb(例如,4),其中每一个PRB都可以包含单个TB。
在接收到UL许可(例如UL子帧(sf_n+4))之后的子帧(例如四个子帧)中的潜在UL传输之前,WTRU可以预先准备tb_n(例如4)个TB。
WTRU可以在UL子帧(sf_n+4)之前的CCA处理过程中监视信道,和/或可以在该CCA处理过程中测量干扰和/或接收功率。
WTRU可以计算测量得到的干扰/接收功率减去所设置/配置的阈值的差值参数xx_db。WTRU可以设置与最大WTRU传输功率减去xx_db相等的最大可允许UL传输功率。
WTRU可以确定被请求的UL传输功率。例如,无论信道状况如何,WTRU都可以使用旧有过程和/或参数(例如旧有TPC累加器)来确定所请求的UL传输功率。
作为示例,当最大可允许UL传输功率高于所请求的UL传输功率时,WTRU可以使用所配置的MCS来传送TB(例如所预备的所有TB),其中每一个TB都可以被映射到一个PRB(例如单个PRB)。
举例来说,当最大可允许UL传输功率低于所请求的UL传输功率时,WTRU可以传送(例如只传送)一个(例如第一)TB和/或丢弃剩余TB。WTRU可以在所分配的多个(例如全部)PRB中重复相同的TB。作为示例,WTRU可以将TB(例如相同的TB)重复n_prb次,其中n_prb可以等于n_tb(例如4次)。
eNB可以执行解码(例如盲解码)。举例来说,eNB可以通过解码来确定多个(例如全部)PRB是否包含相同信息和/或TB。作为示例,当PRB(例如所有PRB)包含信息(例如相同的信息)和/或TB时,eNB可以通过组合多个(例如全部)重复来提升解码性能。作为示例,当PRB(例如所有PRB)并不包含相同信息和/或TB时,eNB可以解码PRB(例如可以单独解码PRB),和/或可以解码逐个PRB的一个TB。
WTRU可被配置成具有和/或可以测量用于UL功率控制公式(算法和/或过程)的参数(例如输入)。这些参数可以包括(例如一个或多个)UL功率控制参数的集合,例如最大传输功率(PCMAX,C)、PUSCH资源指配的带宽(MPUSCH,c)、目标接收功率(PO_PUSCH,c)、去往服务小区的路径损耗(PLc)、路径损耗缩放因子(αc),从MCS获取的因子(ΔTF,c),PUSCH功率控制调整状态(fc)、干扰小区的路径损耗(PLi)、干扰小区路径损耗的缩放因子(αi)、和/或测量到的干扰(I)以及干扰带宽(Mi)。
WTRU功率控制公式可以顾及干扰小区(例如多个干扰小区)的影响。举例来说,干扰小区可以具有自身的路径损耗(PLi),缩放因子(αi)和/或干扰带宽(Mi)。缩放因子可以是预先配置的,例如由服务小区预先配置。WTRU可被提供一组关于干扰小区的可能的缩放因子。WTRU可以确定适当的缩放因子。举例来说,缩放因子可以取决于干扰类型。作为示例,WTRU可以依照干扰来自友好的LAA小区(例如允许在无授权信道上同时操作的小区)、不友好的LAA小区(例如不允许在无授权信道上同时操作的小区)和/或来自别的RAT(例如Wi-Fi)而使用不同的干扰路径损耗缩放因子。作为示例,测量到的干扰(I)可以是和/或可以包括在CCA操作过程中获得的量度和/或别的资源(例如受eNB控制)中的无授权信道上的干扰量度。
WTRU能够针对已被其解码的许可来执行传输。WTRU可能无法获取用于UL传输的无授权信道。作为示例,如果在发射机上存在一个或多个差错,那么尽管服务小区许可了资源,WTRU也不会在无授权信道上执行传输。作为示例,发射机上的差错可以包括未被WTRU检测到的许可和/或WTRU无法获取无授权信道。接收机上有可能存在一种或多种类型的差错。作为示例,接收机上的差错可以包括在WTRU成功检测到许可并执行传输的时候,在接收机上没有成功执行接收。对于小区来说,如果知道发生了什么差错,那么将会是非常有益的。
WTRU可以对接收到UL许可做出应答。该应答是可配置的。作为示例,在接收到UL许可时,WTRU可以在可配置资源(例如PUCCH资源、MAC CE等等)使用一个比特来指示应答。作为示例,所述指示可以或者只可以取决于是否执行WTRU传输。PUCCH资源可以是P小区和/或无授权小区。应答的定时可以与所许可的传输的定时相一致。
作为示例,提供UL许可的DCI可以指示是否要对接收到许可做出应答。作为示例,在被指示这样做时,WTRU可以对接收到的许可做出应答。先前的许可的状态可以在下一个被许可的UL传输中指示。例如,WTRU可被调度成在第一个UL块中执行传输。WTRU可能无法在第一个UL块中获得信道。该WTRU可被调度成在第二个UL块中执行传输。该WTRU可以在第二个UL块中获得用于UL传输的信道。WTRU可以在第二个UL块中发生的传输中提供关于(例如第一)UL块的许可状态的指示(例如检测到、未检测到、传送、未传送等等)。
WTRU可被配置成具有周期性资源。举例来说,WTRU可以使用周期性资源来向小区指示是否检测到但是丢弃了一个或多个许可(例如因为无法获取无授权信道)。作为示例,WTRU可以使用成功获取的信道上的UL块的(例如第一)子帧来向小区指示是否在没有成功获取信道的另一个(例如先前的)UL块中检测到一个或多个许可。作为示例,WTRU可以在第一个UL块中检测到用于传输的许可,但是无法在这个UL块中获取信道。在第二个UL块中,WTRU可以获取信道,和/或可以向小区传送一个表明其在先前的UL块中检测到许可但却无法获取信道的指示。
WTRU可以指示和/或报告关于其他事件和/或尝试的状态和/或结果。例如,WTRU可以指示何时能够检测到许可和/或能够执行传输。事件报告能使小区区分事件。例如,小区能够区分WTRU没有检测到许可和/或WTRU检测到许可并执行了未必成功接收的传输。作为示例,指示可被提供一个或多个(例如两个)比特。举例来说,码点'00'可以指示没有在UL块和/或子帧中检测到许可,码点'01'可以指示在UL块和/或子帧中检测到许可,但是不能执行传输,码点'10'可以指示在UL块和/或子帧中检测到许可和/或执行了传输,以及编码点'11'可被保留。
包含了关于无授权信道上的UL传输的许可的DCI或DCI格式可以包括一个许可索引。举例来说,在FDD、TDD中可以使用DAI,和/或对于TDD来说,DAI是可以增强的。索引能使WTRU确定其是否遗漏了UL许可。WTRU可以使用索引来向服务小区指示所述WTRU a)检测和/或发送、b)检测和/或丢弃(例如因为无法获取信道)和/或c)没有检测到的许可列表。WTRU可以向小区(例如服务小区、P小区)传送关于一个或多个检测/传输情况的许可索引。在确定无法接收UL传输的原因方面,所述索引可以减少小区的歧义。举例来说,当WTRU检测到关于UL传输的许可但却取法获得用于传输的无授权信道时,这时可以丢弃该许可。作为示例,传输参数(例如TPC命令)可以包含在用于UL许可的DCI中。在没有传输的情况下,例如在WTRU被配置成累积TPC命令的时候,在如何累积TPC命令方面有可能会存在歧义。
WTRU可以忘记包含在许可中的信息(例如TPC命令)。举例来说,当WTRU丢弃UL传输时(例如因为未能获取无授权信道),WTRU可以忘记(例如丢弃)包含在许可中的信息(例如TPC命令)。累积有可能是针对导致UL传输的许可而发生的。无论是否进行UL传输,WTRU都会累积TPC命令。
作为示例,在发生传输和/或没有接收到传输的时候,服务小区有可能并不知道WTRU丢弃了传输和/或WTRU没有检测到许可。服务小区传送的TPC命令可以假设进行过先前的传输和/或该传输未被接收。功率的提升有可能是因为糟糕的链路自适应造成的,而这会对WTRU获取信道的能力产生不良影响,和/或有可能会使现传播功率控制出错。
WTRU可以存储被丢弃的许可的TPC命令,和/或可以在以后的许可中使用该TPC命令,作为示例,由此忽略所述以后的许可的TPC命令。举例来说,WTRU可在第一许可中被给予第一个TPC命令值(例如0dB)。WTRU有可能无法获取信道和/或有可能丢弃该许可。在以后的许可中,WTRU可被给予一个TPC命令(例如3dB)。WTRU可以使用已存储的TPC命令值(例如,0dB),和/或可以包含在新许可中的TPC命令。作为示例,WTRU可以在UL传输中和/或使用用于指示被丢弃的授权的技术来向服务小区指示该行为。
先前的TPC命令可被配置时间限度和/或其他限制。举例来说,先前的TPC命令可被配置一个用于覆盖UL许可中的TPC命令的时间限度和/或其他限制。作为示例,如果一个或多个(例如两个)许可针对的是相邻的子帧和/或UL块,那么可以允许使用先前的TPC命令来覆盖当前的TPC命令。作为示例,所存储的TPC命令(例如来自被丢弃的许可)可以在固定和/或可配置的定时器终止时被删除。
WTRU可以指示所识别的许可(例如已被识别但未被使用的许可)。WTRU可以接收UL许可。UL许可可以指示所述许可针对的是新数据(例如切换了新数据指示符(NDI))和/或针对的是重传(例如不切换新数据指示符(NDI))。作为示例,基于半静态的持续性调度(SPS),WTRU可以具有为UL传输和/或重传分配(例如隐性许可)的资源。作为示例,通过接收关于HARQ进程的NACK和/或在HARQ进程预期的时间没有接收到ACK,WTRU可以为于UL重传分配(例如隐性许可)的资源。术语许可可以用于代表显性许可、资源分配和/或隐性许可中的一个或多个。
WTRU可以执行LBT/CCA。举例来说,在WTRU接收到关于传输(例如新传输)的许可的时候,WTRU可以通过执行LBT/CCA来确定信道是否空闲。作为示例,当WTRU确定信道空闲时,该WTRU可以在PUSCH上传送用于HARQ进程的MAC PDU。作为示例,MAC PDU可以保留在HARQ进程的缓冲器中以便可以在需要、请求和/或许可的时候执行重传。WTRU可以获取用于HARQ进程的传输的MAC PDU,和/或可以不执行传输,例如在WTRU确定信道并非空闲的时候。虽然没有传送MAC PDU,但其可以处于HARQ进程的缓冲器中,和/或可以保留在HARQ进程的缓冲器中。关于HARQ进程的下一个许可针对的可以是重传。eNB可以获知重传原因。作为示例,该重传原因可以包括因为信道干扰而导致先前传输失败,没有接收到关于先前传输的许可,和/或接收到许可且不能执行传输(例如因为确定信道拥挤)。
