CN112133926A - Preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst - Google Patents
Preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst Download PDFInfo
- Publication number
- CN112133926A CN112133926A CN201910548100.0A CN201910548100A CN112133926A CN 112133926 A CN112133926 A CN 112133926A CN 201910548100 A CN201910548100 A CN 201910548100A CN 112133926 A CN112133926 A CN 112133926A
- Authority
- CN
- China
- Prior art keywords
- titanium carbide
- platinum
- graphene
- electrode catalyst
- nanosheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 193
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 title claims abstract description 177
- 239000002135 nanosheet Substances 0.000 title claims abstract description 143
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 115
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 86
- 239000003054 catalyst Substances 0.000 title claims abstract description 76
- 239000011165 3D composite Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 238000000502 dialysis Methods 0.000 claims abstract description 3
- 239000006185 dispersion Substances 0.000 claims description 35
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 28
- 239000011218 binary composite Substances 0.000 claims description 25
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 24
- 229910052700 potassium Inorganic materials 0.000 claims description 24
- 239000011591 potassium Substances 0.000 claims description 24
- 239000010410 layer Substances 0.000 claims description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 14
- 239000002244 precipitate Substances 0.000 claims description 14
- 239000006228 supernatant Substances 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000000047 product Substances 0.000 claims description 13
- -1 carbon-aluminum-titanium Chemical compound 0.000 claims description 10
- 239000002356 single layer Substances 0.000 claims description 10
- 239000011206 ternary composite Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000002525 ultrasonication Methods 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 239000012153 distilled water Substances 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 49
- 230000003197 catalytic effect Effects 0.000 abstract description 24
- 239000002131 composite material Substances 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 17
- 239000010936 titanium Substances 0.000 abstract description 17
- 239000002105 nanoparticle Substances 0.000 abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 5
- 231100000086 high toxicity Toxicity 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 150000003057 platinum Chemical class 0.000 abstract 1
- 239000012266 salt solution Substances 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- 239000000463 material Substances 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 239000002041 carbon nanotube Substances 0.000 description 6
- 229910021393 carbon nanotube Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910009818 Ti3AlC2 Inorganic materials 0.000 description 1
- 229910009819 Ti3C2 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000004769 chrono-potentiometry Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Catalysts (AREA)
Abstract
本发明提供了一种铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,涉及电极催化剂领域,包括以下步骤:首先用氟化锂和盐酸刻蚀碳铝钛并经超声处理获得碳化钛纳米片,然后将碳化钛纳米片超声分散在乙二醇溶液中,向其中加入氧化石墨烯,再次进行超声混合处理,随后加入铂盐溶液,搅拌使之充分混合,再进行水热反应,得到水凝胶状产物,经透析水洗处理后,冷冻干燥,获得铂/碳化钛纳米片/石墨烯三维复合电极催化剂。本发明以碳化钛纳米片及石墨烯为模板,在其表面沉积晶体铂纳米颗粒,制备出的复合电极催化剂具有三维多孔结构、高催化活性以及高抗毒性的优点。
The invention provides a method for preparing a platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst, and relates to the field of electrode catalysts. Titanium nanosheets, then ultrasonically disperse the titanium carbide nanosheets in ethylene glycol solution, add graphene oxide to it, perform ultrasonic mixing again, then add platinum salt solution, stir to fully mix, and then perform hydrothermal reaction, A hydrogel-like product is obtained, washed with water by dialysis, and freeze-dried to obtain a platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst. The invention uses titanium carbide nanosheets and graphene as templates, and deposits crystalline platinum nanoparticles on the surfaces thereof, and the prepared composite electrode catalyst has the advantages of three-dimensional porous structure, high catalytic activity and high toxicity resistance.
Description
技术领域technical field
本发明涉及一种电极催化剂的制备方法,具体地,涉及一种铂/碳化钛纳米片/石墨烯三 维复合电极催化剂的制备方法。The present invention relates to a preparation method of an electrode catalyst, in particular, to a preparation method of a platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst.
背景技术Background technique
随着当今世界能源危机和环境污染问题日益突出,开发高效、清洁的能源生产系统对于 现代社会的可持续发展具有重要的现实意义。直接甲醇燃料电池因其能量密度高、污染排放 少、结构简单、燃料易储存等特点而吸引了广泛的关注。金属铂是公认的催化甲醇氧化反应 最好的催化剂材料,但是铂高昂的价格和易中毒的特性在很大程度上阻碍了其大规模的商业 化应用。因此,合成既有高催化活性、高抗毒性等优异性能且成本相对低廉的新型复合铂基 催化剂,能够有效推动直接甲醇燃料电池的商业化进程。With the increasingly prominent problems of energy crisis and environmental pollution in today's world, the development of efficient and clean energy production systems is of great practical significance for the sustainable development of modern society. Direct methanol fuel cells have attracted extensive attention due to their high energy density, low pollution emissions, simple structure, and easy fuel storage. Metal platinum is recognized as the best catalyst material for methanol oxidation, but the high price and easy poisoning properties of platinum hinder its large-scale commercial application to a great extent. Therefore, the synthesis of new composite platinum-based catalysts with high catalytic activity, high anti-toxicity and other excellent properties and relatively low cost can effectively promote the commercialization of direct methanol fuel cells.
过渡金属碳化物或碳/氮化物MXene是二维材料家族的新成员,二维Ti3C2Tx纳米片,其 结构与石墨烯类似,具有良好的亲水性和独特的电化学性质。研究表明,Ti3C2Tx纳米片可以 作为载体材料来提高金属铂的利用效率,这主要是基于:(1)Ti3C2Tx纳米片具有大的比表 面积,且材料表面具有大量的-OH、-F官能团,这些官能团为贵金属颗粒的沉积提供了丰富 的生长位点;(2)Ti3C2Tx纳米片良好的导电性可以降低催化剂的电荷转移电阻,从而进一 步提升复合体系的电催化活性;(3)Ti3C2Tx纳米片可以调控金属铂的电子结构,提高其本 征的电催化活性,并增强金属铂对反应副产物(主要为CO)的抗中毒能力。目前为止,有 研究将铂纳米粒子直接负载于石墨烯或碳化钛纳米片表面来合成铂/石墨烯或铂/碳化钛纳米 片催化剂(Li Y,Gao W,et al.Catalytic performance of Ptnanoparticles on reduced graphene oxide for methanol electro-oxidation,Carbon,2010,48,1124-1130;Wang Y,Wang J,et al.Pt decorated Ti3C2 MXene forenhanced methanol oxidation reaction,Ceramics International,2019, 45,2411-2417),而采用石墨烯与碳化钛纳米片一同构筑三维复合载体并以之负载铂纳米粒 子的研究还未有报道。Transition metal carbides or carbon/nitride MXenes are a new member of the family of two-dimensional materials, two -dimensional Ti3C2Tx nanosheets, which are structurally similar to graphene, with good hydrophilicity and unique electrochemical properties. Studies have shown that Ti 3 C 2 T x nanosheets can be used as a carrier material to improve the utilization efficiency of metallic platinum, which is mainly based on: (1) Ti 3 C 2 T x nanosheets have a large specific surface area, and the surface of the material has a large number of -OH and -F functional groups, which provide abundant growth sites for the deposition of noble metal particles; ( 2 ) the good electrical conductivity of Ti3C2Tx nanosheets can reduce the charge transfer resistance of the catalyst, thereby further improving the composite The electrocatalytic activity of the system; (3) Ti 3 C 2 T x nanosheets can tune the electronic structure of metal platinum, improve its intrinsic electrocatalytic activity, and enhance the anti-poisoning of metal platinum to reaction by-products (mainly CO) ability. So far, some studies have directly supported Pt nanoparticles on the surface of graphene or titanium carbide nanosheets to synthesize platinum/graphene or platinum/titanium carbide nanosheet catalysts (Li Y, Gao W, et al. Catalytic performance of Ptnanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon, 2010, 48, 1124-1130; Wang Y, Wang J, et al. Pt decorated Ti 3 C 2 MXene forenhanced methanol oxidation reaction, Ceramics International, 2019, 45, 2411-2417) , and the use of graphene and titanium carbide nanosheets to build a three-dimensional composite carrier and to support platinum nanoparticles has not been reported yet.