WTRU可以将一个指示与UL传输(例如用于HARQ进程)包含在一起,其中该指示涉及的是当前传输和/或先前许可、传输和/或传输尝试(例如用于HARQ进程)中的至少一个。作为示例,与被许可重传所对应的传输包含在一起的指示可以表明是否尝试了先前(例如最近)许可的传输或重传(例如用于HARQ进程)和/或所述传输或重传是否失败(例如未传送),作为示例,失败原因可以是因为WTRU确定信道拥挤。作为示例,与被许可重传所对应的传输包含在一起的指示可以表明是否接收到用于先前(例如最近)许可的传输和/或重传(例如用于HARQ进程)的许可和/或没有执行传输(例如因为WTRU确定信道拥挤)。与被许可重传所对应的传输包含在一起的指示可以指示该传输是否为新传输,例如在接收到重传请求和/或传送新数据的时候,HARQ处理缓冲器是否为空。与被许可重传所对应的传输包含在一起的指示可以指示已被尝试和失败(例如未被传送)(例如因为WTRU确定信道拥挤)的先前许可的传输和/或重传(例如用于HARQ进程)的数量。与被许可重传所对应的传输包含在一起的指示可以指示关于未被WTRU传送(例如因为WTRU确定该信道拥挤)的所接收的许可传输和/或重传(例如用于HARQ进程)的先前许可的数量。与被许可重传所对应的传输包含在一起的指示可以指示针对LAA小区的特定HARQ进程的失败的传输(例如MAC PDU)尝试数量(和/或其他统计信息),其中所述数量可以是从最后一次传输用于该HARQ进程的MAC PDU时开始的数量(和/或统计信息)。与被许可重传所对应的传输包含在一起的指示可以指示针对LAA小区中的特定HARQ进程的先前传输(例如MAC PDU)尝试的失败。指示可以是二元的,举例来说,其中一个状态可以指示一个或多个先前传输尝试失败和/或没有失败。一个指示可以代表失败计数。所述计数可以是实际计数、量化计数、关于计数范围的指示和/或其他表示。所述计数可被限制在可配置的最大值以内。
WTRU可以提供(例如与UL传输包含在一起)关于先前是否尝试过传输并且传输失败和/或因为确定(例如由WTRU)信道拥挤而阻止传输的指示。作为示例,当WTRU接收到关于重传(例如用于HARQ进程)的许可并且执行传输时,该WTRU可以包含指示与所述传输包含在一起。作为示例,该指示可以表明WTRU是否没有执行先前许可的传输和/或重传(例如用于HARQ进程)(例如因为WTRU确定该信道拥挤)。WTRU可以(例如只可以)提供(例如在UL传输中包含)与所许可的重传相对应的指示。作为示例,如果该许可针对的是重传,那么WTRU可以提供与新数据传输相对应的指示。作为示例,指示可以是以与PUSCH上捎带传送的UCI相似的方式从所述传输中的MAC PDU提供的(例如作为单独的比特,比方说物理层比特)。
WTRU可以维护一个计数器。例如,WTRU可以为每一个与LAA小区相关联的UL HARQ进程维护一个计数器。在接收到关于HARQ进程的新数据的许可时,这时可以将名为tx-attempt-ctr的计数器初始化,例如将其初始化成零。计数器可以用各种初始化值和/或各种计数/增量幅度和/或极性来实现计数器。在一个示例中,计数器可被初始化成一个值(例如零)并且递增计数(例如逐一递增)和/或递减计数(例如逐一递减)。作为示例,WTRU可以在没有传送新数据时(例如因为确定信道拥挤)递增计数器。WTRU可以将新数据保存在HARQ处理缓冲器中。该存储可以是在确定信道拥挤之前或之后进行的。作为示例,如果WTRU接收到关于HARQ进程的重传的许可,并且没有传送用于HARQ进程的数据(例如HARQ处理缓冲器中的数据)(例如因为确定信道拥挤),那么WTRU可以递增计数器。
当WTRU接收到用于HARQ进程的重传许可和/或传送用于HARQ进程的数据(例如HARQ处理缓冲器中的数据)时,WTRU可以提供(例如与传输包含在一起)一个指示。所述指示可以是计数器值。所述指示可以是二元的,作为示例,其中一个值可以指示计数为零,并且另一个值可以指示计数为非零。作为示例,当tx-attempt-ctr超出阈值时,WTRU可以向eNB发送报告。
WTRU可以向eNB提供一个或多个无线电链路(RL)状态报告。WTRU可以提供(例如包含在RL状态报告中)LBT/CCA状态和/或统计信息。作为示例,WTRU可以提供UL RL状态报告。在一个示例中,作为示例,WTRU可以报告在可被配置的时段上进行的多少次尝试中有多少次LBT/CCA尝试是失败的。作为示例,所述报告可以是周期性的、事件触发的或是按需的。作为示例,关于可以触发WTRU发送报告的事件的示例可以是失败的尝试次数(例如在所配置的时段中)超出了阈值,其中该阈值可以由eNB配置。WTRU可以报告(例如针对特定的尝试)LBT/CCA通过还是失败。关于报告的请求可被提供。在UL许可中可以包含请求。WTRU可被配置成提供RL状态,例如关于一个或多个LAA小区的RL状态。作为示例,RL状态可以用于向eNB指示(和/或被eNB用来确定)一个或多个无授权信道或LAA小区上的UL(和/或DL)传输的成功概率。
作为示例,WTRU可以使用物理层、MAC层和/或RRC信令中的一个或多个来传送RL状态报告(例如UL RL状态报告)。RL状态报告(例如UL RL状态报告)可以(例如可被触发)向eNB指示WTRU没有执行一个或多个UL传输(作为示例,即使其成功确定其在LAA小区上被许可了关于一个或多个UL传输的资源)。
WTRU可被提供一个UL传输许可。作为示例,WTRU可被提供一个用于LAA小区上的传输的UL传输许可(例如由授权小区)。WTRU可以尝试获取用于UL传输的无授权信道,例如在接收到所述许可和/或被许可的资源的时间之间的某个时间。作为示例,如果WTRU确定其无法适时接入信道以进行所许可的UL传输,那么WTRU可以递增关于失败尝试的计数。作为示例,如果所述计数超出阈值,那么可以触发RL状态报告。作为示例,WTRU可以在固定和/或所配置的时段中报告关于失败的UL传输的比率。该时段可以包含在报告之中。作为示例,WTRU可以周期性地传送所述报告。举例来说,如果传送了所述报告和/或调度传输所述报告,那么WTRU可以将所述计数归零。
WTRU可以在授权载波和/或无授权载波上传送RL状态报告。举例来说,WTRU可以在状态报告中指示关于一个或多个LAA小区和/或无授权载波上的有可能失败(例如因为无法适时获取一个或多个无授权信道)的一个或多个UL传输(和/或传输尝试)HARQ进程编号和/或别的标识符(例如DAI)。
WTRU可被提供用以传送RL状态报告的资源。作为示例,一旦接收到以后的UL许可,则WTRU可以传送UL状态报告。WTRU可以在授权和/或无授权载波上请求UL许可。WTRU可以提供(例如在调度请求中包含)关于失败的UL传输(例如因为无法获取无授权系信道)的列表(例如所有UL传输的列表)。
作为示例,WTRU可以在RL状态报告中提供概率和/或统计信息。WTRU可以测量和/或确定(例如基于测量)关于一个或多个LAA小区和/或无授权信道的信息。作为示例,该信息可以包括关于UL和/或DL传输的信道获取概率。在一个示例中,WTRU可以确定信道对于UL和/或DL传输而言有可能过于拥挤,并且可以向eNB指示该判定。作为示例,eNB可以使用该信息来帮助确定与WTRU有关的隐藏节点的存在。
WTRU可以监视信道。举例来说,WTRU可以通过使用干扰测量机制来监视信道。WTRU可以确定信道的平均干扰级别。WTRU可以确定信道的基于时间的干扰分布。该确定可以包括关于信道的干扰和/或负载的二阶统计。在一个示例中,WTRU可以确定信道上的不同干扰级别和/或每一个干扰级别的概率(例如负载分布)。WTRU可被提供(例如由eNB)关于信道的负载假设。作为示例,WTRU可以将负载假设与干扰测量结合使用,以便确定信道获取概率。作为示例,WTRU可以基于干扰和/或负载测量来确定获取信道的概率。作为示例,信道获取概率可以取决于UL传输功率。WTRU可以确定多个信道获取概率。WTRU可以由eNB配置成具有用于一个或多个(例如所有)已被激活的无授权信道的(例如特定的)UL传输功率假设。用于确定信道获取概率的测量可以在一个或多个潜在有效的UL子帧(例如每n个帧,其中n可以是固定的和/或可配置的)上执行。作为示例,WTRU可以通过高层信令而被配置成具有可供WTRU执行测量的特定子帧集合。信令可能采用测量资源限制图案的形式。WTRU能够恰当地测量可能的UL子帧中的DL信道获取概率和/或可能的UL子帧中的UL信道获取概率。
UL许可可被提供给WTRU(例如在子帧n中)。作为示例,WTRU可以预期会在子帧n+k中执行传输,其中对于FDD来说,k可以是4。作为示例,考虑到CRC在WTRU没有执行传输以及eNB没有成功接收到传输的情形中都有可能失败,因此,eNB很难区分WTRU没有执行传输以及eNB没有成功接收到传输的情形。
WTRU可以在LAA小区上的传输中或者用所述传输来提供指示和/或信号,其中作为示例,所述指示和/或信号可被eNB用来确定传输存在性和/或成功接收(例如由eNB成功接收)。所述指示和/或信号不会受到CRC限制。在一个示例中,与UCI比特相似,所述指示和/或信号可以是不会作为传输块和/或MAC PDU的一部分而被包含的一个或多个比特。在一个示例中,举例来说,参考信号(RS)(例如SRS和/或DMRS)可以通过UL传输(例如只在LAA小区)来提供(例如由WTRU提供)。一个或多个传输参数和/或RS的时间/频率(例如时间和/或频率)位置可以被配置(例如通过高层信令和/或物理层信令,比方说在在许可中(例如用于许可的DCI)被配置)。时间/频率位置可以是特定的符号,例如最后一个符号。eNB可以接收和/或检测(例如成功接收和/或检测)可用于确定传输存在和/或成功接收的指示和/或信号。作为示例,即使eNB没有成功接收到附带的MAC PDU、TB和/或PUSCH,eNB也可以确定WTRU执行了包含附带的MAC PDU、TB和/或PUSCH传输的传输。作为示例,如果eNB没有接收和/或检测到(例如没有成功接收和/或检测到)所述指示和/或信号,那么eNB可以确定WTRU没有执行相关联的MAC PDU、TB和/或PUSCH传输。
虽然在上文中描述了采用特定组合的特征和要素,但是本领域普通技术人员将会认识到,每一个特征或元素既可以单独使用,也可以与其他特征和要素进行任何组合。此外,这里描述的方法可以在引入计算机可读介质中以供计算机或处理器运行的计算机程序、软件或固件中实施。关于计算机可读媒体的示例包括电信号(经由有线或无线连接传送)以及计算机可读存储介质。关于计算机可读存储媒体的示例包括但不局限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储设备、磁介质(例如内部硬盘和可拆卸磁盘)、磁光介质、以及光介质(例如CD-ROM碟片和数字多用途碟片(DVD))。与软件关联的处理器可以用于实施在WTRU、UE、终端、基站、RNC或任何计算机主机的射频收发信机。

Claims (10)

1.一种无线发射/接收单元WTRU,包括:
处理器,被配置为:
接收第一逻辑信道配置信息,其中所述第一逻辑信道配置信息指示所述WTRU是否被允许发送至小区,其中被允许发送至所述小区包括被配置为将逻辑信道与所述小区相关联以用于传输;
确定第一数据可用于传输;
确定所述第一逻辑信道配置信息指示所述WTRU被允许发送至所述小区;
基于所述第一逻辑信道配置信息指示所述WTRU被允许发送至所述小区的所述确定和所述第一数据可用于传输的所述确定,使用所关联的逻辑信道将所述第一数据发送至所述小区;
接收第二逻辑信道配置信息,其中所述第二逻辑信道配置信息指示所述WTRU是否被允许发送至所述小区;
确定第二数据可用于传输;
确定所述第二逻辑信道配置信息指示所述WTRU不被允许发送至所述小区;以及
基于所述第二逻辑信道配置信息指示所述WTRU不被允许发送至所述小区的所述确定,阻止使用所关联的逻辑信道将所述第二数据发送至所述小区。
2.根据权利要求1所述的WTRU,其中,所述第一逻辑信道配置信息指示所述WTRU被允许发送至的所述小区的标识。
3.根据权利要求1所述的WTRU,其中,所述第二逻辑信道配置信息指示所述WTRU不被允许发送至的所述小区的标识。
4.根据权利要求1所述的WTRU,其中,所述处理器还被配置为:
接收用于传输所述第一数据或所述第二数据的上行链路许可。
5.根据权利要求1所述的WTRU,其中,所述处理器被配置为:
基于所述第一逻辑信道配置信息,确定与所述小区相关联的所述逻辑信道以用于传输;以及
基于所确定的逻辑信道,生成介质访问控制协议数据单元。
6.一种由无线发射/接收单元WTRU实施的方法,包括:
接收第一逻辑信道配置信息,其中所述第一逻辑信道配置信息指示所述WTRU是否被允许发送至小区,其中被允许发送至所述小区包括被配置为将逻辑信道与所述小区相关联以用于传输;
确定第一数据可用于传输;
确定所述第一逻辑信道配置信息指示所述WTRU被允许发送至所述小区;
基于所述第一逻辑信道配置信息指示所述WTRU被允许发送至所述小区的所述确定和所述第一数据可用于传输的所述确定,使用所关联的逻辑信道将所述第一数据发送至所述小区;
接收第二逻辑信道配置信息,其中所述第二逻辑信道配置信息指示所述WTRU是否被允许发送至所述小区;
确定第二数据可用于传输;
确定所述第二逻辑信道配置信息指示所述WTRU不被允许发送至所述小区;以及
基于所述第二逻辑信道配置信息指示所述WTRU不被允许发送至所述小区的所述确定,阻止使用所关联的逻辑信道将所述第二数据发送至所述小区。
7.根据权利要求6所述的方法,其中,所述第一逻辑信道配置信息指示所述WTRU被允许发送至的所述小区的标识。
8.根据权利要求6所述的方法,其中,所述第二逻辑信道配置信息指示所述WTRU不被允许发送至的所述小区的标识。
9.根据权利要求6所述的方法,其中,所述方法还包括:
接收用于传输所述第一数据或所述第二数据的上行链路许可。
10.根据权利要求6所述的方法,其中,所述方法包括:
基于所述第一逻辑信道配置信息,确定与所述小区相关联的所述逻辑信道以用于传输;以及
基于所确定的逻辑信道,生成介质访问控制协议数据单元。
CN202010909170.7A 2015-01-28 2016-01-28 无线发射/接收单元(wtru)及方法 Active CN112134670B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010909170.7A CN112134670B (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)及方法