中国专利号CN201710324833.7公开了一种二维碳化钛/碳纳米管负载铂颗粒复合材料的 制备方法,利用HF化学剥离Ti3AlC2中的铝原子层制备二维碳化钛,溶剂热法使得二维碳化 钛与MWNTs相结合,同时负载上铂纳米颗粒,即得Ti3C2/MWNTs-Pt纳米复合材料;然而 和其他二维片层材料结构相似,Ti3C2纳米片不同片层之间由于具有强烈的吸引力,易发生团 聚、堆叠现象,而且层间距较小,这些问题都极大地限制了电解液离子在材料中的传输速度, 且会导致部分的反应活性位点被覆盖而降低催化效率,严重地降低了Ti3C2/MWNTs-Pt纳米 复合材料的电化学活性。Chinese Patent No. CN201710324833.7 discloses a preparation method of a two-dimensional titanium carbide/carbon nanotube-supported platinum particle composite material. The two -dimensional titanium carbide is prepared by chemically exfoliating the aluminum atomic layer in Ti3AlC2 by using HF. The solvothermal method makes Two-dimensional titanium carbide is combined with MWNTs and loaded with platinum nanoparticles to obtain Ti 3 C 2 /MWNTs-Pt nanocomposites; however, similar to other two-dimensional sheet materials in structure, Ti 3 C 2 nanosheets have different lamellae. Due to the strong attraction between them, they are prone to agglomeration and stacking, and the interlayer spacing is small. These problems greatly limit the transport speed of electrolyte ions in the material, and will cause part of the reactive sites to be covered. While reducing the catalytic efficiency, the electrochemical activity of Ti 3 C 2 /MWNTs-Pt nanocomposites is seriously reduced.
因此,开发新的制备方法,减少复合体系中Ti3C2纳米片的堆叠,使其独特的优势在电 催化领域得到有效发挥成为了工作的重点和难点。Therefore, developing a new preparation method to reduce the stacking of Ti3C2 nanosheets in the composite system, so that its unique advantages can be effectively exerted in the field of electrocatalysis, has become the focus and difficulty of the work.
发明内容SUMMARY OF THE INVENTION
本发明为了解决现有技术中存在的上述缺陷和不足,提供了一种铂/碳化钛纳米片/石墨 烯三维复合电极催化剂的制备方法,该方法以碳化钛纳米片及石墨烯为模板,在其表面沉积 晶体铂纳米颗粒,制备出的复合电极催化剂具有三维多孔结构、高催化活性以及高抗毒性的 优点。In order to solve the above-mentioned defects and deficiencies in the prior art, the present invention provides a method for preparing a platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst. The method uses titanium carbide nanosheets and graphene as templates, and Crystal platinum nanoparticles are deposited on its surface, and the prepared composite electrode catalyst has the advantages of three-dimensional porous structure, high catalytic activity and high anti-toxicity.
铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,包括以下步骤:The preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst comprises the following steps:
S1、制备碳化钛纳米片分散液;S1, prepare titanium carbide nanosheet dispersion;
S2、向步骤S1的碳化钛纳米片分散液中加入氧化石墨烯,超声分散,得到碳化钛纳米 片/氧化石墨烯二元复合物溶液,所述氧化石墨烯与碳化钛的添加量按质量比计为1~9:1~9;S2, adding graphene oxide to the titanium carbide nanosheet dispersion liquid of step S1, and ultrasonically dispersing to obtain a titanium carbide nanosheet/graphene oxide binary composite solution, wherein the amount of graphene oxide and titanium carbide added is by mass ratio Calculated as 1~9: 1~9;
S3、向步骤S2的二元复合物溶液中加入氯亚铂酸钾溶液,搅拌均匀,得到氯亚铂酸钾/ 碳化钛纳米片/氧化石墨烯三元复合物溶液,所述氯亚铂酸钾溶液中铂元素与碳化钛纳米片/ 氧化石墨烯二元复合物的添加量按质量比计为1~20:1~20;S3, adding potassium chloroplatinite solution to the binary composite solution of step S2, stirring evenly, to obtain potassium chloroplatinite/titanium carbide nanosheet/graphene oxide ternary composite solution, the chloroplatinite The addition amount of platinum element and titanium carbide nanosheet/graphene oxide binary composite in the potassium solution is 1-20:1-20 in mass ratio;
S4、将步骤S3的三元复合物溶液进行水热反应得到水凝胶状产物,然后透析水洗,冷 冻干燥,即得到铂/碳化钛纳米片/石墨烯三维复合电极催化剂。S4, the ternary compound solution of step S3 is carried out hydrothermal reaction to obtain hydrogel-like product, then dialysate washing, freeze-drying, promptly obtain platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst.
本发明以碳化钛和氧化石墨烯作为载体,铂作为催化剂,通过化学刻蚀法生成二维碳化 钛,利用超声剥离二维碳化钛片层得到单层或少层碳化钛纳米片,再制备碳化钛纳米片和氧 化石墨烯的混合溶液,然后加入氯亚铂酸钾溶液,铂离子通过与碳化钛表面含氧官能团的离 子交换作用吸附在碳化钛表面,采用水热反应使得碳化钛纳米片与氧化石墨烯相结合,同时 随着温度的升高,铂离子被还原为铂纳米颗粒负载在碳化钛纳米片与氧化石墨烯形成的三维 多孔中。In the present invention, titanium carbide and graphene oxide are used as carriers, platinum is used as catalyst, two-dimensional titanium carbide is generated by chemical etching method, and the two-dimensional titanium carbide sheet is peeled off by ultrasonic to obtain single-layer or few-layer titanium carbide nano-sheets, and then carbonization is prepared. The mixed solution of titanium nanosheets and graphene oxide is then added with potassium chloroplatinite solution, and platinum ions are adsorbed on the surface of titanium carbide through ion exchange with oxygen-containing functional groups on the surface of titanium carbide. Graphene oxide is combined, and at the same time, with the increase of temperature, platinum ions are reduced to platinum nanoparticles supported in the three-dimensional pores formed by titanium carbide nanosheets and graphene oxide.
采用“自下而上”的合成方法将石墨烯与碳化钛纳米片一起自组装成三维多孔的杂化气凝 胶结构,石墨烯-碳化钛纳米片三维多孔网络骨架中的微孔通道形成相互连通的微孔网络,不 仅可以方便金属铂纳米粒子的分散,而且其特有的孔洞结构有利于形成更多的电化学活性位 点,也能够使得外部的电解液很容易地进入到材料内部,具有快速的离子转移能力和高效的 电化学活性表面,有利于获得更好的电化学性质。相比之下,直接堆叠的二维层状碳化钛严 紧致密的二维结构,极大地限制了电解液离子在材料中的快速传输,严重地降低了材料的催 化性能;因此,由二维层状材料构建的三维多孔网络骨架的电化学性能更优。A "bottom-up" synthesis method was used to self-assemble graphene and titanium carbide nanosheets together into a three-dimensional porous hybrid aerogel structure. The microporous channels in the three-dimensional porous network framework of graphene-titanium carbide nanosheets formed mutual The connected microporous network can not only facilitate the dispersion of platinum metal nanoparticles, but also its unique pore structure is conducive to the formation of more electrochemically active sites, and also enables the external electrolyte to easily enter the material. The fast ion transfer capability and efficient electrochemically active surface are beneficial to obtain better electrochemical properties. In contrast, the tight and dense 2D structure of the directly stacked 2D layered titanium carbide greatly limits the rapid transport of electrolyte ions in the material and severely reduces the catalytic performance of the material; The electrochemical performance of the three-dimensional porous network framework constructed by the like material is better.
进一步的,步骤S2中,所述氧化石墨烯与碳化钛的添加量按质量比计为1~4:5~9。Further, in step S2, the amount of graphene oxide and titanium carbide added is 1-4:5-9 in terms of mass ratio.
进一步的,步骤S3中,所述氯亚铂酸钾溶液中铂元素与碳化钛纳米片/氧化石墨烯二元 复合物的添加量按质量比计为1:4~9。Further, in step S3, the addition amount of platinum element and titanium carbide nanosheet/graphene oxide binary composite in the potassium chloroplatinite solution is 1:4~9 by mass ratio.
进一步的,步骤S3中,所述搅拌条件为:0~50℃温度下搅拌0.2~5h。Further, in step S3, the stirring conditions are: stirring at a temperature of 0-50° C. for 0.2-5 h.
进一步的,步骤S4中,所述水热反应条件为:置于80~120℃温度下水热反应8~14h。Further, in step S4, the hydrothermal reaction conditions are: placing the hydrothermal reaction at a temperature of 80-120° C. for 8-14 hours.