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201562108934P 2015-01-28 2015-01-28
US62/108,934 2015-01-28
US201562160924P 2015-05-13 2015-05-13
US62/160,924 2015-05-13
US201562204135P 2015-08-12 2015-08-12
US62/204,135 2015-08-12
CN201680007955.7A CN107431591B (zh) 2015-01-28 2016-01-28 用于无授权频带中的lte的上行链路操作的方法和装置
CN202010909170.7A CN112134670B (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)及方法
PCT/US2016/015464 WO2016123402A1 (en) 2015-01-28 2016-01-28 Uplink operation for lte in an unlicensed band

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680007955.7A Division CN107431591B (zh) 2015-01-28 2016-01-28 用于无授权频带中的lte的上行链路操作的方法和装置

Publications (2)

Publication Number Publication Date
CN112134670A CN112134670A (zh) 2020-12-25
CN112134670B true CN112134670B (zh) 2023-08-25

Family

ID=55410216

Family Applications (5)

Application Number Title Priority Date Filing Date
CN202010909177.9A Active CN112134671B (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)、其执行的方法和设备
CN202310994128.3A Pending CN117278181A (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)及方法
CN202010909170.7A Active CN112134670B (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)及方法
CN202311708305.3A Pending CN117955619A (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)、其执行的方法和设备
CN201680007955.7A Active CN107431591B (zh) 2015-01-28 2016-01-28 用于无授权频带中的lte的上行链路操作的方法和装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202010909177.9A Active CN112134671B (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)、其执行的方法和设备
CN202310994128.3A Pending CN117278181A (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)及方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202311708305.3A Pending CN117955619A (zh) 2015-01-28 2016-01-28 无线发射/接收单元(wtru)、其执行的方法和设备
CN201680007955.7A Active CN107431591B (zh) 2015-01-28 2016-01-28 用于无授权频带中的lte的上行链路操作的方法和装置

Country Status (5)

Country Link
US (5) US10171276B2 (zh)
EP (2) EP3251277A1 (zh)
KR (3) KR20190143472A (zh)
CN (5) CN112134671B (zh)
WO (1) WO2016123402A1 (zh)

Families Citing this family (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174759A1 (ko) * 2014-05-15 2015-11-19 엘지전자 주식회사 비면허 대역에서의 파워 제어
WO2016123402A1 (en) * 2015-01-28 2016-08-04 Interdigital Patent Holdings, Inc. Uplink operation for lte in an unlicensed band
CN106211345B (zh) * 2015-01-29 2021-04-27 北京三星通信技术研究有限公司 上行控制信号的发送方法及装置
WO2016121672A1 (ja) * 2015-01-30 2016-08-04 京セラ株式会社 ユーザ端末及び基地局
CN107409411B (zh) * 2015-02-19 2021-02-19 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
US10271371B2 (en) 2015-03-09 2019-04-23 Ofinno Technologies, Llc Control channel of a secondary cell in a timing advance group
US9992759B2 (en) * 2015-03-09 2018-06-05 Ofinno Technologies, Llc Downlink multicast channel and data channel in a wireless network
US9781712B2 (en) 2015-03-17 2017-10-03 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
US9930654B2 (en) * 2015-03-17 2018-03-27 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
CN107660348B (zh) * 2015-04-08 2021-08-13 交互数字专利控股公司 用于未许可频带中的lte操作的系统和方法
EP3281459B1 (en) * 2015-04-09 2020-04-29 LG Electronics Inc. Method for transmitting a power headroom reporting in a carrier aggregation with at least one scell operating in an unlicensed spectrum and a device therefor
US10756862B2 (en) * 2015-04-10 2020-08-25 Lg Electronics Inc. Method and device for controlling transmission of sounding reference signal in wireless access system supporting machine type communication
WO2016171419A1 (en) 2015-04-18 2016-10-27 Lg Electronics Inc. Method for allocating cell index for wlan network for lte-wlan aggregation system and a device therefor
US10225859B2 (en) * 2015-05-14 2019-03-05 Qualcomm Incorporated Techniques for uplink transmission management
DE102015009779B4 (de) * 2015-07-27 2021-08-12 Apple Inc. Leistungsoptimierung für Kanalzustandsmeldungen in einem drahtlosen Kommunikationsnetz
CN107079488B (zh) * 2015-08-10 2020-05-08 华为技术有限公司 一种随机接入方法及装置
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
US20180220439A1 (en) 2015-08-21 2018-08-02 Lg Electronics Inc. Method for transmitting sidelink data in a d2d communication system and device therefor
WO2017039283A1 (ko) * 2015-08-31 2017-03-09 삼성전자 주식회사 서비스들 및 디바이스들에 따라 구성가능한 무선 프로토콜 구현하기 위한 방법 및 장치
CN107211362B (zh) * 2015-09-10 2020-12-04 华为技术有限公司 一种数据传输方法、终端及ran设备
US10200164B2 (en) 2015-09-22 2019-02-05 Comcast Cable Communications, Llc Carrier activation in a multi-carrier wireless network
US10172124B2 (en) 2015-09-22 2019-01-01 Comcast Cable Communications, Llc Carrier selection in a multi-carrier wireless network
EP3355501A4 (en) * 2015-09-24 2019-04-24 Fujitsu Limited CONFIGURATION METHODS FOR TRANSMISSION TIME INTERVAL AND DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM
JP6457102B2 (ja) * 2015-09-24 2019-01-23 株式会社Nttドコモ ユーザ端末及び無線通信方法
CA3000508C (en) 2015-10-17 2019-01-22 Ofinno Technologies, Llc Control channel configuration in partial and full subframes
WO2017105151A1 (en) * 2015-12-18 2017-06-22 Lg Electronics Inc. Method and apparatus for allocating common sps resource across multiple cells in wireless communication system
KR20170078530A (ko) * 2015-12-29 2017-07-07 한국전자통신연구원 비면허 대역의 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 장치, 그리고 사운딩 참조 신호의 전송을 트리거하는 방법 및 장치
US11240842B2 (en) * 2016-01-08 2022-02-01 Acer Incorporated Device and method of handling transmission/reception for serving cell
WO2017123356A1 (en) * 2016-01-12 2017-07-20 Intel IP Corporation Dynamic harq configuration and bitmap based ack/nack
US10892857B2 (en) * 2016-01-14 2021-01-12 Telefonaktiebolaget Lm Ericsson (Publ) HARQ transmission of transport blocks
CN106992804A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 一种探测参考信号的发送方法和装置
CN107018565A (zh) * 2016-01-28 2017-08-04 索尼公司 无线通信系统以及无线通信系统中的装置和方法
US10750391B2 (en) * 2016-01-29 2020-08-18 Ofinno, Llc Transmission power in a wireless device and wireless network
US10469209B2 (en) 2016-02-01 2019-11-05 Ofinno, Llc Downlink control information in a wireless device and wireless network
US10187187B2 (en) 2016-02-01 2019-01-22 Ofinno Technologies, Llc Sounding reference signal configuration in a wireless network
US10542529B2 (en) * 2016-02-01 2020-01-21 Ofinno, Llc Power control in a wireless device and wireless network
US10397879B2 (en) 2016-02-01 2019-08-27 Ofinno, Llc Uplink channel transmission in a wireless device and wireless network
US10477528B2 (en) 2016-02-02 2019-11-12 Ofinno, Llc Downlink control information in a wireless device and wireless network
US10548121B2 (en) 2016-02-03 2020-01-28 Comcast Cable Communications, Llc Downlink and uplink channel transmission and monitoring in a wireless network
US10511413B2 (en) * 2016-02-03 2019-12-17 Ofinno, Llc Hybrid automatic repeat requests in a wireless device and wireless network
WO2017132927A1 (zh) * 2016-02-04 2017-08-10 广东欧珀移动通信有限公司 用于在非授权载波上传输上行信息的方法和装置
US20170231005A1 (en) * 2016-02-04 2017-08-10 Ofinno Technologies, Llc Channel access counter in a wireless network
US10880921B2 (en) 2016-02-04 2020-12-29 Comcast Cable Communications, Llc Detection threshold for a wireless network
US10805953B2 (en) * 2016-02-04 2020-10-13 Ofinno, Llc Channel access procedures in a wireless network
US10420139B2 (en) 2016-02-05 2019-09-17 Qualcomm Incorporated Uplink scheduling for license assisted access
US10827471B2 (en) 2016-02-16 2020-11-03 Qualcomm Incorporated Uplink procedures on a wireless communication medium
US10856327B2 (en) * 2016-03-15 2020-12-01 Ofinno, Llc Energy detection threshold in a wireless device and wireless network
US10298374B2 (en) 2016-03-27 2019-05-21 Ofinno Technologies, Llc Channel state information transmission in a wireless network
KR102205999B1 (ko) * 2016-03-29 2021-01-21 오피노 엘엘씨 무선 네트워크에서의 음향 기준 신호 전송
JP2019514274A (ja) 2016-03-30 2019-05-30 アイディーエーシー ホールディングス インコーポレイテッド 5gフレキシブル無線アクセス技術におけるスタンドアロンl2処理および制御アーキテクチャ
CN115209484A (zh) * 2016-03-30 2022-10-18 Idac控股公司 在无线系统中处理用户平面
EP3761722A1 (en) 2016-04-08 2021-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Uplink power control on unlicensed carriers
EP3412092A1 (en) * 2016-04-12 2018-12-12 Motorola Mobility LLC Scheduling of transmission time intervals
JP2019110359A (ja) * 2016-04-28 2019-07-04 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10602529B2 (en) 2016-04-29 2020-03-24 Ofinno, Llc Resource allocation in a wireless device
US10334624B2 (en) * 2016-04-29 2019-06-25 Ofinno, Llc Allocation of licensed assisted access resources in a wireless device
US10200992B2 (en) 2016-05-06 2019-02-05 Comcast Cable Communications, Llc Uplink signal starting position in a wireless device and wireless network
US10506662B2 (en) * 2016-05-10 2019-12-10 Qualcomm Incorporated Internet-of-Things design for unlicensed spectrum
GB2550200B (en) * 2016-05-13 2021-08-04 Tcl Communication Ltd Methods and devices for supporting access to unlicensed radio resources in wireless communication systems
US10219295B2 (en) * 2016-05-13 2019-02-26 Nokia Solutions And Networks Oy Triggering of reference signals and control signaling
WO2017195895A1 (ja) * 2016-05-13 2017-11-16 京セラ株式会社 基地局及び無線端末
US10383165B2 (en) * 2016-06-03 2019-08-13 Ofinno, Llc Uplink resource allocation in a wireless device and wireless network
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US10158467B2 (en) * 2016-07-31 2018-12-18 Lg Electronics Inc. Method and apparatus for transmitting uplink data based on hybrid beamforming in a wireless communication system
CN107682923B (zh) * 2016-08-01 2023-05-12 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备
US10687319B2 (en) 2016-08-08 2020-06-16 Comcast Cable Communications, Llc Group power control for a secondary cell
US10178668B2 (en) * 2016-08-08 2019-01-08 Qualcomm Incorporated Periodic and aperiodic CSI reporting procedures for enhanced licensed assisted access
US10356733B2 (en) * 2016-08-11 2019-07-16 Qualcomm Incorporated Distributed joint access for unlicensed sidelink
CN109039558B (zh) 2016-08-12 2020-02-14 华为技术有限公司 数据传输的方法及设备
US10448295B2 (en) * 2016-08-12 2019-10-15 Lg Electronics Inc. Method and apparatus for performing user equipment autonomous resource reselection based on counter in wireless communication system
US11234220B2 (en) * 2016-10-05 2022-01-25 Nokia Solutions And Networks Oy Allocation of resources in physical uplink control channels
US11147062B2 (en) 2016-10-14 2021-10-12 Comcast Cable Communications, Llc Dual connectivity power control for wireless network and wireless device
WO2018072062A1 (zh) * 2016-10-17 2018-04-26 广东欧珀移动通信有限公司 信息传输方法和装置
US20180124831A1 (en) 2016-10-29 2018-05-03 Ofinno Technologies, Llc Dual connectivity scheduling request for wireless network and wireless device
US10848977B2 (en) 2016-11-02 2020-11-24 Comcast Cable Communications, Llc Dual connectivity with licensed assisted access