进一步的,步骤S4中,所述透析水洗时间为3~10d,所述冷冻干燥时的干燥压力为0~200 Pa。Further, in step S4, the dialysis water washing time is 3-10 d, and the drying pressure during the freeze-drying is 0-200 Pa.
进一步的,所述步骤S1制备碳化钛纳米片分散液具体包括以下步骤:Further, the step S1 to prepare the titanium carbide nanosheet dispersion specifically includes the following steps:
P1、利用氟化锂和盐酸对碳铝钛进行刻蚀,然后离心水洗,得到多层碳化钛沉淀物;P1, use lithium fluoride and hydrochloric acid to etch carbon-aluminum-titanium, and then centrifugally wash with water to obtain a multi-layer titanium carbide precipitate;
P2、向多层碳化钛沉淀物加入少量蒸馏水,超声剥离并冷冻干燥,得到单层或少层碳化 钛纳米片;P2, add a small amount of distilled water to the multi-layer titanium carbide precipitate, ultrasonically peel off and freeze-dry to obtain monolayer or few-layer titanium carbide nanosheets;
P3、将碳化钛纳米片溶解于乙二醇溶液中,超声分散,得到碳化钛纳米片分散液。P3, dissolving the titanium carbide nanosheets in an ethylene glycol solution, and ultrasonically dispersing to obtain a titanium carbide nanosheet dispersion.
进一步的,步骤P1中,所述刻蚀反应条件为:刻蚀反应时间为24~60h,反应温度为10~50℃,盐酸浓度为6~12mol/L。Further, in step P1, the etching reaction conditions are as follows: the etching reaction time is 24-60 h, the reaction temperature is 10-50° C., and the concentration of hydrochloric acid is 6-12 mol/L.
进一步的,步骤P1中,所述离心水洗条件为:离心转速为3500~8000rpm,水洗直至上 清液pH接近中性。Further, in step P1, the centrifugal washing conditions are as follows: the centrifugal speed is 3500-8000 rpm, and the water washing is performed until the pH of the supernatant is close to neutral.
进一步的,步骤P2中,所述超声剥离条件为:超声剥离时间为0.5~6h,超声的同时不 断通入保护气体氩气,并在超声结束后经5000~8000rpm转速离心筛选,取离心上清液冷冻 干燥,得单层或少层碳化钛纳米片。Further, in step P2, the ultrasonic peeling conditions are as follows: the ultrasonic peeling time is 0.5-6 h, the protective gas argon is continuously introduced during ultrasonication, and after the ultrasonication is completed, it is subjected to centrifugal screening at 5000-8000 rpm rotating speed, and the centrifugal supernatant is taken. The liquid is freeze-dried to obtain monolayer or few-layer titanium carbide nanosheets.
进一步的,步骤P3中,所述碳化钛纳米片分散液的浓度为0.1~10g/L。Further, in step P3, the concentration of the titanium carbide nanosheet dispersion liquid is 0.1-10 g/L.
进一步的,步骤P3和步骤S1中,所述超声条件为:超声时间为0.5~6h,超声温度为0~50℃。Further, in step P3 and step S1, the ultrasonic conditions are as follows: ultrasonic time is 0.5-6 h, and ultrasonic temperature is 0-50°C.
本发明所达到的有益技术效果:Beneficial technical effect achieved by the present invention:
1.本发明提供的铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,制备出的电 极催化剂具有高催化活性、三维多孔结构、稳定性好、高抗毒性以及贵金属利用率高等优点; 应用本发明制备的铂/碳化钛纳米片/石墨烯三元复合电极催化剂在直接甲醇燃料电池等领域 具有较好的应用前景和经济效益。1. The preparation method of the platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst provided by the present invention, the prepared electrode catalyst has the advantages of high catalytic activity, three-dimensional porous structure, good stability, high anti-toxicity and high utilization rate of precious metals ; The platinum/titanium carbide nanosheet/graphene ternary composite electrode catalyst prepared by the invention has good application prospects and economic benefits in the fields of direct methanol fuel cells and the like.
2.本发明提供的制备方法简单可控、重复性好、成本低,利于进行大规模工业生产。2. The preparation method provided by the present invention is simple and controllable, has good repeatability and low cost, and is favorable for large-scale industrial production.
附图说明Description of drawings
图1本发明流程示意图;Fig. 1 is a schematic flow diagram of the present invention;
图2本发明实施例3的凝胶状产物的外观图;Figure 2 is an external view of the gel-like product of Example 3 of the present invention;
图3本发明实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂的X射线 衍射(XRD)图谱(图A)和拉曼光谱谱图(图B);The X-ray diffraction (XRD) pattern (Fig. A) and the Raman spectrogram (Fig. B) of the platinum/titanium carbide nanosheet/graphene composite electrode catalyst prepared by the method of the embodiment of the
图4本发明实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂的场发射 扫描电子显微镜(FE-SEM)照片;The Field Emission Scanning Electron Microscope (FE-SEM) photo of the platinum/titanium carbide nanosheet/graphene composite electrode catalyst prepared by the method of
图5本发明实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂的透射电 子显微镜(TEM)照片;The transmission electron microscope (TEM) photo of the platinum/titanium carbide nanosheet/graphene composite electrode catalyst prepared by the method of the embodiment of the
图6本发明实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂的氮气吸 脱附曲线图;The nitrogen adsorption-desorption curve diagram of the platinum/titanium carbide nanosheet/graphene composite electrode catalyst prepared by the method of the embodiment of the
图7本发明实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂(Pt/G-Ti3C2Tx)与铂/碳化钛纳米片(Pt/Ti3C2Tx)、铂/石墨烯(Pt/G)、铂/碳纳米管(Pt/CNT)和铂/炭黑(Pt/C)材料在0.5mol/L H2SO4溶液中循环伏安曲线(图7A)以及在0.5mol/LH2SO4和0.5mol/L CH3OH混合溶液中的循环伏安曲线(图7B);7 platinum/titanium carbide nanosheets/graphene composite electrode catalyst (Pt/G-Ti 3 C 2 T x ) and platinum/titanium carbide nano sheets (Pt/Ti 3 C 2 ) prepared by the method of Example 3 of the present invention Cyclic voltammetry curves of T x ), platinum/graphene (Pt/G), platinum/carbon nanotubes (Pt/CNT) and platinum/carbon black (Pt/C) materials in 0.5mol/LH 2 SO 4 solution ( Figure 7A) and the cyclic voltammetry curves in 0.5mol/LH 2 SO 4 and 0.5mol/L CH 3 OH mixed solution (Figure 7B);
图8本发明实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂(Pt/G-Ti3C2Tx)与铂/碳化钛纳米片(Pt/Ti3C2Tx)、铂/石墨烯(Pt/G)、铂/碳纳米管(Pt/CNT)和铂/炭黑(Pt/C)材料的恒电位氧化测试(图8A);计时电位测试曲线(图8B)。Fig. 8 The platinum/titanium carbide nanosheet/graphene composite electrode catalyst (Pt/G-Ti 3 C 2 T x ) and the platinum/titanium carbide nano sheet (Pt/Ti 3 C 2 ) prepared by the method of Example 3 of the present invention Potentiostatic oxidation tests of T x ), platinum/graphene (Pt/G), platinum/carbon nanotubes (Pt/CNT) and platinum/carbon black (Pt/C) materials (Fig. 8A); chronopotentiodynamic test curves ( Figure 8B).