CN108023708B (zh) * 2016-11-03 2022-09-13 中兴通讯股份有限公司 一种信息发送方法、装置、系统及相关设备
CN106797283B (zh) * 2016-11-11 2020-11-13 北京小米移动软件有限公司 传输、获取上行harq反馈信息的方法及装置
KR20190092418A (ko) * 2016-12-07 2019-08-07 퀄컴 인코포레이티드 자율적인 업링크를 위한 제어 채널 구성 및 타이밍
US10681738B2 (en) * 2016-12-16 2020-06-09 Ofinno, Llc Random access in a wireless device and wireless network
US10321505B2 (en) * 2016-12-23 2019-06-11 Ofinno, Llc Dual connectivity based on listen before talk information
JP6976337B2 (ja) 2017-01-07 2021-12-08 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおける端末のアップリンク制御チャネル送信方法及び前記方法を利用する通信装置
US10784996B2 (en) 2017-01-16 2020-09-22 Nokia Technologies Oy HARQ feedback on grant-less UL
WO2018132978A1 (en) * 2017-01-18 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for reconfiguring sounding resources
US10750527B2 (en) * 2017-02-03 2020-08-18 Ntt Docomo, Inc. User terminal and radio communication method
US10849022B2 (en) * 2017-03-17 2020-11-24 Ofinno, Llc Cell selection of inactive state wireless device
EP4123914A1 (en) * 2017-03-23 2023-01-25 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
CN108631918B (zh) * 2017-03-24 2021-02-26 华为技术有限公司 数据传输的方法和装置
US10638501B2 (en) * 2017-03-24 2020-04-28 Qualcomm Incorporated Opportunistic uplink transmission
US10454644B2 (en) * 2017-03-24 2019-10-22 Qualcomm Incorporated Techniques for multi-cluster uplink transmissions
KR102295941B1 (ko) * 2017-03-24 2021-08-31 노키아 테크놀로지스 오와이 비면허 스펙트럼 상에서의 업링크 할당
EP3910865B1 (en) 2017-05-01 2024-03-13 LG Electronics Inc. Sounding method for terminal in wireless communication system and apparatus for said sounding method
CN110612753B (zh) * 2017-05-05 2022-07-01 Lg电子株式会社 无线通信系统中的功率余量报告方法及其设备
CN109152017B (zh) * 2017-06-16 2021-02-05 华为技术有限公司 一种传输块大小的确定方法和装置
EP3606203B1 (en) 2017-07-24 2022-06-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for data transmission, terminal device and network device
WO2019032855A1 (en) * 2017-08-11 2019-02-14 Intel IP Corporation CONTROL SIGNALING FOR SURFACE REFERENCE SIGNAL (SRS)
US11277828B2 (en) * 2017-08-11 2022-03-15 Guangdong Oppo Mobile Method, device and system for resource allocation, and computer-readable storage medium
EP3552440B1 (en) 2017-09-07 2020-05-13 Ofinno, LLC Transmission power control method and apparatus
US11419097B2 (en) * 2017-09-19 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for communication on multiple channels
WO2019074437A1 (en) * 2017-10-12 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) METHODS AND APPARATUS FOR TRIGGERING CONTROL INFORMATION IN WIRELESS NETWORKS
CN111418176B (zh) * 2017-11-27 2023-03-14 瑞典爱立信有限公司 Mac层与phy层之间用于传输的通信的装置和方法
BR112020010788A2 (pt) * 2017-12-01 2020-11-24 Telefonaktiebolaget Lm Ericsson (Publ) métodos realizados por um dispositivo sem fio e por um nó de rede, dispositivo sem fio, produto de programa de computador, e, nó de rede
CN117042194A (zh) 2018-01-10 2023-11-10 交互数字专利控股公司 用于新型无线电操作的信道接入方法和先听后说解决方案
CN110035529B (zh) * 2018-01-12 2021-07-16 华为技术有限公司 一种资源配置的方法和通信装置
CN110049559B (zh) * 2018-01-17 2021-11-12 维沃移动通信有限公司 侦听指示方法、终端及网络设备
US11765774B2 (en) 2018-01-19 2023-09-19 Interdigital Patent Holdings, Inc. Physical random access for NR-U
US11265852B2 (en) 2018-02-09 2022-03-01 Qualcomm Incorporated Uplink control information reporting
US11044675B2 (en) * 2018-02-13 2021-06-22 Idac Holdings, Inc. Methods, apparatuses and systems for adaptive uplink power control in a wireless network
US11234266B2 (en) * 2018-02-15 2022-01-25 Lg Electronics Inc. Method and apparatus for managing uplink transmission collision on shared resources in wireless communication system
CN110324846B (zh) * 2018-03-28 2021-09-03 维沃移动通信有限公司 一种上行传输取消指令的监听方法及终端
US10772091B2 (en) * 2018-03-28 2020-09-08 Qualcomm Incorporated Resource coordination with acknowledgement of scheduling grant
CN110380828B (zh) * 2018-04-13 2021-05-07 维沃移动通信有限公司 Sidelink的操作方法和终端
US11026218B2 (en) * 2018-04-16 2021-06-01 Qualcomm Incorporated Indication on joint multi-transmission point transmission in new radio system
CN112369103A (zh) * 2018-05-08 2021-02-12 Idac控股公司 用于无线系统中的逻辑信道优先级排序和业务成形的方法
US11470591B2 (en) * 2018-05-10 2022-10-11 Qualcomm Incorporated Direct transport block size specification
US20210274555A1 (en) * 2018-06-19 2021-09-02 Idac Holdings, Inc. Methods, apparatus and systems for system access in unlicensed spectrum
CN111295921A (zh) 2018-06-20 2020-06-16 Oppo广东移动通信有限公司 用于物理随机接入信道传输的信道接入方法、装置和程序
FR3083408B1 (fr) * 2018-06-28 2020-09-18 Sagemcom Energy & Telecom Sas Procede permettant de transporter des trames lora sur un reseau cpl.
US11943652B2 (en) * 2018-06-28 2024-03-26 Interdigital Patent Holdings, Inc. Prioritization procedures for NR V2X sidelink shared channel data transmission
US11464007B2 (en) 2018-07-17 2022-10-04 Lg Electronics Inc. Method and device for determining TBS in NR V2X
CN113507747B (zh) 2018-08-08 2023-09-01 中兴通讯股份有限公司 信息发送和接收方法、设备和存储介质
WO2020032724A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 하향링크 신호 수신 방법 및 상기 방법을 이용하는 단말
US10827444B2 (en) * 2018-08-13 2020-11-03 Commscope Technologies Llc Method and system for determining move lists for shared access systems including a time domain duplexing system
CN209462415U (zh) * 2018-09-07 2019-10-01 Oppo广东移动通信有限公司 移动终端
WO2020064538A1 (en) * 2018-09-26 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Enhancement of logical channel prioritization in nr-u
US11265887B2 (en) * 2018-09-28 2022-03-01 Qualcomm Incorporated Measurement report on user equipment clear channel assessment status
CN112771806A (zh) * 2018-09-28 2021-05-07 华为技术有限公司 用于在非授权频谱中进行配置授权传输的资源分配
US11956103B2 (en) 2018-10-31 2024-04-09 Lg Electronics Inc. Method for transmitting and receiving SRS in wireless communication system, and device for same
US11129102B2 (en) * 2018-11-02 2021-09-21 Samsung Electronics Co., Ltd Method and system to reduce user equipment battery consumption and efficiently utilize uplink HARQ memory
KR20200050849A (ko) 2018-11-02 2020-05-12 삼성전자주식회사 무선 통신 시스템에서 무선 자원 할당을 위한 방법 및 장치
WO2020091561A1 (en) * 2018-11-02 2020-05-07 Samsung Electronics Co., Ltd. Method and device for radio resource allocation in wireless communication system
US20220131731A1 (en) * 2019-01-11 2022-04-28 Lg Electronics Inc. Method and device for transmitting and receiving wireless signals in wireless communication system
WO2020146964A1 (en) * 2019-01-14 2020-07-23 Qualcomm Incorporated Scheduling of multiple transport blocks for grant-free uplink transmission
US11362770B2 (en) * 2019-01-15 2022-06-14 Qualcomm Incorporated Trigger retransmission of a feedback in unlicensed spectrum
CN111491392B (zh) * 2019-01-29 2022-05-24 华为技术有限公司 通信方法及终端设备、接入网设备
US20220060292A1 (en) * 2019-01-30 2022-02-24 Lg Electronics Inc. Determination of maximum number of uplink retransmissions
WO2020170043A2 (en) * 2019-02-22 2020-08-27 Lenovo (Singapore) Pte Ltd Autonomously triggering retransmission of data
US11425705B2 (en) 2019-02-28 2022-08-23 Electronics And Telecommunication Research Institute Method and apparatus for transmitting and receiving control information in communication system supporting unlicensed band
WO2020180463A1 (en) * 2019-03-01 2020-09-10 Commscope Technologies Llc Transmit power control in a c-ran
CN113366791B (zh) * 2019-03-28 2023-04-04 捷开通讯(深圳)有限公司 传输抢占
JP7279186B2 (ja) * 2019-04-02 2023-05-22 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるサイドリンクチャネルと関連した情報を送信する方法及び装置
EP3949649A4 (en) * 2019-04-04 2022-10-26 Nokia Technologies Oy INDICATION OF DIRECT ACCESS RESPONSE TRANSMISSION
US20220225410A1 (en) * 2019-04-30 2022-07-14 Nokia Technologies Oy Random access message retransmission in unlicensed band
CN112118072B (zh) * 2019-06-19 2023-05-02 大唐联仪科技有限公司 上行prb盲检方法、装置、电子设备和存储介质
US20220264349A1 (en) * 2019-07-11 2022-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods and Devices for Wireless Communication
US11606815B2 (en) 2019-07-15 2023-03-14 Qualcomm Incorporated Random access channel transmissions for frame based equipment systems
US11671970B2 (en) * 2019-08-07 2023-06-06 Qualcomm Incorporated LCP restriction enhancement
US11924767B2 (en) * 2019-08-08 2024-03-05 Qualcomm Incorporated Sidelink closed-loop transmit power control command processing
US11588595B2 (en) * 2019-08-23 2023-02-21 Qualcomm Incorporated Sounding reference signal and downlink reference signal association in a power saving mode
WO2021040595A1 (en) * 2019-08-26 2021-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Collision handling of configured grant based autonomous uplink transmissions
US11653386B2 (en) * 2019-09-10 2023-05-16 Qualcomm Incorporated Indication of listen-before-talk configuration for uplink communications
CN110708765A (zh) * 2019-10-15 2020-01-17 中兴通讯股份有限公司 上行控制信息复用方法和装置
WO2021077392A1 (en) * 2019-10-25 2021-04-29 Qualcomm Incorporated Techniques for determining feedback timing capability in sidelink wireless communications
ES2926058T3 (es) 2019-10-31 2022-10-21 Asustek Comp Inc Método y aparato para manejar la transmisión de retroalimentación de dispositivo a dispositivo en un sistema de comunicación inalámbrica
US11153885B2 (en) * 2019-12-04 2021-10-19 Semiconductor Components Industries, Llc Medium-based transmission parameter adaptation
US11337095B2 (en) * 2020-01-03 2022-05-17 Qualcomm Incorporated Forward-looking channel state information prediction and reporting
WO2021098060A1 (en) 2020-02-14 2021-05-27 Zte Corporation Method for reference signal configuration
US11438960B2 (en) * 2020-03-29 2022-09-06 PanPsy Technologies, LLC Enhanced power saving processes
CN113541901A (zh) * 2020-04-22 2021-10-22 维沃移动通信有限公司 非周期srs的时隙偏移指示方法和设备
EP4144035A1 (en) * 2020-05-15 2023-03-08 Mediatek Inc. User equipment and communication methods for semi-static dl scheduling
US11736975B2 (en) * 2020-05-15 2023-08-22 Qualcomm Incorporated Buffer status report transmissions in non-terrestrial networks
US20220021488A1 (en) * 2020-07-20 2022-01-20 Qualcomm Incorporated Switching between harq feedback granularities
KR102609777B1 (ko) * 2020-07-30 2023-12-06 엘지전자 주식회사 사운딩 참조 신호를 송수신하는 방법 및 이를 위한 장치
CN111970765B (zh) * 2020-08-10 2022-05-31 杭州电子科技大学 一种大规模终端接入方法及系统
WO2022041184A1 (en) * 2020-08-31 2022-03-03 Qualcomm Incorporated Priority based management of unicast and multicast hybrid automatic repeat request (harq) processes
US20230328786A1 (en) * 2020-11-10 2023-10-12 Qualcomm Incorporated Sounding reference signal based uplink to downlink channel occupancy time sharing
CN114844604A (zh) * 2021-02-01 2022-08-02 中国移动通信有限公司研究院 一种非周期探测参考信号的触发、发送方法、终端及设备
WO2023010257A1 (zh) * 2021-08-02 2023-02-09 Oppo广东移动通信有限公司 侧行通信方法、装置、设备及存储介质
WO2024073990A1 (en) * 2023-01-20 2024-04-11 Lenovo (Beijing) Ltd. Beam report with ai capability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669401A (zh) * 2007-03-01 2010-03-10 株式会社Ntt都科摩 基站装置和通信控制方法
CN102474486A (zh) * 2009-08-21 2012-05-23 Lg电子株式会社 在上行链路频率上发送数据块的装置和方法
CN102857872A (zh) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 一种集群数据的传输方法及网络侧设备
EP2579490A2 (en) * 2010-06-04 2013-04-10 LG Electronics Inc. Method of terminal transmitting sounding reference signal on the basis of aperiodic sounding reference signal triggering and method for controlling uplink transmission power to transmit aperiodic sounding reference signal
CN104144484A (zh) * 2013-05-10 2014-11-12 上海贝尔股份有限公司 支持多连接的移动通信上行系统中构建数据单元的方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294815B1 (ko) 2009-05-15 2013-08-08 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
KR101785997B1 (ko) * 2009-10-30 2017-10-17 주식회사 골드피크이노베이션즈 무선통신 시스템에서 요소 반송파 집합 정보 전송방법 및 그 기지국, 단말의 수신방법
KR101781854B1 (ko) 2010-02-04 2017-09-26 엘지전자 주식회사 사운딩 참조 신호를 전송하는 방법 및 장치
US8848520B2 (en) * 2010-02-10 2014-09-30 Qualcomm Incorporated Aperiodic sounding reference signal transmission method and apparatus
KR101327131B1 (ko) * 2010-02-12 2013-11-07 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
KR101791266B1 (ko) * 2010-02-12 2017-10-30 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
WO2011142608A2 (ko) * 2010-05-12 2011-11-17 엘지전자 주식회사 무선통신 시스템에서 srs 트리거링 기반 srs 전송 방법
CN102404074B (zh) 2010-09-17 2014-06-18 电信科学技术研究院 Tdd系统中的非周期srs的传输方法和设备
JP4938123B1 (ja) 2010-10-04 2012-05-23 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
US9603169B2 (en) 2010-11-05 2017-03-21 Pantech Inc., Ltd. Method and device for transmitting and receiving aperiodic reference signal
WO2012077971A2 (ko) * 2010-12-07 2012-06-14 엘지전자 주식회사 무선 통신 시스템에서 단말 간의 통신 방법 및 장치
GB2477649B (en) * 2011-03-31 2012-01-11 Renesas Mobile Corp Multiplexing logical channels in mixed licensed and unlicensed spectrum carrier aggregation
CN103875187B (zh) * 2011-06-02 2016-01-06 美国博通公司 在免授权/共享频带中的跳频
US8705398B2 (en) * 2011-09-12 2014-04-22 Broadcom Corporation Mechanism for signaling buffer status information
US9258832B2 (en) * 2011-10-11 2016-02-09 Lg Electronics Inc. Method and device for transmitting data in wireless communication system
WO2013109060A1 (ko) 2012-01-17 2013-07-25 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 장치
TWI695604B (zh) * 2012-01-24 2020-06-01 美商內數位專利控股公司 無線傳輸/接收單元、在無線傳輸/接收單元中實施的方法以及網路節點
KR20130087957A (ko) 2012-01-30 2013-08-07 삼성전자주식회사 협력 통신 시스템에서 사운딩 레퍼런스 신호의 전송 방법 및 장치
US9184886B2 (en) 2012-08-10 2015-11-10 Blackberry Limited TD LTE secondary component carrier in unlicensed bands
US9980308B2 (en) * 2013-04-02 2018-05-22 Lg Electronics Inc. Method for performing a logical channel prioritization and communication device thereof
US20150063151A1 (en) * 2013-09-04 2015-03-05 Qualcomm Incorporated Opportunistic supplemental downlink in unlicensed spectrum
US9949275B2 (en) * 2013-10-01 2018-04-17 Qualcomm Incorporated Physical uplink control management in LTE/LTE-A systems with unlicensed spectrum
WO2015113252A1 (zh) * 2014-01-29 2015-08-06 华为技术有限公司 数据的处理方法和装置
WO2015123816A1 (zh) * 2014-02-19 2015-08-27 华为技术有限公司 释放非授权频谱后的数据处理方法及用户设备
US9609666B2 (en) * 2014-03-03 2017-03-28 Futurewei Technologies, Inc. System and method for reserving a channel for coexistence of U-LTE and Wi-Fi
JP6388780B2 (ja) 2014-03-19 2018-09-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US9979597B2 (en) * 2014-04-04 2018-05-22 Qualcomm Incorporated Methods and apparatus for assisted radio access technology self-organizing network configuration
US9578657B2 (en) * 2014-04-11 2017-02-21 Realtek Semiconductor Corporation Wireless communication method and device
WO2015161516A1 (zh) * 2014-04-25 2015-10-29 华为技术有限公司 一种基站、用户设备、资源获取方法和系统
CN106134279B (zh) * 2014-04-28 2019-10-25 英特尔Ip公司 通话前收听协议的选择
US9813931B2 (en) * 2014-07-29 2017-11-07 University Of Ottawa Adaptive packet preamble adjustment
US20160050667A1 (en) * 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands
WO2016028103A1 (ko) 2014-08-20 2016-02-25 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN105356967B (zh) * 2014-08-22 2020-08-11 中兴通讯股份有限公司 一种实现数据处理的方法、基站及终端
KR102247085B1 (ko) * 2014-09-01 2021-04-30 삼성전자주식회사 비인가 주파수 대역을 사용하는 이동통신 시스템에서의 통신 기법
WO2016036081A1 (ko) * 2014-09-05 2016-03-10 엘지전자 주식회사 비면허 대역 상에서 데이터를 전송하기 위한 방법 및 그 기지국
US10560891B2 (en) * 2014-09-09 2020-02-11 Blackberry Limited Medium Access Control in LTE-U
CN106717086B (zh) * 2014-09-12 2021-05-18 日本电气株式会社 无线电站、无线电终端、及其方法
EP3193525B1 (en) * 2014-09-12 2021-02-24 Nec Corporation Wireless station, wireless terminal and method for terminal measurement
WO2016048212A1 (en) * 2014-09-26 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) First communication device, second communication device and methods therein, for sending and receiving, respectively, an indication of a subframe type
US10980045B2 (en) * 2014-10-02 2021-04-13 Qualcomm Incorporated Techniques for managing power on an uplink component carrier transmitted over a shared radio frequency spectrum band
EP3202210A1 (en) * 2014-10-03 2017-08-09 Telefonaktiebolaget LM Ericsson (publ) Handling physical random access channel transmissions in multi-carrier scenarios
EP3213550A4 (en) * 2014-10-30 2018-06-13 LG Electronics Inc. Method and apparatus for configuring radio bearer types for unlicensed carriers in wireless communication system
CN105636231B (zh) * 2014-11-05 2019-01-25 电信科学技术研究院 一种信道监听方法及设备
WO2016072908A1 (en) * 2014-11-06 2016-05-12 Telefonaktiebolaget L M Ericsson (Publ) Dynamic listen before talk in license-assisted access
EP3217701B1 (en) * 2014-11-06 2020-12-30 Sharp Kabushiki Kaisha Terminal device, base station device, and method
KR102253866B1 (ko) * 2014-11-07 2021-05-20 삼성전자주식회사 비인가 주파수 대역을 사용하는 이동통신 시스템에서의 통신 방법 및 이를 위한 장치
CN104363598B (zh) * 2014-11-25 2018-03-23 电信科学技术研究院 一种drb映射方法及装置
CN107439034B (zh) * 2014-12-01 2020-10-27 三星电子株式会社 无线通信系统中支持授权辅助接入技术的方法和装置
EP3240346B1 (en) * 2014-12-25 2021-09-01 Nec Corporation Wireless terminal, wireless station, methods carried out by same, program and system
CA2974656A1 (en) 2015-01-22 2016-07-28 Lg Electronics Inc. Carrier aggregation method performed by terminal in wireless communication system and terminal using same method
CN105898770B (zh) * 2015-01-26 2020-12-11 中兴通讯股份有限公司 一种空频道检测方法及节点设备
US10531486B2 (en) 2015-01-27 2020-01-07 Lg Electronics Inc. Method for transmitting uplink signal and device therefor
WO2016123402A1 (en) * 2015-01-28 2016-08-04 Interdigital Patent Holdings, Inc. Uplink operation for lte in an unlicensed band
KR102454897B1 (ko) * 2015-01-29 2022-10-17 삼성전자주식회사 비면허 대역을 이용하는 무선 통신 시스템에서 통신 방법 및 장치
US10397794B2 (en) * 2015-01-29 2019-08-27 Blackberry Limited Communication in unlicensed spectrum
US20160226632A1 (en) * 2015-01-29 2016-08-04 Intel IP Corporation Carrier aggregation enhancements for unlicensed spectrum and 5g