具体实施方式Detailed ways
下面将结合本发明中的附图,对本发明的技术方案进行清楚、完整地描述,显然,所描 述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本 领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保 护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings in the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
如图1,一种铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,包括以下步骤:As shown in Figure 1, a preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst, comprising the following steps:
S1、制备碳化钛纳米片分散液;S1, prepare titanium carbide nanosheet dispersion;
S2、向步骤S1的碳化钛纳米片分散液中加入氧化石墨烯,所述氧化石墨烯与碳化钛的 添加量按质量比计为1~9:9~1,在0~50℃温度下超声分散0.5~6h,得到碳化钛纳米片/氧 化石墨烯二元复合物溶液;S2, adding graphene oxide to the titanium carbide nanosheet dispersion in step S1, the amount of graphene oxide and titanium carbide added is 1-9:9-1 in terms of mass ratio, and ultrasonicating at a temperature of 0-50 °C Disperse for 0.5 to 6 hours to obtain a titanium carbide nanosheet/graphene oxide binary composite solution;
S3、向步骤S4的二元复合物溶液中加入氯亚铂酸钾溶液,所述氯亚铂酸钾溶液中铂元 素与碳化钛纳米片/氧化石墨烯二元复合物的添加量按质量比计为1~20:1~20,在0~50℃ 温度下搅拌0.2~5h,得到氯亚铂酸钾/碳化钛纳米片/氧化石墨烯三元复合物溶液;S3, adding potassium chloroplatinite solution to the binary composite solution of step S4, the addition amount of platinum element and titanium carbide nanosheet/graphene oxide binary composite in the potassium chloroplatinite solution is by mass ratio Calculated as 1~20:1~20, stir at 0~50℃ for 0.2~5h to obtain potassium chloroplatinite/titanium carbide nanosheet/graphene oxide ternary composite solution;
S4、将步骤S3的三元复合物溶液置于80~120℃温度下水热反应8~14h,得到水凝胶 状产物,然后透析水洗3~10d,冷冻干燥,干燥压力为0~200Pa,即得到铂/碳化钛纳米片/ 石墨烯三维复合电极催化剂。S4. The ternary complex solution of step S3 is placed in a hydrothermal reaction at a temperature of 80 to 120° C. for 8 to 14 hours to obtain a hydrogel-like product, which is then dialyzed and washed for 3 to 10 days, freeze-dried, and the drying pressure is 0 to 200 Pa, that is, A platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst is obtained.
所述步骤S1制备碳化钛纳米片分散液具体包括以下步骤:The step S1 to prepare the titanium carbide nanosheet dispersion specifically includes the following steps:
P1、利用氟化锂和盐酸对碳铝钛进行刻蚀,刻蚀反应时间为24~60h,反应温度为10~50℃, 盐酸浓度为6~12mol/L;然后在3500~8000rpm条件下离心,水洗至上清液pH接近中性, 得到多层碳化钛沉淀物;P1. Use lithium fluoride and hydrochloric acid to etch carbon-aluminum-titanium, the etching reaction time is 24~60h, the reaction temperature is 10~50℃, and the concentration of hydrochloric acid is 6~12mol/L; then centrifuge at 3500~8000rpm , washed with water until the pH of the supernatant is close to neutral, to obtain a multi-layered titanium carbide precipitate;
P2、向多层碳化钛沉淀物加入少量蒸馏水,超声剥离,时间为0.5~6h,超声的同时不断 通入保护气体氩气,并在超声结束后经5000~8000rpm转速离心筛选,取离心上清液冷冻干 燥,得单层或少层碳化钛纳米片;P2. Add a small amount of distilled water to the multi-layer titanium carbide precipitate, and ultrasonically peel it off for 0.5-6h. While ultrasonicating, the protective gas argon is continuously introduced, and after the ultrasonication is completed, it is screened by centrifugation at 5000-8000 rpm, and the centrifugal supernatant is taken. Liquid freeze-drying to obtain monolayer or few-layer titanium carbide nanosheets;
P3、将碳化钛纳米片溶解于乙二醇溶液中,在0~50℃温度下超声分散0.5~6h,得到 0.1~10g/L的碳化钛纳米片分散液;P3. Dissolving the titanium carbide nanosheets in an ethylene glycol solution, and ultrasonically dispersing them at a temperature of 0 to 50°C for 0.5 to 6 hours to obtain a dispersion of 0.1 to 10 g/L of titanium carbide nanosheets;
实施例1Example 1
一种铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,包括以下步骤:A preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst, comprising the following steps:
S1、制备碳化钛纳米片分散液;S1, prepare titanium carbide nanosheet dispersion;
S2、向步骤S1的碳化钛纳米片分散液中加入氧化石墨烯,所述氧化石墨烯与碳化钛的 添加量按质量比计为9:1,在10℃温度下超声分散1h,得到碳化钛纳米片/氧化石墨烯二 元复合物溶液;S2, adding graphene oxide to the titanium carbide nanosheet dispersion in step S1, the amount of graphene oxide and titanium carbide added is 9:1 by mass ratio, and ultrasonically dispersing at a temperature of 10 ° C for 1 hour to obtain titanium carbide Nanosheet/graphene oxide binary composite solution;
S3、向步骤S2的二元复合物溶液中加入氯亚铂酸钾溶液,所述氯亚铂酸钾溶液中铂元 素与碳化钛纳米片/氧化石墨烯二元复合物的添加量按质量比计为1:9,在20℃温度下搅拌 40min,得到氯亚铂酸钾/碳化钛纳米片/氧化石墨烯三元复合物溶液;S3, adding potassium chloroplatinite solution to the binary composite solution of step S2, the addition amount of platinum element and titanium carbide nanosheet/graphene oxide binary composite in the potassium chloroplatinite solution is by mass ratio Calculated as 1:9, and stirred at 20 °C for 40 min to obtain a potassium chloroplatinite/titanium carbide nanosheet/graphene oxide ternary composite solution;
S4、将步骤S3的三元复合物溶液置于120℃温度下水热反应11h,得到水凝胶状产物, 然后透析水洗4d,冷冻干燥,干燥压力为200Pa,即得到铂/碳化钛纳米片/石墨烯三维复合 电极催化剂。S4. The ternary composite solution of step S3 is placed in a hydrothermal reaction at a temperature of 120° C. for 11 hours to obtain a hydrogel-like product, which is then dialyzed and washed with water for 4 days, freeze-dried, and the drying pressure is 200 Pa, to obtain platinum/titanium carbide nanosheets/ Graphene three-dimensional composite electrode catalyst.
所述步骤S1制备碳化钛纳米片分散液具体包括以下步骤:The step S1 to prepare the titanium carbide nanosheet dispersion specifically includes the following steps:
P1、利用氟化锂和盐酸对碳铝钛进行刻蚀,刻蚀反应时间为24h,反应温度为25℃,盐酸浓度为6mol/L;然后在5000rpm条件下离心,水洗至上清液pH接近中性,得到多层 碳化钛沉淀物;P1. Use lithium fluoride and hydrochloric acid to etch carbon-aluminum-titanium, the etching reaction time is 24h, the reaction temperature is 25°C, and the concentration of hydrochloric acid is 6mol/L; then centrifuge at 5000rpm and wash with water until the pH of the supernatant is close to medium to obtain multi-layer titanium carbide precipitates;
P2、向多层碳化钛沉淀物加入少量蒸馏水,超声剥离,时间为1h,超声的同时不断通 入保护气体氩气,并在超声结束后经7000rpm转速离心筛选,取离心上清液冷冻干燥,得单 层或少层碳化钛纳米片;P2. Add a small amount of distilled water to the multi-layer titanium carbide precipitate, and ultrasonically peel it off for 1 h. While ultrasonicating, the protective gas argon is continuously introduced, and after the ultrasonication is completed, it is centrifuged and screened at 7000 rpm, and the centrifugal supernatant is taken and freeze-dried. Obtain single-layer or few-layer titanium carbide nanosheets;
P3、将碳化钛纳米片溶解于乙二醇溶液中,在10℃温度下超声分散1h,得到5g/L的碳化钛纳米片分散液。P3, dissolving the titanium carbide nanosheets in an ethylene glycol solution, and ultrasonically dispersing at a temperature of 10° C. for 1 hour to obtain a 5g/L titanium carbide nanosheet dispersion.
实施例2Example 2
一种铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,包括以下步骤:A preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst, comprising the following steps:
S1、制备碳化钛纳米片分散液;S1, prepare titanium carbide nanosheet dispersion;
S2、向步骤S1的碳化钛纳米片分散液中加入氧化石墨烯,所述氧化石墨烯与碳化钛的 添加量按质量比计为4:5;在30℃温度下超声分散3h,得到碳化钛纳米片/氧化石墨烯二 元复合物溶液;S2, adding graphene oxide to the titanium carbide nanosheet dispersion in step S1, and the amount of graphene oxide and titanium carbide added is 4:5 in mass ratio; ultrasonically dispersing at 30°C for 3 hours to obtain titanium carbide Nanosheet/graphene oxide binary composite solution;
S3、向步骤S2的二元复合物溶液中加入氯亚铂酸钾溶液,所述氯亚铂酸钾溶液中铂元 素与碳化钛纳米片/氧化石墨烯二元复合物的添加量按质量比计为1:7,在10℃温度下搅拌 30min,得到氯亚铂酸钾/碳化钛纳米片/氧化石墨烯三元复合物溶液;S3, adding potassium chloroplatinite solution to the binary composite solution of step S2, the addition amount of platinum element and titanium carbide nanosheet/graphene oxide binary composite in the potassium chloroplatinite solution is by mass ratio Calculated as 1:7, and stirred at 10 °C for 30 min to obtain a potassium chloroplatinite/titanium carbide nanosheet/graphene oxide ternary composite solution;
S4、将步骤S3的三元复合物溶液置于100℃温度下水热反应10h,得到水凝胶状产物, 见图2,然后透析水洗5d,冷冻干燥,干燥压力为100Pa,即得到铂/碳化钛纳米片/石墨烯 三维复合电极催化剂。S4. The ternary complex solution of step S3 is placed in a hydrothermal reaction at a temperature of 100 ° C for 10 hours to obtain a hydrogel product, as shown in Figure 2, and then dialyzed and washed with water for 5 days, freeze-dried, and the drying pressure is 100Pa, that is, platinum/carbonized products are obtained Titanium nanosheet/graphene three-dimensional composite electrode catalyst.
所述步骤S1制备碳化钛纳米片分散液具体包括以下步骤:The step S1 to prepare the titanium carbide nanosheet dispersion specifically includes the following steps:
P1、利用氟化锂和盐酸对碳铝钛进行刻蚀,刻蚀反应时间为36h,反应温度为35℃,盐酸浓度为9mol/L;然后在6000rpm条件下离心,水洗至上清液pH接近中性,得到多层 碳化钛沉淀物;P1. Use lithium fluoride and hydrochloric acid to etch carbon-aluminum-titanium, the etching reaction time is 36h, the reaction temperature is 35°C, and the concentration of hydrochloric acid is 9mol/L; then centrifuge at 6000rpm, and wash with water until the pH of the supernatant is close to medium to obtain multi-layer titanium carbide precipitates;
P2、向多层碳化钛沉淀物加入少量蒸馏水,超声剥离,时间为1h,超声的同时不断通 入保护气体氩气,并在超声结束后经8000rpm转速离心筛选,取离心上清液冷冻干燥,得单 层或少层碳化钛纳米片;P2. Add a small amount of distilled water to the multi-layer titanium carbide precipitate, and ultrasonically peel it off for 1 h. While ultrasonicating, the protective gas argon is continuously introduced, and after the ultrasonication is completed, it is centrifuged at 8000 rpm for screening, and the centrifugal supernatant is taken and freeze-dried. Obtain single-layer or few-layer titanium carbide nanosheets;
P3、将碳化钛纳米片溶解于乙二醇溶液中,在30℃温度下超声分散3h,得到5g/L的碳化钛纳米片分散液。P3, dissolving the titanium carbide nanosheets in an ethylene glycol solution, and ultrasonically dispersing at a temperature of 30° C. for 3 hours to obtain a 5g/L titanium carbide nanosheet dispersion.
实施例3Example 3
一种铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,包括以下步骤:A preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst, comprising the following steps:
S1、制备碳化钛纳米片分散液;S1, prepare titanium carbide nanosheet dispersion;
S2、向步骤S1的碳化钛纳米片分散液中加入氧化石墨烯,所述氧化石墨烯与碳化钛的 添加量按质量比计为3:7,在0℃温度下超声分散0.5h,得到碳化钛纳米片/氧化石墨烯二 元复合物溶液;S2, adding graphene oxide to the titanium carbide nanosheet dispersion in step S1, the amount of graphene oxide and titanium carbide added is 3:7 in mass ratio, and ultrasonically dispersing at 0°C for 0.5h to obtain carbonization Titanium nanosheet/graphene oxide binary composite solution;
S3、向步骤S2的二元复合物溶液中加入氯亚铂酸钾溶液,所述氯亚铂酸钾溶液中铂元 素与碳化钛纳米片/氧化石墨烯二元复合物的添加量按质量比计为1:4,在10℃温度下搅拌 30min,得到氯亚铂酸钾/碳化钛纳米片/氧化石墨烯三元复合物溶液;S3, adding potassium chloroplatinite solution to the binary composite solution of step S2, the addition amount of platinum element and titanium carbide nanosheet/graphene oxide binary composite in the potassium chloroplatinite solution is by mass ratio Calculated as 1:4, and stirred at 10 °C for 30 min to obtain a potassium chloroplatinite/titanium carbide nanosheet/graphene oxide ternary composite solution;
S4、将步骤S3的三元复合物溶液置于100℃温度下水热反应10h,得到水凝胶状产物, 见图2,然后透析水洗5d,冷冻干燥,干燥压力为25Pa,即得到铂/碳化钛纳米片/石墨烯三 维复合电极催化剂。S4. The ternary complex solution of step S3 is placed in a hydrothermal reaction at a temperature of 100° C. for 10 hours to obtain a hydrogel-like product, as shown in Figure 2, and then dialyzed and washed with water for 5d, freeze-dried, and the drying pressure is 25Pa, that is, platinum/carbonized products are obtained. Titanium nanosheet/graphene three-dimensional composite electrode catalyst.
所述步骤S1制备碳化钛纳米片分散液具体包括以下步骤:The step S1 to prepare the titanium carbide nanosheet dispersion specifically includes the following steps:
P1、利用氟化锂和盐酸对碳铝钛进行刻蚀,刻蚀反应时间为36h,反应温度为35℃,盐酸浓度为9mol/L;然后在6000rpm条件下离心,水洗至上清液pH接近中性,得到多层 碳化钛沉淀物;P1. Use lithium fluoride and hydrochloric acid to etch carbon-aluminum-titanium, the etching reaction time is 36h, the reaction temperature is 35°C, and the concentration of hydrochloric acid is 9mol/L; then centrifuge at 6000rpm, and wash with water until the pH of the supernatant is close to medium to obtain multi-layer titanium carbide precipitates;
P2、向多层碳化钛沉淀物加入少量蒸馏水,超声剥离,时间为1h,超声的同时不断通 入保护气体氩气,并在超声结束后经8000rpm转速离心筛选,取离心上清液冷冻干燥,得单 层或少层碳化钛纳米片;P2. Add a small amount of distilled water to the multi-layer titanium carbide precipitate, and ultrasonically peel it off for 1 h. While ultrasonicating, the protective gas argon is continuously introduced, and after the ultrasonication is completed, it is centrifuged at 8000 rpm for screening, and the centrifugal supernatant is taken and freeze-dried. Obtain single-layer or few-layer titanium carbide nanosheets;
P3、将碳化钛纳米片溶解于乙二醇溶液中,在0℃温度下超声分散0.5h,得到5g/L的 碳化钛纳米片分散液。P3. Dissolving titanium carbide nanosheets in ethylene glycol solution, ultrasonically dispersing at 0°C for 0.5h, to obtain 5g/L titanium carbide nanosheet dispersion.
实施例4Example 4
实施例4与实施例3的区别在于,步骤S2中,所述氧化石墨烯与碳化钛的添加量按质 量比计为1:5;在0℃温度下超声分散2h。The difference between Example 4 and Example 3 is that, in step S2, the added amount of graphene oxide and titanium carbide is 1:5 by mass ratio; ultrasonically dispersed for 2h at a temperature of 0°C.
实施例5Example 5
一种铂/碳化钛纳米片/石墨烯三维复合电极催化剂的制备方法,包括以下步骤:A preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst, comprising the following steps:
S1、制备碳化钛纳米片分散液;S1, prepare titanium carbide nanosheet dispersion;
S2、向步骤S1的碳化钛纳米片分散液中加入氧化石墨烯,所述氧化石墨烯与碳化钛的 添加量按质量比计为1:9,在20℃温度下超声分散4h,得到碳化钛纳米片/氧化石墨烯二 元复合物溶液;S2, adding graphene oxide to the titanium carbide nanosheet dispersion in step S1, the amount of graphene oxide and titanium carbide added is 1:9 by mass ratio, and ultrasonically dispersing at a temperature of 20 ° C for 4 hours to obtain titanium carbide Nanosheet/graphene oxide binary composite solution;
S3、向步骤S2的二元复合物溶液中加入氯亚铂酸钾溶液,所述氯亚铂酸钾溶液中铂元 素与碳化钛纳米片/氧化石墨烯二元复合物的添加量按质量比计为9:1,在0℃温度下搅拌 60min,得到氯亚铂酸钾/碳化钛纳米片/氧化石墨烯三元复合物溶液;S3, adding potassium chloroplatinite solution to the binary composite solution of step S2, the addition amount of platinum element and titanium carbide nanosheet/graphene oxide binary composite in the potassium chloroplatinite solution is by mass ratio Calculated as 9:1, and stirred at 0 °C for 60 min to obtain a potassium chloroplatinite/titanium carbide nanosheet/graphene oxide ternary composite solution;
S4、将步骤S3的三元复合物溶液置于80℃温度下水热反应12h,得到水凝胶状产物, 然后透析水洗5d,冷冻干燥,干燥压力为25Pa,即得到铂/碳化钛纳米片/石墨烯三维复合 电极催化剂。S4. The ternary complex solution of step S3 is placed in a hydrothermal reaction at a temperature of 80° C. for 12 hours to obtain a hydrogel-like product, which is then dialyzed and washed with water for 5 d, freeze-dried, and the drying pressure is 25 Pa to obtain platinum/titanium carbide nanosheets/ Graphene three-dimensional composite electrode catalyst.
所述步骤S1制备碳化钛纳米片分散液具体包括以下步骤:The step S1 to prepare the titanium carbide nanosheet dispersion specifically includes the following steps:
P1、利用氟化锂和盐酸对碳铝钛进行刻蚀,刻蚀反应时间为60h,反应温度为45℃,盐酸浓度为10mol/L;然后在6000rpm条件下离心,水洗至上清液pH接近中性,得到多层 碳化钛沉淀物;P1. Use lithium fluoride and hydrochloric acid to etch carbon-aluminum-titanium, the etching reaction time is 60h, the reaction temperature is 45°C, and the concentration of hydrochloric acid is 10mol/L; then centrifuge at 6000rpm, and wash with water until the pH of the supernatant is close to medium properties, to obtain multi-layer titanium carbide precipitates;
P2、向多层碳化钛沉淀物加入少量蒸馏水,超声剥离,时间为2h,超声的同时不断通 入保护气体氩气,并在超声结束后经5000rpm转速离心筛选,取离心上清液冷冻干燥,得单 层或少层碳化钛纳米片;P2. Add a small amount of distilled water to the multi-layered titanium carbide precipitate, and ultrasonically peel it for 2 hours. While ultrasonicating, the protective gas argon is continuously introduced, and after the ultrasonication is completed, it is centrifuged at 5000 rpm for screening, and the centrifugal supernatant is taken and freeze-dried. Obtain single-layer or few-layer titanium carbide nanosheets;
P3、将碳化钛纳米片溶解于乙二醇溶液中,在20℃温度下超声分散4h,得到8g/L的碳化钛纳米片分散液。P3, dissolving the titanium carbide nanosheets in an ethylene glycol solution, and ultrasonically dispersing at a temperature of 20° C. for 4 hours to obtain a titanium carbide nanosheet dispersion of 8 g/L.
对比例1Comparative Example 1
对比例1与实施例3的区别在于,步骤S2中,所述氧化石墨烯与碳化钛的添加量按质 量比计为1:12;在0℃温度下搅拌60min。The difference between Comparative Example 1 and Example 3 is that, in step S2, the addition of the graphene oxide and titanium carbide is 1:12 by mass ratio; stirring at 0°C for 60min.
对比例2Comparative Example 2
对比例2与实施例3的区别在于,步骤S2中,所述氧化石墨烯与碳化钛的添加量按质 量比计为12:1;在0℃温度下搅拌60min。The difference between Comparative Example 2 and Example 3 is that, in step S2, the addition of the graphene oxide and titanium carbide is 12:1 by mass ratio; stirring at 0°C for 60min.
对比例3Comparative Example 3
对比例3与实施例3的区别在于,采用碳纳米管代替氧化石墨烯,所述碳纳米管的添加 量同氧化石墨烯,制备方法与实施例3相同。The difference between Comparative Example 3 and Example 3 is that carbon nanotubes are used to replace graphene oxide, and the addition of said carbon nanotubes is the same as graphene oxide, and the preparation method is the same as in Example 3.
应用例性能表征Application example performance characterization
以实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂为例进行性能表征。The performance was characterized by taking the platinum/titanium carbide nanosheet/graphene composite electrode catalyst prepared by the method of Example 3 as an example.
1)水凝胶状产物的外观图1) Appearance of the hydrogel-like product
图2为采用实施例3的方法制备出的铂/碳化钛纳米片/石墨烯的水凝胶产物的电子照片 图,从图2可以看出碳化钛和石墨烯经过水热法作用形成了三维水凝胶结构。Fig. 2 is an electron photograph of the hydrogel product of platinum/titanium carbide nanosheets/graphene prepared by the method of Example 3. It can be seen from Fig. 2 that titanium carbide and graphene form a three-dimensional structure through hydrothermal action. Hydrogel structure.
2)X-射线粉末衍射图谱和拉曼光谱图分析2) X-ray powder diffraction pattern and Raman spectrum analysis
图3为采用实施例3的方法制备出的铂/碳化钛纳米片/石墨烯复合电极催化剂的X-射线 粉末衍射图谱和拉曼光谱图,从图3A的XRD图可以清楚地看到金属铂和氧化石墨的特征峰, 说明复合产物中含有这两种组分,且XRD谱图不存在明显的碳化钛的特征峰,主要是由于 三维多孔网络结构可以有效防止碳化钛纳米片的团聚。图3B是铂/碳化钛纳米片/石墨烯复合 电极催化剂的拉曼图谱,从图中可以明显看到碳化钛和氧化石墨的特征峰,结合图3A证实 了铂、碳化钛、石墨烯的同时存在。Fig. 3 is the X-ray powder diffraction pattern and Raman spectrum of the platinum/titanium carbide nanosheet/graphene composite electrode catalyst prepared by the method of Example 3, and the metal platinum can be clearly seen from the XRD pattern of Fig. 3A and graphite oxide characteristic peaks, indicating that the composite product contains these two components, and there is no obvious characteristic peak of titanium carbide in the XRD spectrum, mainly because the three-dimensional porous network structure can effectively prevent the agglomeration of titanium carbide nanosheets. Figure 3B is the Raman spectrum of the platinum/titanium carbide nanosheet/graphene composite electrode catalyst, from which the characteristic peaks of titanium carbide and graphite oxide can be clearly seen. exist.
3)场发射扫描电子显微镜分析3) Field emission scanning electron microscopy analysis
从图4A和图4B中可以看出,该催化剂具有明显的三维多孔网络结构,同时石墨烯和 碳化钛组分均以二维薄片形式存在,其中图4C和图4D分别是碳化钛和石墨烯的局部放大 图,从图中可以看出铂颗粒均匀的分布在两者的片层上,形成良好的分散。As can be seen from Figure 4A and Figure 4B, the catalyst has an obvious three-dimensional porous network structure, and both graphene and titanium carbide components exist in the form of two-dimensional flakes, in which Figure 4C and Figure 4D are titanium carbide and graphene, respectively. It can be seen from the figure that the platinum particles are evenly distributed on the two lamellae, forming a good dispersion.
4)透射电镜图分析4) TEM image analysis
图5是铂/碳化钛纳米片/石墨烯复合电极催化剂的透射电镜图,图5A进一步证明了铂颗 粒在碳化钛纳米片和石墨烯杂化骨架上的分布较为均匀,没有明显的团聚现象;图5B可以 清楚地看出铂颗粒的晶格条纹。Figure 5 is a transmission electron microscope image of the platinum/titanium carbide nanosheet/graphene composite electrode catalyst. Figure 5A further proves that the distribution of platinum particles on the titanium carbide nanosheets and graphene hybrid framework is relatively uniform, and there is no obvious agglomeration phenomenon; The lattice fringes of the platinum particles can be clearly seen in Figure 5B.
以上结果说明本发明的铂/碳化钛纳米片/石墨烯复合电极催化剂具有抗堆叠的三维多孔 网络骨架,比表面积大,能使金属铂纳米粒子均匀分布于三维骨架上,具有更高的催化性能 和电化学活性。The above results show that the platinum/titanium carbide nanosheet/graphene composite electrode catalyst of the present invention has an anti-stacking three-dimensional porous network framework, a large specific surface area, and enables metal platinum nanoparticles to be uniformly distributed on the three-dimensional framework, and has higher catalytic performance. and electrochemical activity.
5)氮气吸脱附测试5) Nitrogen adsorption and desorption test
从图6的吸脱附测试曲线图可以看出,该催化剂的比表面积为214.6m2g-1,并具有显著 的孔结构。It can be seen from the adsorption-desorption test curve graph in Fig. 6 that the catalyst has a specific surface area of 214.6 m 2 g -1 and a significant pore structure.
6)催化活性测试6) Catalytic activity test
样品的电化学测试均在CHI760E电化学工作站上进行,测试系统为常规的三电极体系, 其中铂丝为对电极,饱和甘汞电极为参比电极,涂覆了活性物质、直径为3mm的玻碳电极 作为工作电极。工作电极的制备流程为:称取2mg催化剂粉末分散于0.5mL去离子水、0.5 mL乙醇和0.05mL Nafion的混合溶液中,超声30min。取0.005mL上述催化剂样品的分散液滴加在玻碳电极的表面,常温干燥0.5小时后进行测试。催化剂的电化学活性表面积(ECSA) 和甲醇氧化的催化活性都是通过循环伏安法测得的,电解液分别是0.5mol/L H2SO4溶液和 0.5mol/L H2SO4和0.5mol/L CH3OH的混合溶液,扫描速率均20mV.s-1。釆用恒电位氧化法 及计时电位法评价催化剂的稳定性及甲醇耐受性。通过电化学交流阻抗测试研究催化剂的导 电性,频率范围为到105~0.02Hz,振幅为10mV。The electrochemical tests of the samples were all carried out on the CHI760E electrochemical workstation. The test system was a conventional three-electrode system, in which a platinum wire was the counter electrode, and the saturated calomel electrode was the reference electrode. A carbon electrode was used as the working electrode. The preparation process of the working electrode was as follows: 2 mg of catalyst powder was weighed and dispersed in a mixed solution of 0.5 mL of deionized water, 0.5 mL of ethanol and 0.05 mL of Nafion, and sonicated for 30 min. Take 0.005 mL of the dispersion of the above catalyst sample and drop it on the surface of the glassy carbon electrode, and test it after drying at room temperature for 0.5 hours. The electrochemically active surface area (ECSA) of the catalyst and the catalytic activity for methanol oxidation were both measured by cyclic voltammetry with electrolytes of 0.5 mol/LH 2 SO 4 and 0.5 mol/LH 2 SO 4 and 0.5 mol/
通过计算图7A曲线在氢吸附区域的面积,可以发现铂/碳化钛纳米片/石墨烯三维复合电 极催具有最高的电化学活性表面积(90.1m2g-1),申请人也对铂/碳化钛纳米片/石墨烯催化剂进 行了甲醇氧化的催化性能测试,见图7B,该催化剂的正向电流密度为1102.0mA mg-1。为了 进一步说明该催化剂的催化活性,申请人还对不同材料对甲醇氧化反应的循环伏安试验做了 对比,从图7中可以看出铂/碳化钛纳米片/石墨烯三维复合电极催化剂无论活性表面积还是 正向峰电流密度显著高于另外四个对比样品,表明其具有最高的催化活性。By calculating the area of the curve in Figure 7A in the hydrogen adsorption region, it can be found that the platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode has the highest electrochemically active surface area (90.1 m 2 g -1 ). The catalytic performance of the titanium nanosheet/graphene catalyst was tested for methanol oxidation, as shown in Figure 7B, and the forward current density of the catalyst was 1102.0 mA mg -1 . In order to further illustrate the catalytic activity of the catalyst, the applicant also compared the cyclic voltammetry tests of different materials for methanol oxidation. It can be seen from Figure 7 that the platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst has no activity The surface area and the forward peak current density were significantly higher than the other four comparative samples, indicating the highest catalytic activity.
铂/碳化钛纳米片/石墨烯三维符合催化剂的电化学稳定性测试均采用恒电位氧化法。从 图8A中可以得知:在2000s的测试时间内,铂/碳化钛纳米片/石墨烯三维复合催化剂一直保 持着最低的电流衰减率和最高的氧化电流密度,说明具有良好的催化耐久性。从图8B中能 清楚地观察到在恒电流测试条件下,该催化剂可以在低电位停留较长的时间。从图中可见催 化剂的催化耐久性和抗中毒性均优于另外四个对比样品。The electrochemical stability of platinum/titanium carbide nanosheets/graphene three-dimensional coincident catalysts was tested by potentiostatic oxidation method. It can be seen from Figure 8A that the platinum/titanium carbide nanosheet/graphene three-dimensional composite catalyst has always maintained the lowest current decay rate and the highest oxidation current density during the test time of 2000s, indicating good catalytic durability. It can be clearly observed from Fig. 8B that under the galvanostatic test conditions, the catalyst can stay at low potential for a longer time. It can be seen from the figure that the catalytic durability and anti-toxicity of the catalyst are better than the other four comparative samples.
对采用实施例1~5的方法制备出的催化剂进行甲醇氧化反应检测,结果如表1。The catalysts prepared by the methods of Examples 1 to 5 were tested for methanol oxidation reaction, and the results are shown in Table 1.
表1 实施例1-5制得催化剂对甲醇氧化反应的性能指标Table 1 Performance index of catalysts prepared in Examples 1-5 for methanol oxidation reaction
从表1可以看出,采用实施例1-5的方法制备催化剂,均具有较高的催化活性,而且催 化活性稳定。随着碳化钛纳米片/氧化石墨烯二元复合物溶液中碳化钛添加量的提高,催化剂 的活性表面积、质量活性和表观活性都随之增加,但是碳化钛添加量的进一步提高,见实施 例5,催化剂的性能反而相比实施例3和实施例4有所降低,当其含量增加至对比例1的含 量时,催化剂的性能急剧降低;这是因为碳化钛自身形成不了三维网络结构,大量加入会造 成碳化钛自身的团聚以及活性位点的降低,进而降低催化活性,所以碳化钛和石墨烯加入的 比例是非常重要的,适量比例的石墨烯和碳化钛有利于形成良好的三维多孔结构。良好的石 墨烯/碳化钛三维多孔结构有利于铂纳米颗粒的均匀分散,同时有利于反应过程中电解液的快 速传输,从而有效地提高催化性能。对比例2相比于实施例1~5,碳化钛纳米片/氧化石墨烯 二元复合物溶液中碳化钛纳米片的含量过低,一方面无法为金属铂颗粒提供充分的生长位点, 另一方面也不能有效调控铂的电子结构从而导致其较差的CO抗中毒能力,这些都会造成催 化性能的下降。对比例3相比于实施例3,采用碳纳米管替代氧化石墨烯,催化剂性能显著 降低,这是由于碳纳米管表面呈疏水性,与碳化钛纳米片的结合力不强,会加剧碳化钛纳米 片的团聚,不利于铂纳米颗粒的分散,因此导致催化剂性能降低。As can be seen from Table 1, the catalysts prepared by the methods of Examples 1-5 all have higher catalytic activity and stable catalytic activity. With the increase of the addition amount of titanium carbide in the titanium carbide nanosheet/graphene oxide binary composite solution, the active surface area, mass activity and apparent activity of the catalyst all increase, but the addition amount of titanium carbide is further improved, see Implementation In Example 5, the performance of the catalyst was lower than that of Example 3 and Example 4. When its content increased to that of Comparative Example 1, the performance of the catalyst decreased sharply; this was because titanium carbide itself could not form a three-dimensional network structure. Adding a large amount of titanium carbide will cause the agglomeration of titanium carbide itself and the reduction of active sites, thereby reducing the catalytic activity. Therefore, the ratio of titanium carbide and graphene added is very important. An appropriate proportion of graphene and titanium carbide is conducive to the formation of good three-dimensional porous structure. A good three-dimensional porous structure of graphene/titanium carbide is conducive to the uniform dispersion of platinum nanoparticles and the rapid transport of electrolyte during the reaction process, thereby effectively improving the catalytic performance. Comparative Example 2 Compared with Examples 1 to 5, the content of titanium carbide nanosheets in the titanium carbide nanosheet/graphene oxide binary composite solution is too low, which on the one hand cannot provide sufficient growth sites for metal platinum particles, on the other hand. On the one hand, the electronic structure of platinum cannot be effectively regulated, resulting in its poor resistance to CO poisoning, which will lead to the decline of catalytic performance. Compared with Example 3, carbon nanotubes are used to replace graphene oxide, and the catalyst performance is significantly reduced. This is because the surface of carbon nanotubes is hydrophobic and the bonding force with titanium carbide nanosheets is not strong, which will aggravate titanium carbide. The agglomeration of nanosheets is not conducive to the dispersion of Pt nanoparticles, thus leading to a decrease in catalyst performance.
催化反应只是表面反应,只有表面的原子能起到催化作用,而内部的原子并不参与反应, 因此,铂的添加量也只有在合适的情况下才能起到良好的催化活性,铂负载量过高,降低了 铂纳米颗粒的均匀分散性,部分铂原子堆叠在一起,成为无效催化剂,降低了利用率,而含 量过低,也会导致催化活性的降低。本申请通过大量的实验,确定了本发明的各组分的配比, 各组分只有在上述配比含量下才能得到催化性能良好的甲醇直接燃料电池用催化剂。The catalytic reaction is only a surface reaction. Only the atoms on the surface can play a catalytic role, while the atoms inside do not participate in the reaction. Therefore, the amount of platinum added can only play a good catalytic activity under appropriate conditions, and the platinum loading is too high. , reducing the uniform dispersion of platinum nanoparticles, and some platinum atoms are stacked together, becoming ineffective catalysts, reducing the utilization rate, and the content is too low, which will also lead to the reduction of catalytic activity. The present application has determined the ratio of each component of the present invention through a large number of experiments, and each component can obtain a catalyst for methanol direct fuel cell with good catalytic performance only under the above-mentioned ratio and content.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910548100.0A CN112133926A (en) | 2019-06-24 | 2019-06-24 | Preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910548100.0A CN112133926A (en) | 2019-06-24 | 2019-06-24 | Preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112133926A true CN112133926A (en) | 2020-12-25 |
Family
ID=73849225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910548100.0A Pending CN112133926A (en) | 2019-06-24 | 2019-06-24 | Preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112133926A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113422077A (en) * | 2021-06-22 | 2021-09-21 | 合肥工业大学 | CO-resistant MXene-based catalyst for proton exchange membrane fuel cell and preparation method thereof |
CN113718281A (en) * | 2021-09-26 | 2021-11-30 | 河海大学 | Graphene quantum dot/MXene nanosheet two-dimensional composite material and preparation method and application thereof |
CN116495813A (en) * | 2022-01-19 | 2023-07-28 | 上海忒尔苏斯环境科技合伙企业(有限合伙) | MIL-100 (Fe)/Ti 3 C 2 Composite aerogel and preparation and application thereof |
CN116586085A (en) * | 2023-05-23 | 2023-08-15 | 华东理工大学 | A method for the preparation of high-load platinum single-atom materials based on metal-vacancy-rich titanium carbide nanosheets |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030068544A1 (en) * | 2001-10-10 | 2003-04-10 | Alan Cisar | Bifunctional catalytic electrode |
CN106981667A (en) * | 2017-05-09 | 2017-07-25 | 河海大学 | A kind of preparation method of two-dimentional titanium carbide/carbon nanotube loaded platinum grain composite |
CN107335451A (en) * | 2017-07-26 | 2017-11-10 | 河海大学 | The preparation method of platinum/molybdenum disulfide nano sheet/graphene three-dimensional combination electrode catalyst |
CN108557822A (en) * | 2018-08-02 | 2018-09-21 | 合肥学院 | Preparation method of surface organic modified titanium carbide nanosheet |
-
2019
- 2019-06-24 CN CN201910548100.0A patent/CN112133926A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030068544A1 (en) * | 2001-10-10 | 2003-04-10 | Alan Cisar | Bifunctional catalytic electrode |
CN106981667A (en) * | 2017-05-09 | 2017-07-25 | 河海大学 | A kind of preparation method of two-dimentional titanium carbide/carbon nanotube loaded platinum grain composite |
CN107335451A (en) * | 2017-07-26 | 2017-11-10 | 河海大学 | The preparation method of platinum/molybdenum disulfide nano sheet/graphene three-dimensional combination electrode catalyst |
CN108557822A (en) * | 2018-08-02 | 2018-09-21 | 合肥学院 | Preparation method of surface organic modified titanium carbide nanosheet |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113422077A (en) * | 2021-06-22 | 2021-09-21 | 合肥工业大学 | CO-resistant MXene-based catalyst for proton exchange membrane fuel cell and preparation method thereof |
CN113718281A (en) * | 2021-09-26 | 2021-11-30 | 河海大学 | Graphene quantum dot/MXene nanosheet two-dimensional composite material and preparation method and application thereof |
CN116495813A (en) * | 2022-01-19 | 2023-07-28 | 上海忒尔苏斯环境科技合伙企业(有限合伙) | MIL-100 (Fe)/Ti 3 C 2 Composite aerogel and preparation and application thereof |
CN116586085A (en) * | 2023-05-23 | 2023-08-15 | 华东理工大学 | A method for the preparation of high-load platinum single-atom materials based on metal-vacancy-rich titanium carbide nanosheets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sha et al. | In situ grown 3D hierarchical MnCo2O4. 5@ Ni (OH) 2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation | |
Wang et al. | Elaborately tailored NiCo 2 O 4 for highly efficient overall water splitting and urea electrolysis | |
CN104681823B (en) | A kind of nitrogen-doped graphene and Co3O4 hollow nano-sphere composites and its preparation method and application | |
Cheng et al. | Hierarchical Ni3S2@ 2D Co MOF nanosheets as efficient hetero-electrocatalyst for hydrogen evolution reaction in alkaline solution | |
CN108923051A (en) | A kind of nitrogen-doped carbon nanometer pipe composite catalyst of package metals cobalt nano-particle and its application | |
CN109023417B (en) | Preparation method and application of iron carbide-cobalt/nitrogen-doped carbon nanocomposite | |
Jia et al. | Understanding the growth of NiSe nanoparticles on reduced graphene oxide as efficient electrocatalysts for methanol oxidation reaction | |
CN113363514A (en) | Carbon aerogel supported cobalt monoatomic catalyst for metal air battery, preparation method and application thereof | |
CN107475744B (en) | A kind of iron diselenide nanocomposite material and its synthesis method and application | |
CN112133926A (en) | Preparation method of platinum/titanium carbide nanosheet/graphene three-dimensional composite electrode catalyst | |
CN113363507B (en) | A kind of preparation method of titanium carbide supported platinum palladium nano flower electrode catalyst | |
CN108172849B (en) | Manganese dioxide-carbon nanotube composite catalyst based on palladium monoatomic atom and preparation thereof | |
CN106450357A (en) | Graphene loaded Co-N-C super-molecule hybrid aerogel composite material, preparation method thereof and application | |
Li et al. | Fluorine and phosphorus atoms cooperated on an N-doped 3D porous carbon network for enhanced ORR performance toward the zinc–air batteries | |
CN110212168A (en) | A kind of preparation method of the nanocomposite of simple hydrothermal synthesis beta phase nickel hydroxide/graphene | |
CN107694581A (en) | The application of the porous carbon coating copper phosphide composite catalyst of Heteroatom doping | |
CN113471453A (en) | Preparation method of polyelectrolyte modified titanium carbide supported multi-grain-boundary platinum electrode catalyst | |
CN111634954A (en) | Iron-modified self-assembled curd-structured cobalt iron oxide and its preparation and application | |
CN108832140A (en) | Preparation of low-platinum-loaded copper nanowire composite catalyst by atomic layer deposition method and its application in oxygen reduction reaction | |
CN115036516A (en) | Cobalt and nitrogen co-doped hollow tubular porous carbon composite material and preparation method and application thereof | |
Wang et al. | Winterberries-like 3D network of N-doped porous carbon anchoring on N-doped carbon nanotubes for highly efficient platinum-based catalyst in methanol electrooxidation | |
Fu et al. | N-doped hollow carbon tubes derived N-HCTs@ NiCo2O4 as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries | |
Zhang et al. | High-efficiency counter electrodes for quantum dot–sensitized solar cells (QDSSCs): designing graphene-supported CuCo 2 O 4 porous hollow microspheres with improved electron transport performance | |
CN113293405B (en) | Phosphide nanocrystal@nitrogen-carbon hierarchical nanosheet array and its preparation method and use | |
Zhao et al. | Zeolitic imidazolite framework derived bifunctional N, P-codoped hollow carbon sphere electrocatalysts decorated with Co 2 P/Fe for rechargeable Zn–air batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201225 |
|
RJ01 | Rejection of invention patent application after publication |