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669401A (zh) * 2007-03-01 2010-03-10 株式会社Ntt都科摩 基站装置和通信控制方法
CN102474486A (zh) * 2009-08-21 2012-05-23 Lg电子株式会社 在上行链路频率上发送数据块的装置和方法
EP2579490A2 (en) * 2010-06-04 2013-04-10 LG Electronics Inc. Method of terminal transmitting sounding reference signal on the basis of aperiodic sounding reference signal triggering and method for controlling uplink transmission power to transmit aperiodic sounding reference signal
CN102857872A (zh) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 一种集群数据的传输方法及网络侧设备
CN104144484A (zh) * 2013-05-10 2014-11-12 上海贝尔股份有限公司 支持多连接的移动通信上行系统中构建数据单元的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"R2-092947 reordering depth for dual cell with MIMO".3GPP tsg_ran\WG2_RL2.2009,全文. *

Also Published As

Publication number Publication date
US20220368574A1 (en) 2022-11-17
EP4145757A1 (en) 2023-03-08
US20190075001A1 (en) 2019-03-07
KR20210102994A (ko) 2021-08-20
CN112134671A (zh) 2020-12-25
US11743079B2 (en) 2023-08-29
CN112134670A (zh) 2020-12-25
KR20190143472A (ko) 2019-12-30
US10171276B2 (en) 2019-01-01
EP3251277A1 (en) 2017-12-06
KR102612331B1 (ko) 2023-12-08
KR102059668B1 (ko) 2020-02-11
US20200235965A1 (en) 2020-07-23
CN112134671B (zh) 2023-12-29
KR20170108078A (ko) 2017-09-26
WO2016123402A1 (en) 2016-08-04
US11502882B2 (en) 2022-11-15
CN107431591B (zh) 2020-09-25
CN107431591A (zh) 2017-12-01
CN117955619A (zh) 2024-04-30
US11405246B2 (en) 2022-08-02
US20230353432A1 (en) 2023-11-02
US20180048498A1 (en) 2018-02-15
CN117278181A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN112134670B (zh) 无线发射/接收单元(wtru)及方法
US20220150934A1 (en) Handling user plane in wireless systems
KR102519401B1 (ko) 물리적 레이어 이동성 프로시져를 수행하기 위한 방법 및 장치
CN107660348B (zh) 用于未许可频带中的lte操作的系统和方法
US10111190B2 (en) Latency reduction in LTE systems
JP6721506B2 (ja) 全二重無線システムにおける干渉管理のための方法、装置、およびシステム
TW202106091A (zh) 在新無線電(nr)通訊中上鏈(ul)多工及優先方法及裝置
TW202203678A (zh) 無線傳輸/接收單元及由其所執行的方法
JP2015133743A (ja) コンテンションベースのアップリンクデータ送信のための方法および装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant