CN112130703A - 超声波感测器件 - Google Patents

超声波感测器件 Download PDF

Info

Publication number
CN112130703A
CN112130703A CN202010588339.3A CN202010588339A CN112130703A CN 112130703 A CN112130703 A CN 112130703A CN 202010588339 A CN202010588339 A CN 202010588339A CN 112130703 A CN112130703 A CN 112130703A
Authority
CN
China
Prior art keywords
transistor
electrode
voltage
layer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010588339.3A
Other languages
English (en)
Other versions
CN112130703B (zh
Inventor
金根佑
金斗娜
辛知映
李镕守
朱在焕
崔起锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Publication of CN112130703A publication Critical patent/CN112130703A/zh
Application granted granted Critical
Publication of CN112130703B publication Critical patent/CN112130703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/06Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/08Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • H10N30/101
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Abstract

公开了一种超声波感测器件。所述超声波感测器件包括:感测层,在驱动电极与感测电极之间,其中,感测层被构造为根据超声波产生电信号;以及第一晶体管,包括连接到选择线的第一栅电极和连接到感测电极的第二栅电极。

Description

超声波感测器件
技术领域
发明的一些示例实施例/实施方式的各方面总体地涉及一种超声波感测器件和包括该超声波感测器件的显示装置。
背景技术
随着信息社会的发展,对用于显示图像的显示装置的需求正在以各种形式增加。例如,显示装置正被诸如智能电话、数码相机、笔记本计算机、导航装置和智能电视的各种电子装置使用。
随着显示装置在各种电子装置中的使用,可以期望具有各种功能的显示装置。例如,智能电话可以包括用于感测超声波的超声波感测器件。超声波感测器件可以用作接近传感器或指纹识别传感器。
在本背景技术部分中公开的以上信息仅用于理解发明构思的背景,因此,其可能包含不构成现有技术的信息。
发明内容
根据发明的一些示例实施方式构造的装置可以包括显示装置,该显示装置包括具有具备相对减小的区域的像素传感器的超声波感测器件。
发明构思的一些示例实施例的附加特征将在下面的描述中阐明,并且部分地将通过描述而明显,或者可以通过发明构思的实践来获知。
根据发明的一个或更多个示例实施例,超声波感测器件包括:感测层,在驱动电极与感测电极之间,感测层根据超声波产生电信号;以及第一晶体管,包括连接到选择线的第一栅电极和连接到感测电极的第二栅电极。
根据发明的一个或更多个示例实施例,超声波感测器件包括:感测层,在驱动电极与感测电极之间,感测层根据超声波产生电信号;以及第二晶体管,包括连接到初始化线的第一栅电极、连接到控制电压线的第二栅电极和第一电极以及连接到感测电极的第二电极。
根据发明的一个或更多个示例实施例,显示装置包括:显示面板,包括在基底的表面上的像素阵列层并使用像素显示图像;超声波传感器,包括在与基底的所述表面背对的另一表面上并发射超声波的超声波发射器件以及感测被显示面板上的物体反射的超声波的超声波感测器件,其中,超声波感测器件包括:感测层,在驱动电极与感测电极之间,感测层根据超声波产生电信号;第一晶体管,在感测层(压电层)下方,第一晶体管包括感测电极的感测电压施加到其的第一栅电极;以及第一电容器电极和第二电容器电极,第一电容器电极连接到第一晶体管的第一栅电极,第二电容器电极在第一电容器电极下方。
根据本公开的前述和其他示例实施例,像素传感器的第一晶体管包括连接到选择线的第一栅电极和连接到感测电极的第二栅电极,并且被选择信号和感测电极的电压控制。即,第一晶体管可以是被选择信号控制的晶体管和被感测电极的电压控制的晶体管的组合。因此,因为像素传感器包括作为第一晶体管的一个晶体管,所以与当像素传感器包括两个晶体管时相比,可以减小像素传感器的区域。
此外,根据一些示例实施例,像素传感器的第二晶体管包括连接到初始化线的第一栅电极与连接到控制电压线的第二栅电极和第一电极。因此,第二晶体管可以是晶体管和二极管的组合。因为像素传感器包括作为第二晶体管的一个晶体管(晶体管和二极管组合成所述一个晶体管),所以与当像素传感器包括两个元件(例如,晶体管和二极管)时相比,可以减小像素传感器的区域。
此外,根据一些示例实施例,第一晶体管的第二栅电极和电容器的第一电容器电极在同一层上并且彼此直接接触且彼此直接连接,第一电容器电极在作为厚度方向的第三方向上与第二电容器电极叠置。因此,可以使形成有第一晶体管和电容器的区域最小化,从而减小像素传感器的区域。
此外,根据一些示例实施例,在显示面板的下表面上的第一超声波传感器和第二超声波传感器可以用作指纹识别传感器和接近传感器。因此,可以去除在显示面板的前表面上的暴露指纹识别传感器和接近传感器的孔。这可以最小化或减小显示装置的边框,从而使得显示装置的显示区域相对较宽。
通过下面详细描述、附图和权利要求,其他特征和示例实施例可以是明显的。
将理解的是,前面的总体描述和下面的详细描述两者描述了一些示例实施例的方面,并且旨在提供对如所要求保护的发明的进一步解释。
附图说明
附图示出了发明的一些示例实施例的各方面,并与描述一起用于解释发明构思,其中,附图被包括以提供对发明的进一步理解并且并入本说明书中并构成本说明书的一部分。
图1是根据一些示例实施例的显示装置的透视图。
图2是根据一些示例实施例的显示装置的分解透视图。
图3是结合到图2的覆盖窗的显示面板的示例的仰视图。
图4是图2中示出的显示面板的显示区域的示例的剖视图。
图5示出了根据一些示例实施例的第一超声波传感器的超声波感测法。
图6是图5的第一超声波传感器的详细剖视图。
图7是超声波感测器件的示意性框图。
图8是图7中示出的超声波感测器件的像素传感器的示例的电路图。
图9示出了从图8的像素传感器发送的信号的波形。
图10至图13是在第一时段至第四时段期间的像素传感器的电路图。
图14示出了图8的第一晶体管的示例。
图15是示出根据一些示例实施例的第一晶体管的沟道的阈值电压相对于第二栅电极的电压的图。
图16是示出根据一些示例实施例的当第二栅电极的电压改变时,第一晶体管的沟道的驱动电流相对于第一栅电极的电压的图。
图17是图8的超声波感测器件的像素传感器的示例的剖视图。
具体实施方式
在下面的描述中,出于解释的目的,阐述了许多具体细节以提供对发明的各种示例实施例或实施方式的透彻理解。如在此所使用的,“实施例”和“实施方式”是可互换的词,其是采用在此所公开的发明构思中的一个或更多个的装置或方法的非限制性示例。然而,明显的是,可以在没有这些具体细节或具有一个或更多个等同布置的情况下实践各种示例实施例。在其他情况下,以框图形式示出了公知的结构和装置,以避免不必要地混淆各种示例实施例。此外,各种示例实施例可以不同,但是不必是排他的。例如,在不脱离发明构思的情况下,一个示例实施例的特定形状、构造和特性可以在另一示例实施例中使用或实施。
除非另外说明,否则所示出的示例实施例将被理解为提供可以在实践中实施发明构思的一些方式的不同细节的示例特征。因此,除非另外说明,否则在不脱离发明构思的情况下,可以对各种实施例的特征、组件、模块、层、膜、面板、区域和/或方面等(在下文中,单独或统一称为“元件”或“多个元件”)进行另外组合、分离、互换和/或重新布置。
通常提供在附图中的交叉影线和/或阴影的使用来使相邻元件之间的边界清晰。这样,除非说明,否则交叉影线或阴影的存在或不存在都不传达或表明对元件的具体材料、材料性质、尺寸、比例、所示元件之间的共性和/或任意其他特性、属性、性质等的任意偏好或要求。此外,在附图中,为了清楚和/或描述性目的,可以夸大元件的尺寸和相对尺寸。当可以不同地实现示例实施例时,可以不同于所描述的顺序地执行特定工艺顺序。例如,可以基本上同时执行或以与所描述的顺序相反的顺序执行两个连续描述的工艺。此外,同样的附图标记表示同样的元件。
当元件或层被称为“在”另一元件或层“上”、“连接到”或“结合到”另一元件或层时,所述元件或层可以直接在所述另一元件或层上、直接连接到或直接结合到所述另一元件或层,或者可以存在中间元件或层。然而,当元件或层被称为“直接在”另一元件或层“上”、“直接连接到”或“直接结合到”另一元件或层时,不存在中间元件或层。为此,术语“连接”可以指具有或不具有中间元件的物理连接、电连接和/或流体连接。此外,X轴、Y轴和Z轴不限于直角坐标系的三个轴(诸如x轴、y轴和z轴),而是可以以更广泛的意义解释。例如,X轴、Y轴和Z轴可以彼此垂直,或者可以表示彼此不垂直的不同方向。为了本公开的目的,“X、Y和Z中的至少一个(种/者)”和“选自由X、Y和Z组成的组中的至少一个(种/者)”可以解释为仅X、仅Y、仅Z、或者X、Y和Z中的两个(种/者)或更多个(种/者)的任意组合,诸如以XYZ、XYY、YZ和ZZ为例。如在此所使用的,术语“和/或”包括相关所列项中的一个或更多个的任意组合和所有组合。
尽管在此可以使用术语“第一”、“第二”等来描述各种类型的元件,但是这些元件不应受到这些术语的限制。这些术语用于将一个元件与另一元件区分开。因此,在不脱离公开的教导的情况下,下面讨论的第一元件可以被命名为第二元件。
出于描述性目的,在此可以使用诸如“在……之下”、“在……下面”、“在……下方”、“下”、“在……上方”、“上”、“在……之上”、“较高的”、“侧”(例如,如在“侧壁”中)等的空间相对术语,从而描述如附图中所示的一个元件与另一(其它)元件的关系。空间相对术语旨在涵盖设备在使用、操作和/或制造中的除附图中描绘的方位之外的不同方位。例如,如果附图中的设备翻转,则被描述为“在”其他元件或特征“下面”或“之下”的元件随后将被定位为“在”所述其他元件或特征“上方”。因此,示例术语“在……下面”可以涵盖上方和下面两种方位。此外,设备可以被另外定位(例如,旋转90度或处于其他方位),如此,相应地解释在此所使用的空间相对描述语。
在此所使用的术语是出于描述具体实施例的目的,而不意图进行限制性。如在此所使用的,除非上下文另外明确指出,否则单数形式“一”、“一个(种/者)”和“该(所述)”也旨在包括复数形式。此外,术语“包括”、“包含”和/或其变型用在本说明书中时,说明存在所陈述的特征、整体、步骤、操作、元件、组件和/或它们的组,但是不排除存在或附加一个或更多个其他特征、整体、步骤、操作、元件、组件和/或它们的组。还注意的是,如在此所使用的,术语“基本上”、“约”和其他类似术语用作近似术语而不用作程度术语,并且如此,被用来解释本领域普通技术人员将认识到的测量值、计算值和/或提供值中的固有偏差。
在此参照作为理想化的示例实施例和/或中间结构的示意图的剖视图和/或分解图来描述各种示例实施例。如此,将预料到例如由制造技术和/或公差引起的图示的形状的变化。因此,在此所公开的示例实施例应不必被解释为限于区域的具体示出的形状,而是将包括由例如制造引起的形状上的偏差。以这种方式,附图中示出的区域本质上可以是示意性的,并且这些区域的形状可以不反映装置的区域的实际形状,如此,不必意图成为限制。
如本领域中惯常的,就功能块、单元和/或模块而言,一些示例实施例被描述并在附图中示出。本领域技术人员将理解的是,这些块、单元和/或模块通过可以使用基于半导体的制造技术或其他制造技术来形成的诸如逻辑电路的电子(或光学)电路、离散组件、微处理器、硬线电路、存储器元件、布线连接等物理地实现。在由微处理器或其他类似硬件来实现块、单元和/或模块的情况下,可以使用软件(例如,微代码)对它们进行编程和控制,以执行在此所讨论的各种功能,并且可以由固件和/或软件对它们进行可选地驱动。还预期的是,每个块、单元和/或模块可以通过专用硬件来实现,或者作为执行一些功能的专用硬件与执行其他功能的处理器(例如,一个或更多个编程的微处理器和相关电路)的组合来实现。此外,在不脱离发明构思的范围的情况下,一些示例实施例的每个块、单元和/或模块可以物理地分成两个或更多个交互的且离散的块、单元和/或模块。此外,在不脱离发明构思的范围的情况下,一些示例实施例的块、单元和/或模块可以物理地组合成更复杂的块、单元和/或模块。
除非另外限定,否则在此所使用的所有术语(包括技术术语和科学术语)具有与本公开是其一部分的领域的普通技术人员通常所理解的含义相同的含义。术语(诸如在通用词典中定义的术语)应被解释为具有与它们在相关领域的背景中的含义相一致的含义,并且不应以理想化或过于形式化的意思来进行解释,除非在此被明确地如此限定。
图1是根据一些示例实施例的显示装置10的透视图。图2是根据一些示例实施例的显示装置10的分解透视图。
参照图1和图2,根据一些示例实施例的显示装置10包括覆盖窗100、显示面板300、显示电路板310、显示驱动器电路320、柔性膜390、第一超声波传感器510、第二超声波传感器520、支架600、主电路板700和底盖900。
在本说明书中,术语“在……上方”指示覆盖窗100相对于显示面板300定位或布置所沿的方向,即,Z轴方向,术语“在……下面”指示支架600相对于显示面板300定位或布置所沿的方向,即,与Z轴方向相反的方向。另外,“左”、“右”、“上”和“下”指示当在平面图中观看显示面板300时的方向。例如,“左”指示与X轴方向相反的方向,“右”指示X轴方向,“上”指示Y轴方向,“下”指示与Y轴方向相反的方向。
显示装置10是用于显示动态图像或静态图像的装置。显示装置10可以用作诸如移动电话、智能电话、平板个人计算机(PC)、智能手表、手表电话、移动通信终端、电子笔记本、电子书、便携式多媒体播放器(PMP)、导航系统和超移动PC(UMPC)的便携式电子装置中以及诸如电视、笔记本计算机、监视器、广告牌和物联网(IoT)的各种产品中的显示屏。
显示装置10在平面图中(例如,当从相对于显示表面的平面正交或垂直的视角观看时)可以是矩形的。例如,显示装置10可以具有如图1和图2中示出的矩形平面形状,所述矩形平面形状具有在第一方向(X轴方向)上的短边和在第二方向(Y轴方向)上的长边。在第一方向(X轴方向)上延伸的短边与在第二方向(Y轴方向)上延伸的长边相交的每个拐角可以以一定曲率(例如,设定曲率或预定曲率)被倒圆,或者可以是直角。显示装置10的平面形状不限于矩形形状,而是根据显示装置10的设计,也可以是其他多边形形状、圆形形状、椭圆形形状或任意其他合适的形状。
显示装置10可以包括形成为平坦的第一区域DR1和从第一区域DR1的右侧和左侧延伸的第二区域DR2。第二区域DR2可以形成为平坦的或弯曲的。当第二区域DR2形成为平坦时,由第一区域DR1和第二区域DR2形成的角可以是钝角。当第二区域DR2形成为弯曲时,由第一区域DR1和第二区域DR2形成的角可以具有恒定的曲率或变化的曲率。
在图1中,第二区域DR2从第一区域DR1的右侧和左侧中的每侧延伸。然而,实施例不限于此。即,根据一些示例实施例,第二区域DR2也可以仅从第一区域DR1的右侧和左侧中的一侧延伸。可选地,第二区域DR2不仅可以从第一区域DR1的右侧和左侧延伸,还可以从第一区域DR1的上侧和下侧中的至少任意一侧延伸。下面将主要描述第二区域DR2位于显示装置10的右边缘和左边缘处的实施例。
覆盖窗100可以位于显示面板300上以覆盖显示面板300的上表面。因此,覆盖窗100可以起到保护显示面板300的上表面的作用。
覆盖窗100可以位于第一区域DR1和第二区域DR2中。覆盖窗100可以包括与显示面板300对应的透光部DA100和与除显示面板300以外的区域对应的遮光部NDA100。透光部DA100可以位于第一区域DR1和第二区域DR2中。遮光部NDA100可以形成为不透明的。可选地,遮光部NDA100可以形成为装饰层,所述装饰层具有当不显示图像时可以显示给用户(或由用户可见)的图案。
显示面板300可以位于覆盖窗100下方。显示面板300可以与覆盖窗100的透光部DA100叠置。显示面板300可以位于第一区域DR1和第二区域DR2中。因此,通过覆盖窗100,不仅可以在第一区域DR1中看到显示面板300的图像,还可以在第二区域DR2中看到显示面板300的图像。即,可以通过覆盖窗100在显示装置10的上表面、左边缘和右边缘上看到显示在显示面板300上的图像。
显示面板300可以是包括发光元件的发光显示面板。例如,根据显示装置10的设计,显示面板300可以是使用包括有机发光层的有机发光二极管的有机发光显示面板、使用微发光二极管的微发光二极管显示面板、包括包含量子点发光层的量子点发光二极管的量子点发光显示面板、使用包括无机半导体的无机发光元件的无机发光显示面板或任意其他合适的显示面板。下面将主要描述其中显示面板300是有机发光显示面板的实施例。
显示电路板310和显示驱动器电路320可以附着到显示面板300的一侧。显示电路板310的一端可以通过使用各向异性导电膜附着到设置在显示面板300的所述侧上的垫(pad,或称为“焊盘”)上。显示电路板310可以是能够(例如,在不损坏显示电路板310的情况下)弯曲的柔性印刷电路板、刚性的且不易弯曲的刚性印刷电路板或包括刚性印刷电路板和柔性印刷电路板两者的复合印刷电路板。
显示驱动器电路320通过显示电路板310接收控制信号和电源电压,并且产生并输出用于驱动显示面板300的信号和电压。显示驱动器电路320可以形成为集成电路并使用玻璃上芯片(COG)法、塑料上芯片(COP)法或超声波法附着到显示面板300上。然而,实施例不限于此。例如,根据一些示例实施例,显示驱动器电路320可以附着到显示电路板310上。
触摸驱动器电路330可以位于显示电路板310上。触摸驱动器电路330可以形成为集成电路并附着到显示电路板310的上表面。触摸驱动器电路330可以通过显示电路板310电连接到显示面板300的触摸传感器层的触摸电极。触摸驱动器电路330可以将触摸驱动信号发送到触摸电极之中的驱动电极,并通过检测触摸电极之中的驱动电极与感测电极之间的电容的电荷改变量来输出包括用户的触摸坐标的触摸数据。另外,电源单元可以另外地位于显示电路板310上以供应用于驱动显示驱动器电路320的显示驱动电压。
柔性膜390的一侧可以在显示面板300的下侧处使用各向异性导电膜附着到显示面板300的上表面上。柔性膜390的另一侧可以在显示电路板310的上侧处使用各向异性导电膜附着到显示电路板310的上表面上。柔性膜390可以是能够弯曲的柔性膜。
根据一些示例实施例,可以省略柔性膜390,显示电路板310可以直接附着到显示面板300的一侧。在这种情况下,显示面板300的所述侧可以朝向显示面板300的下表面弯曲。
第一超声波传感器510和第二超声波传感器520可以位于显示面板300的下表面上。第一超声波传感器510和第二超声波传感器520中的每个可以通过诸如压敏粘合剂(PSA)的粘合构件附着到显示面板300的下表面。
可选地,第一超声波传感器510和第二超声波传感器520可以与显示面板300一体地形成。例如,可以省略图4中示出的显示面板300的基底SUB1,缓冲层302可以位于第一超声波传感器510和第二超声波传感器520上。
可选地,第一超声波传感器510的一部分和第二超声波传感器520的一部分可以与显示面板300一体地形成。例如,图5中示出的第一超声波传感器510的超声波感测器件1520和第二超声波传感器520的超声波感测器件可以与显示面板300一体地形成,第一超声波传感器510的超声波发射器件1510和第二超声波传感器520的超声波发射器件可以例如通过诸如PSA的粘合构件附着到显示面板300的下表面。第一超声波传感器510的超声波感测器件1520和第二超声波传感器520的超声波感测器件可以位于图4中示出的显示面板300的基底SUB1与缓冲层302之间。第一超声波传感器510的超声波发射器件1510和第二超声波传感器520的超声波发射器件可以位于显示面板300的基底SUB1的下表面上。
第一超声波传感器510可以定位为与显示面板300的下侧相邻,第二超声波传感器520可以定位为与显示面板300的上侧相邻。第一超声波传感器510的位置和第二超声波传感器520的位置不限于图2中示出的位置。第一超声波传感器510和第二超声波传感器520中的每个可以位于不与朝向显示面板300的下表面弯曲的显示电路板310、电缆314以及支架600的第一相机孔CMH1和电池孔BH叠置的区域中。可选地,可以省略第一超声波传感器510和第二超声波传感器520中的任意一个,另一个可以布置在显示面板300的整个下表面上。
第一超声波传感器510可以是用于识别用户的指纹的超声波指纹识别传感器。第二超声波传感器520可以是用于确定用户或物体是否接近的超声波接近传感器。然而,第一超声波传感器510和第二超声波传感器520不限于超声波指纹识别传感器和超声波接近传感器,并且可以用作在发射超声波并感测由用户或物体反射的超声波的同时执行其他功能的传感器。
支架600可以位于显示面板300下方。支架600可以包括塑料、金属或塑料和金属两者。支架600可以包括其中插入有相机器件720的第一相机孔CMH1、电池790位于其中的电池孔BH以及连接到显示电路板310的电缆314穿过其的电缆孔CAH。
主电路板700和电池790可以位于支架600下方。主电路板700可以是印刷电路板或柔性印刷电路板。
主电路板700可以包括主处理器710、相机器件720和主连接器730。相机器件720可以位于主电路板700的上表面和下表面两者上,主处理器710可以位于主电路板700的下表面上,主连接器730可以位于主电路板700的下表面上。
主处理器710可以控制显示装置10的所有功能。例如,主处理器710可以通过显示电路板310将数字视频数据输出到显示驱动器电路320,使得显示面板300可以显示图像。另外,主处理器710可以从触摸驱动器电路330接收触摸数据,确定用户的触摸坐标,然后执行由在用户的触摸坐标处显示的图标指示的应用。
相机器件720在相机模式下处理由图像传感器获得的诸如静态图像或动态图像的图像帧,并且将处理后的图像帧输出到主处理器710。
穿过支架600的电缆孔CAH的电缆314可以连接到主连接器730。因此,主电路板700可以电连接到显示电路板310。
电池790可以布置为使得其在第三方向(Z轴方向)上不与主电路板700叠置。电池790可以与支架600的电池孔BH叠置。
另外,主电路板700还可以包括能够通过移动通信网络将无线信号发送到基站、外部终端和服务器中的至少一个或从基站、外部终端和服务器中的至少一个接收无线信号的移动通信模块。根据文本/多媒体消息的发送/接收,无线信号可以包括语音信号、视频呼叫信号或各种类型的数据。
底盖900可以位于主电路板700和电池790下方。底盖900可以紧固并固定到支架600。底盖900可以形成显示装置10的底部外观。底盖900可以包括塑料、金属或塑料和金属两者。
暴露相机器件720的下表面的第二相机孔CMH2可以形成在底盖900中。相机器件720的位置以及与相机器件720对应的第一相机孔CMH1和第二相机孔CMH2的位置不限于图2中示出的实施例。
根据一些示例实施例,如图1和图2中示出的,位于显示面板300的下表面上的第一超声波传感器510和第二超声波传感器520可以用作指纹识别传感器和接近传感器。因此,可以去除位于显示面板300的前表面上的暴露指纹识别传感器和接近传感器的孔。这可以最小化或减小显示装置10的边框的尺寸或面积,从而使得显示装置10的显示区域相对较宽。
图3是结合到图2的覆盖窗100的显示面板300的示例的仰视图。
参照图3,底面板盖400可以位于显示面板300下方。显示面板300在仰视图中可以被底面板盖400覆盖。底面板盖400可以例如通过粘合构件或粘合材料附着到显示面板300的下表面。粘合构件可以是PSA。
底面板盖400可以包括用于吸收从外部入射的光的光吸收构件、用于吸收外部冲击的缓冲构件和用于有效地使显示面板300的热消散的散热构件中的至少一个。
光吸收构件可以位于显示面板300下方。光吸收构件阻挡光的透射以从显示面板300上方防止或减小位于光吸收构件下方的元件(例如,显示电路板310、第一超声波传感器510、第二超声波传感器520等)的可视性。光吸收构件可以包括诸如黑色颜料或染料的光吸收材料。
缓冲构件可以位于光吸收构件下方。缓冲构件吸收外部冲击以防止或减少对显示面板300的损坏。缓冲构件可以由单层或多层形成。例如,缓冲构件可以由诸如聚氨酯、聚碳酸酯、聚丙烯或聚乙烯的聚合物树脂制成,或者可以由诸如通过使橡胶发泡形成的海绵、氨基甲酸乙酯类材料或丙烯酸类材料的弹性材料制成。缓冲构件可以用作缓冲层(cushionlayer)。
散热构件可以位于缓冲构件下方。散热构件可以包括第一散热层和第二散热层,第一散热层包含石墨或碳纳米管,第二散热层由能够屏蔽电磁波并具有优异的导热性的金属薄膜(诸如铜、镍、铁素体或银)形成。
根据一些示例实施例,可以省略底面板盖400,在这种情况下,位于底面板盖400的下表面上的元件(例如,显示电路板310)可以位于显示面板300的下表面上,而不是底面板盖400的下表面上。
附着到显示面板300的一侧的柔性膜390可以弯曲并位于底面板盖400下方,如图3中示出的。因此,附着到柔性膜390的一侧的显示电路板310可以位于底面板盖400下方。位于底面板盖400下方的显示电路板310可以通过诸如螺钉的固定构件固定或接合到底面板盖400的下表面。
显示电路板310可以包括第一电路板311和第二电路板312。第一电路板311和第二电路板312中的每个可以是刚性印刷电路板或柔性印刷电路板。如果第一电路板311和第二电路板312中的任意一个是刚性印刷电路板,另一个是柔性印刷电路板,则显示电路板310可以是复合印刷电路板。
在图3中,第二电路板312在第二方向(Y轴方向)上从第一电路板311的一侧延伸。第二电路板312在第一方向(X轴方向)上的宽度可以比第一电路板311在第一方向(X轴方向)上的宽度小。
触摸驱动器电路330和第二连接器315可以位于第二电路板312的表面上,第一连接器313可以位于第二电路板312的另一表面上。第一连接器313可以包括连接到设置在电缆314的一端处的第一连接端子的插入部。第二连接器315可以包括连接到设置在第一柔性电路板560的一端处的连接端子的插入部。
设置在电缆314的一端处的第一连接端子可以插入到第一连接器313的插入部中。设置在电缆314的另一端处的第二连接端子可以通过穿透支架600的电缆孔CAH弯曲到主电路板700下方,然后可以插入到如图2中示出的主连接器730的插入部中。
第一超声波传感器510可以位于穿透底面板盖400且暴露显示面板300的第一孔H1中。第一超声波传感器510可以使用诸如PSA的粘合构件附着到显示面板300的下表面。
第二超声波传感器520可以位于穿透底面板盖400且暴露显示面板300的第二孔H2中。第二超声波传感器520可以使用诸如PSA的粘合构件附着到显示面板300的下表面。
设置在第一柔性电路板560的一端处的连接端子可以插入到第二连接器315的插入部中。第一柔性电路板560的另一端可以连接到第一超声波传感器510。例如,第一柔性电路板560的另一端可以使用各向异性导电膜附着到位于第一超声波传感器510的下表面上的垫。
可以另外地设置使显示电路板310和第二超声波传感器520电连接的第二柔性电路板。设置在第二柔性电路板的一端处的连接端子可以插入到显示电路板310的连接器的插入部中,第二柔性电路板的另一端可以使用各向异性导电膜附着到位于第二超声波传感器520的下表面上的垫。
支架600可以包括电池孔BH、电缆孔CAH和第一相机孔CMH1。因为电池孔BH是用于容纳电池790的孔,所以电池790可以如图2中示出地在第三方向(Z轴方向)上与电池孔BH叠置。电池孔BH的尺寸可以比电池790的尺寸大。另外,因为支架600的第一相机孔CMH1是用于容纳主电路板700的相机器件720的孔,所以相机器件720可以在第三方向(Z轴方向)上与第一相机孔CMH1叠置。
根据一些示例实施例,如图3中示出的,第一超声波传感器510和第二超声波传感器520可以位于显示面板300的下表面上,并且可以通过第一柔性电路板560和第二柔性电路板电连接到显示电路板310。主电路板700和显示电路板310可以通过电缆314电连接。因此,第一超声波传感器510和第二超声波传感器520可以电连接到主电路板700。
图4是图2中示出的显示面板300的显示区域的示例的剖视图。
参照图4,显示面板300可以包括基底SUB1和像素阵列层PAL。像素阵列层PAL可以如图4中示出地包括缓冲层302、薄膜晶体管层303、发光元件层304和薄膜封装层305。
基底SUB1可以由塑料或玻璃制成。缓冲层302可以形成在基底SUB1上。缓冲层302可以形成在基底SUB1上以保护薄膜晶体管335和发光元件免受通过基底SUB1引入的湿气的影响(否则基底SUB1会容易渗透湿气)。缓冲层302可以由交替地堆叠的多个无机层形成。例如,缓冲层302可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。可以省略缓冲层302。
薄膜晶体管层303形成在缓冲层302上。薄膜晶体管层303包括薄膜晶体管335、栅极绝缘层336、层间绝缘膜337、保护层338和平坦化层339。
薄膜晶体管335中的每个包括有源层331、栅电极332、源电极333和漏电极334。在图4中,薄膜晶体管335中的每个形成为其中栅电极332位于有源层331上方的顶栅型。然而,应注意的是,实施例不限于此。即,薄膜晶体管335中的每个也可以形成为其中栅电极332位于有源层331下方的底栅型或其中栅电极332位于有源层331上方和下方两者的双栅型。
有源层331形成在缓冲层302上。有源层331可以由硅基半导体材料或氧化物基半导体材料制成。遮光层可以形成在缓冲层302与有源层331之间以阻挡外部光进入有源层331。
栅极绝缘层336可以形成在有源层331上。栅极绝缘层336可以是无机层,例如SiOx层、SiNx层或由这些层组成的多层。
栅电极332和栅极线可以形成在栅极绝缘层336上。栅电极332和栅极线中的每个可以是由钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)及其合金中的任意一种或更多种制成的单层或多层。
层间绝缘膜337可以形成在栅电极332和栅极线上。层间绝缘膜337可以是无机层,例如,SiOx层、SiNx层或由这些层组成的多层。
源电极333、漏电极334和数据线可以形成在层间绝缘膜337上。源电极333和漏电极334中的每个可以通过穿过栅极绝缘层336和层间绝缘膜337的接触孔连接到有源层331。源电极333、漏电极334和数据线中的每个可以是由钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)及其合金中的任意一种或更多种制成的单层或多层。
具有绝缘特性的保护层338可以形成在源电极333、漏电极334和数据线上。保护层338可以是无机层,例如,SiOx层,SiNx层或由这些层组成的多层。
平坦化层339可以形成在保护层338上以使由于薄膜晶体管335引起的台阶或非平坦纹理平坦化。平坦化层339可以由诸如丙烯酸树脂、环氧树脂、酚醛树脂、聚酰胺树脂或聚酰亚胺树脂的有机层制成。
发光元件层304形成在薄膜晶体管层303上。发光元件层304包括发光元件和像素限定层344。
发光元件和像素限定层344形成在平坦化层339上。发光元件可以是有机发光器件,每个发光元件包括阳极341、发光层342和阴极343。
阳极341可以形成在平坦化层339上。阳极341可以通过穿过保护层338和平坦化层339的接触孔连接到薄膜晶体管335的源电极333或漏电极334。
像素限定层344可以形成在平坦化层339上,并且可以覆盖阳极341的边缘以限定像素PX。即,像素限定层344用作用于限定像素PX的像素限定层。像素PX中的每个是其中阳极341、发光层342和阴极343顺序地堆叠以使得来自阳极341的空穴和来自阴极343的电子在发光层342中结合在一起以发光的区域。
发光层342形成在阳极341和像素限定层344上。发光层342可以是有机发光层。发光层342中的每个可以发射红光、绿光和蓝光中的一种。可选地,发光层342可以是发射白光的白色发光层。在这种情况下,发光层342可以是红色发光层、绿色发光层和蓝色发光层的堆叠件,并且可以是针对所有像素PX所共有的公共层。在这种情况下,显示面板300还可以包括用于显示红色、绿色和蓝色的滤色器。
发光层342中的每个可以包括空穴传输层、发光层和电子传输层。另外,发光层342中的每个可以形成为两个或更多个堆叠件的层叠结构,在这种情况下,电荷产生层可以形成在堆叠件之间。
阴极343形成在发光层342上。阴极343可以形成为覆盖发光层342。阴极343可以是针对所有像素PX所共有的公共层。
尽管主要描述了发光元件层304形成为在向上方向上发射光的顶部发射层的情况,但是实施例不限于此。发光元件层304也可以形成为在向下方向上发射光的底部发射层。当发光元件层304形成为顶部发射层时,阳极341可以由具有高反射率的金属材料(诸如铝和钛的堆叠结构(Ti/Al/Ti)、铝和氧化铟锡的堆叠结构(ITO/Al/ITO)、APC合金、或APC合金和氧化铟锡的堆叠结构(ITO/APC/ITO))制成。APC合金是银(Ag)、钯(Pd)和铜(Cu)的合金。另外,阴极343可以由能够透射光的透明导电材料(TCO)(诸如氧化铟锡(ITO)或氧化铟锌(IZO))或者半透射导电材料(诸如镁(Mg)、银(Ag)或镁与银的合金)制成。当阴极343由半透射导电材料制成时,可以通过微腔提高光输出效率。
薄膜封装层305形成在发光元件层304上。薄膜封装层305用于防止或减少氧、湿气或其他外部污染物渗透到发光层342和阴极343中。为此,薄膜封装层305可以包括至少一个无机层。无机层可以由氮化硅、氮化铝、氮化锆、氮化钛、氮化铪、氮化钽、氧化硅、氧化铝或氧化钛制成。另外,薄膜封装层305还可以包括至少一个有机层。有机层可以形成为足够的厚度以防止或减少颗粒或污染物渗透薄膜封装层305并进入发光层342和阴极343的情况。有机层可以包括环氧树脂、丙烯酸酯和氨基甲酸乙酯丙烯酸酯中的任意一种。
触摸传感器层可以形成在薄膜封装层305上。当触摸传感器层直接布置在薄膜封装层305上时,与当单独的触摸面板附着到薄膜封装层305上时相比,可以减小显示装置10的厚度。触摸传感器层可以包括用于使用电容法感测用户的触摸的触摸电极以及用于使垫和触摸电极连接的触摸线。例如,触摸传感器层可以使用自电容法或互电容法感测用户的触摸。
图5示出了根据一些示例实施例的第一超声波传感器510的超声波感测法。
参照图5,第一超声波传感器510位于显示面板300的表面上。第一超声波传感器510可以通过诸如PSA的粘合构件附着到显示面板300的表面上。
第一超声波传感器510包括超声波发射器件1510、超声波感测器件1520和间隔件1530。
超声波感测器件1520可以位于显示面板300的表面上,超声波发射器件1510可以位于超声波感测器件1520的表面上。显示面板300的所述表面可以是与显示面板300的另一表面背对的表面,用户的手指F放置在显示面板300的所述另一表面上,以用于指纹识别。超声波感测器件1520的所述表面可以是与超声波感测器件1520的面对显示面板300的另一表面背对的表面。
间隔件1530可以位于超声波发射器件1510与超声波感测器件1520之间。间隔件1530可以由玻璃制成。
超声波发射器件1510位于超声波感测器件1520下方。超声波发射器件1510可以包括感测层。超声波发射器件1510的感测层可以是诸如聚偏二氟乙烯(PVDF)或锆钛酸铅(PZT)的压电层。当将驱动电压施加到压电层的驱动电极时,超声波发射器件1510可以通过凭借逆压电效应而使压电层振动来输出超声波US。例如,超声波发射器件1510可以输出人类难以识别或感知的20kHz或更大的超声波。
超声波发射器件1510可以朝向显示面板300输出超声波US。超声波发射器件1510可以通过面对超声波感测器件1520的表面输出超声波US。通过与超声波发射器件1510的所述表面背对的另一表面输出的超声波US可以被物体反射并作为噪声输入。因此,超声波屏蔽膜可以位于超声波发射器件1510的所述另一表面上以使通过超声波发射器件1510的所述另一表面输出的超声波US最小化。
超声波感测器件1520可以根据从超声波发射器件1510输出的超声波US之中的被手指F反射的超声波US来输出感测电压。超声波感测器件1520可以包括感测层。超声波感测器件1520的感测层可以是诸如聚偏二氟乙烯(PVDF)或锆钛酸铅(PZT)的压电层。当将驱动电压施加到压电层的驱动电极时,超声波感测器件1520可以通过压电层的由于超声波US而引起的压电效应在感测电极中产生电压。超声波感测器件1520可以根据感测电极的电压输出感测电压。
超声波感测器件1520可以将感测电压输出到指纹识别单元。由手指F的指纹的脊反射的超声波US与由手指F的指纹的谷反射的超声波US之间存在时间差。指纹识别单元可以通过使用反映这些时间差的感测电压来产生指纹图案。指纹识别单元可以确定所产生的指纹图案与预存储的指纹图案是否匹配。
图6是图5的第一超声波传感器510的剖视图。
参照图6,超声波发射器件1510可以包括第一驱动电极1511、第二驱动电极1512和第一压电层1513。第一压电层1513可以被称为第一感测层。
第一驱动电极1511可以位于第一压电层1513的第一表面上,第二驱动电极1512可以位于第一压电层1513的与第一表面背对的第二表面上。第一压电层1513的第二表面可以是面对超声波感测器件1520的表面。第一驱动电极1511可以位于第一压电层1513的整个第一表面上,第二驱动电极1512可以布置在第一压电层1513的整个第二表面上。第一压电层1513可以位于第一驱动电极1511与第二驱动电极1512之间。
第一驱动电极1511和第二驱动电极1512中的每个可以由不透明金属材料或透明导电氧化物制成。第一压电层1513可以由聚偏二氟乙烯(PVDF)或锆钛酸铅(PZT)制成。当将交流(AC)电压施加到第一驱动电极1511和第二驱动电极1512时,第一压电层1513可以振动以输出人类难以识别的20kHz或更大的超声波。
超声波感测器件1520可以包括包含像素传感器PS的像素传感器阵列1521、感测驱动电极1522、感测电极1523、第二压电层1524和保护层1525。第二压电层1524可以被称为第二感测层。
像素传感器PS位于间隔件1530上,感测电极1523位于像素传感器PS上。像素传感器PS可以一对一地连接到感测电极1523。像素传感器PS可以根据感测电极1523的电压分别将感测电压输出到感测线。指纹识别单元可以通过分析感测线的感测电压来产生指纹图案。指纹识别单元可以确定所产生的指纹图案与预存储的指纹图案是否匹配。
第二压电层1524可以位于感测电极1523上,感测驱动电极1522可以位于第二压电层1524上。第二压电层1524可以位于感测驱动电极1522与感测电极1523之间。感测驱动电极1522可以位于第二压电层1524的整个表面上。当将驱动电压施加到感测驱动电极1522时,如果从超声波发射器件1510发射的超声波之中的被手指F反射的超声波入射到第二压电层1524上,超声波感测器件1520可以通过第二压电层1524的压电效应在感测电极1523中产生电压。
尽管在图6中第二压电层1524一体地形成在像素传感器PS上,但是实施例不限于这种情况。第二压电层1524可以被划分为与像素传感器PS一对一对应。
保护层1525可以位于感测驱动电极1522上以保护第二压电层1524和感测驱动电极1522。保护层1525可以包括绝缘材料。保护层1525可以包括具有弹性的材料以提供缓冲效果。
间隔件1530可以位于超声波发射器件1510的第二驱动电极1512与超声波感测器件1520的像素传感器阵列1521之间。
根据一些示例实施例,如图6中示出的,第一超声波传感器510可以通过超声波发射器件1510发射超声波,并通过超声波感测器件1520根据被手指F反射的超声波来输出感测电压。因此,指纹识别单元可以通过分析感测线的感测电压来产生指纹图案,并确定所产生的指纹图案与预存储的指纹图案是否匹配。指纹识别单元可以根据指纹图案是否匹配来产生指纹信号,并将所产生的指纹信号输出到主处理器710。
第二超声波传感器520可以实现为与图5和图6中示出的第一超声波传感器510基本上相同。然而,因为第二超声波传感器520实现为接近传感器,所以第二超声波传感器520可以包括接近识别单元而不是指纹识别单元,接近识别单元通过分析感测线的感测电压来确定用户或物体是否接近。接近识别单元可以根据用户或物体是否接近来产生接近信号,并将接近信号输出到主处理器710。
图7是超声波感测器件1520的示意性框图。
参照图7,超声波感测器件1520可以包括像素传感器PS、信号输出单元1540、感测单元1550和感测控制单元1560。
像素传感器PS可以布置在第一方向(水平方向)和与第一方向交叉的第二方向(竖直方向)上。像素传感器PS可以呈二维布置。
选择信号线S1至Sn、初始化信号线I1至In和控制电压线C1至Cn可以在第一方向上延伸,感测线R1至Rm可以在第二方向上延伸。因为像素传感器PS呈二维布置,所以像素传感器PS中的每个可以根据二维坐标连接到选择信号线S1至Sn中的任意一条、初始化信号线I1至In中的任意一条、控制电压线C1至Cn中的任意一条(其中,n是2或更大的正整数)以及感测线R1至Rm(其中,m是2或更大的正整数)中的任意一条。例如,位于第二行第三列中的像素传感器PS可以连接到第二选择信号线S2、第二初始化线(也被称为初始化信号线)I2、第二控制电压线C2和第三感测线R3。
信号输出单元1540可以连接到选择信号线(也被称为选择线)S1至Sn、初始化信号线I1至In和控制电压线C1至Cn。信号输出单元1540可以根据从感测控制单元1560接收的第一控制信号CS1产生要输出到选择信号线S1至Sn的选择信号、产生要输出到初始化信号线I1至In的初始化信号并且产生要输出到控制电压线C1至Cn的控制信号。
感测单元1550可以连接到感测线R1至Rm。感测单元1550可以包括电压感测单元1551和模数转换单元1552,电压感测单元1551感测感测线R1至Rm的感测电压,模数转换单元1552将由电压感测单元1551感测的感测电压转换为作为数字数据的感测数据RDATA。感测单元1550可以将感测数据RDATA输出到指纹识别单元。指纹识别单元可以根据感测数据RDATA来产生指纹图案,并确定所产生的指纹图案与预存储的指纹图案是否匹配。指纹识别单元可以根据指纹图案是否匹配来产生指纹信号,并将所产生的指纹信号输出到主处理器710。
感测控制单元1560将第一控制信号CS1输出到信号输出单元1540,并将感测驱动电压RVDD输出到感测驱动电极1522。感测控制单元1560可以将用于控制感测单元1550的第二控制信号CS2输出到感测单元1550。感测单元1550可以根据第二控制信号CS2感测被选择信号选择的像素传感器PS的感测电压。
图8是图7中示出的超声波感测器件1520的像素传感器PS的示例的电路图。
在图8中,示出了像素传感器PS连接到第k(其中k是满足1≤k≤n的整数)选择线Sk、第k初始化线Ik、第k控制电压线Ck和第j(其中j是满足1≤j≤m的整数)感测线Rj。
参照图8,像素传感器PS可以包括第一晶体管T1、第二晶体管T2和电容器Cp。
第一晶体管T1由第k选择线Sk的第k选择信号导通,并根据感测电极1523的电压将感测电压输出到第j感测线Rj。参照图8和图14,第一晶体管T1可以包括连接到第k选择线Sk的第一栅电极G11、连接到感测电极1523的第二栅电极G12、连接到第j感测线Rj的第一电极S1和连接到第一驱动电压线VDD的第二电极D1。第一晶体管T1的第一栅电极G11可以是位于第一晶体管T1的第一有源层ACT1上方的上栅电极,第一晶体管T1的第二栅电极G12可以是位于第一晶体管T1的第一有源层ACT1下方的下栅电极。
在第一晶体管T1中,如图14中示出的,可以仅激活与第一栅电极G11相邻的上沟道,可以不激活与第二栅电极G12相邻的下沟道。例如,当第一晶体管T1的第二栅电极G12与第一电极S1之间的电压差比阈值电压Vth低时,可以不激活与第一晶体管T1的第二栅电极G12相邻的下沟道。第一栅电极G11与第一有源层ACT1之间的距离可以比第二栅电极G12与第一有源层ACT1之间的距离小。稍后将参照图9更详细地描述第一晶体管T1的操作。
第二晶体管T2由第k初始化线Ik的第k初始化信号导通,并将感测电极1523连接到第k控制电压线Ck。另外,第二晶体管T2由第一电压的第k控制电压线Ck导通,并将感测电极1523连接到第k控制电压线Ck。第二晶体管T2可以包括连接到第k初始化线Ik的第一栅电极、连接到第k控制电压线Ck的第二栅电极和第一电极以及连接到感测电极1523的第二电极。第二晶体管T2的第一栅电极可以是位于第二晶体管T2的第二有源层上方的上栅电极,第二晶体管T2的第二栅电极可以是位于第二晶体管T2的第二有源层下方的下栅电极。如图8中示出,第二晶体管T2可以通过一个晶体管T2T和一个二极管T2D表示。
在第二晶体管T2中,与第一栅电极相邻的上沟道和与第二栅电极相邻的下沟道可以全部激活。可以通过施加到第一栅电极的电压来激活或去激活第二晶体管T2的上沟道,并且可以通过施加到第二栅电极的电压来激活或去激活第二晶体管T2的下沟道。稍后将参照图9更详细地描述第二晶体管T2的操作。
电容器Cp可以连接到第一晶体管T1的第二栅电极G12和第二驱动电压施加到其的第二驱动电压源或第二驱动电压线。电容器Cp的第一电极可以连接到第一晶体管T1的第二栅电极G12,第二驱动电压可以施加到电容器Cp的第二电极。
当第一晶体管T1和第二晶体管T2中的每个的第一电极是源电极时,第二电极可以是漏电极。可选地,当第一晶体管T1和第二晶体管T2中的每个的第一电极是漏电极时,第二电极可以是源电极。
第一晶体管T1和第二晶体管T2中的每个可以是场效应晶体管。尽管第一晶体管T1和第二晶体管T2中的每个在图8中是N型金属氧化物半导体场效应晶体管(MOSFET),但是实施例不限于这种情况。即,第一晶体管T1和第二晶体管T2中的每个也可以形成为P型MOSFET。当第一晶体管T1和第二晶体管T2中的每个形成为P型MOSFET时,图9的时序应被修改以适应P型MOSET的特性。
第一晶体管T1和第二晶体管T2中的每个可以形成为薄膜晶体管。在这种情况下,第一晶体管T1的第一有源层ACT1和第二晶体管T2的第二有源层中的每个可以由多晶硅、非晶硅和氧化物中的任意一种制成。当第一晶体管T1的第一有源层ACT1和第二晶体管T2的第二有源层中的每个由多晶硅制成时,用于形成第一有源层ACT1和第二有源层的工艺可以是低温多晶硅(LTPS)工艺。
图9示出了从图8的像素传感器PS发送的信号的波形。
参照图9,发送到第k初始化线Ik的第k初始化信号ISk是发送到第二晶体管T2的第一栅电极的信号和用于激活第二晶体管T2的上沟道的信号。发送到第k选择线Sk的第k选择信号SSk是发送到第一晶体管T1的第一栅电极G11的信号和用于激活第一晶体管T1的上沟道的信号。施加到第k控制电压线Ck的第k控制电压CVk是施加到第二晶体管T2的第二栅电极的电压和用于激活第二晶体管T2的下沟道的电压。
可以根据周期(例如,设定或预定周期)CT来重复第k初始化信号ISk、第k选择信号SSk和第k控制电压CVk。一个周期CT可以包括第一时段t1至第四时段t4。第一时段t1是感测电极1523的复位时段,第二时段t2是由于被手指F反射的超声波US而将感测电极1523的电压存储在电容器Cp中所历经的时段,第三时段t3是根据第一晶体管T1的第二栅电极G12的存储在电容器Cp中的电压将感测电压输出到第j感测线Rj所历经的时段,第四时段t4是休止时段。
第k初始化信号ISk在第一时段t1期间输出为栅极导通电压Von,在第二时段t2至第四时段t4期间输出为栅极截止电压Voff。第k选择信号SSk在第三时段t3期间输出为栅极导通电压Von,并在第一时段t1、第二时段t2和第四时段t4期间输出为栅极截止电压Voff。第k控制电压CVk在第二时段t2期间输出为偏置电压BV,并在第一时段t1、第三时段t3和第四时段t4期间输出为栅极截止电压Voff。栅极导通电压Von指稳定地激活第一晶体管T1的上沟道和第二晶体管T2的上沟道和下沟道的电压。栅极截止电压Voff指使第一晶体管T1的第一有源层ACT1的上沟道和第二晶体管T2的上沟道和下沟道稳定地去激活的电压。偏置电压BV是用于根据感测电极1523的电压来激活第二晶体管T2的下沟道的电压,并且可以设置为栅极导通电压Von与栅极截止电压Voff之间的电压。
图10至图13是在第一时段t1至第四时段t4期间的像素传感器PS的电路图。现在将参照图9至图13更详细地描述在一个周期CT的第一时段t1至第四时段t4期间的像素传感器PS的操作。
第一,参照图10,在第一时段t1期间,具有栅极导通电压Von的第k初始化信号ISk发送到第k初始化信号线Ik,具有栅极截止电压Voff的第k选择信号SSk发送到第k选择线Sk,具有栅极截止电压Voff的第k控制电压CVk施加到第k控制电压线Ck。另外,感测控制单元1560在第一时段t1至第四时段t4期间将感测驱动电压RVDD施加到感测驱动电极1522。
因为具有栅极导通电压Von的第k初始化信号ISk发送到第二晶体管T2的第一栅电极,所以激活了第二晶体管T2的上沟道。因此,可以将连接到第k控制电压线Ck的感测电极1523初始化为第k控制电压线Ck的栅极截止电压Voff。
第二,参照图11,在第二时段t2期间,具有偏置电压BV的第k控制电压CVk发送到第k控制电压线Ck,具有栅极截止电压Voff的第k初始化信号ISk发送到第k初始化线Ik,具有栅极截止电压Voff的第k选择信号SSk发送到第k选择线Sk。另外,因为在第二时段t2期间从超声波发射器件1510发射超声波US,所以通过由于被手指F反射的超声波US引起的第二压电层1524的压电效应在感测电极1523中产生电压。可选地,如果超声波US没有被手指F反射,因为在感测电极1523中不产生电压,所以感测电极1523可以具有在第一时段t1期间充入的栅极截止电压Voff。
当第k控制电压CVk的偏置电压BV与感测电极1523的电压之间的差比第二晶体管T2的下沟道的阈值电压高时,可以激活第二晶体管T2的下沟道。当第k控制电压CVk的偏置电压BV与感测电极1523的电压之间的差等于或低于第二晶体管T2的下沟道的阈值电压时,可以去激活第二晶体管T2的下沟道。
当通过由于被手指F反射的超声波US引起的第二压电层1524的压电效应在感测电极1523中产生电压时,第k控制电压CVk的偏置电压BV与感测电极1523的电压之间的差等于或低于第二晶体管T2的下沟道的阈值电压。因此,可以去激活第二晶体管T2的下沟道。
当感测电极1523因为超声波US未被手指F反射而具有第一时段t1的栅极截止电压Voff时,第k控制电压CVk的偏置电压BV与感测电极1523的电压之间的差比第二晶体管T2的下沟道的阈值电压高。因此,可以激活第二晶体管T2的下沟道。当第二晶体管T2的下沟道被激活时,感测电极1523可以充有偏置电压BV与第二晶体管T2的下沟道的阈值电压之间的差。另外,因为第一晶体管T1的第二栅电极G12连接到感测电极1523,所以它可以充有偏置电压BV与第二晶体管T2的下沟道的阈值电压之间的差。
第三,参照图12,在第三时段t3期间,具有栅极导通电压Von的第k选择信号SSk发送到第k选择线Sk,具有栅极截止电压Voff的第k初始化信号ISk发送到第k初始化线Ik,具有栅极截止电压Voff的第k控制电压CVk施加到第k控制电压线Ck。
因为具有栅极导通电压Von的第k选择信号SSk发送到第一晶体管T1的第一栅电极G11,所以激活了第一晶体管T1的上沟道。第一晶体管T1的上沟道的阈值电压可以根据第一晶体管T1的第二栅电极G12的电压变化。
图15是示出当第一晶体管T1的上沟道被施加到第一晶体管T1的第一栅电极G11的栅极导通电压Von激活时,第一晶体管T1的第一有源层ACT1的上沟道的阈值电压Vth相对于第一晶体管T1的第二栅电极G12的电压V12的图。在图15中,X轴表示第一晶体管T1的第二栅电极G12的电压V12,Y轴表示第一晶体管T1的第一有源层ACT1的上沟道的阈值电压Vth。
参照图15,当第一晶体管T1的第二栅电极G12的电压V12比第一电压V1低时,第一晶体管T1的第一有源层ACT1的上沟道的阈值电压Vth具有第三电压V3。当第一晶体管T1的第二栅电极G12的电压V12比第二电压V2高时,第一晶体管T1的第一有源层ACT1的上沟道的阈值电压Vth具有第四电压V4。第一电压V1可以低于0V,第二电压V2可以高于0V。当第一晶体管T1的第二栅电极G12的电压V12在第一电压V1与第二电压V2之间时,第一晶体管T1的第一有源层ACT1的上沟道的阈值电压Vth与第一晶体管T1的第二栅电极G12的电压V12成反比。即,当第一晶体管T1的第二栅电极G12的电压V12在第一电压V1与第二电压V2之间时,第一晶体管T1的第一有源层ACT1的上沟道的阈值电压Vth随着第一晶体管T1的第二栅电极G12的电压V12的增大而降低。
因为第一晶体管T1的第一有源层ACT1的上沟道的阈值电压Vth随着第一晶体管T1的第二栅电极G12的电压V12的增大而降低,所以流过第一晶体管T1的第一有源层ACT1的上沟道的驱动电流Ids(在下文中,被称为“第一晶体管T1的驱动电流Ids”)可以根据第一晶体管T1的第二栅电极G12的电压V12改变。
图16是示出当第一晶体管T1的第一有源层ACT1的上沟道被施加到第一晶体管T1的第一栅电极G11的栅极导通电压Von激活时,第一晶体管T1的驱动电流Ids相对于第一晶体管T1的第一栅电极G11的电压V11的图。在图16中,X轴表示第一晶体管T1的第一栅电极G11的电压V11,Y轴表示第一晶体管T1的第一有源层ACT1的上沟道的驱动电流Ids。
当第一栅电极G11的电压V11在驱动电压范围DR内时,随着第一晶体管T1的第二栅电极G12的电压V12变得更接近图15中的第一电压V1,第一晶体管T1的驱动电流Ids的曲线C可以如图16中示出地正向偏移。当曲线C正向偏移时,第一晶体管T1的驱动电流Ids可以减小。随着第一晶体管T1的第二栅电极G12的电压V12变得更接近图15中的第二电压V2,根据第二栅电极G12的电压V12的第一晶体管T1的驱动电流Ids的曲线C可以如图16中示出地负向偏移。当曲线C负向偏移时,第一晶体管T1的驱动电流Ids可以增大。即,第一晶体管T1的驱动电流Ids可以根据第二栅电极G12的电压V12而变化。
当通过由于被手指F反射的超声波US引起的第二压电层1524的压电效应在感测电极1523中产生电压时,第一晶体管T1的第二栅电极G12的电压V12与在感测电极1523中产生的电压基本上相同。另一方面,当超声波US未被手指F反射时,第一晶体管T1的第二栅电极G12的电压V12可以是偏置电压BV与第二晶体管T2的下沟道的阈值电压之间的差。即,第一晶体管T1的第二栅电极G12的电压V12可以根据被手指F反射的超声波US是否输入到第二压电层1524而变化,第一晶体管T1的驱动电流Ids可以相应地变化。因此,在第三时段t3期间通过第一晶体管T1的驱动电流Ids在第j感测线Rj中充入的电压可以根据被手指F反射的超声波US是否输入到第二压电层1524而变化。
第四,参照图13,在第四时段t4期间,具有栅极截止电压Voff的第k初始化信号ISk发送到第k初始化线Ik,具有栅极截止电压Voff的第k选择信号SSk发送到第k选择线Sk,具有栅极截止电压Voff的第k控制电压CVk施加到第k控制电压线Ck。因此,像素传感器PS的第一晶体管T1和第二晶体管T2在第四时段t4期间不导通。
根据一些示例实施例,如图8中示出的,像素传感器PS的第一晶体管T1的第二栅电极G12直接连接到感测电极1523。因此,通过第一晶体管T1的驱动电流Ids在第j感测线Rj中充入的电压可以根据被手指F反射的超声波US是否输入到第二压电层1524而变化。因此,能够通过使用第j感测线Rj的感测电压来识别用户的指纹图案或确定用户或物体是否接近。
根据一些示例实施例,如图8中示出的,像素传感器PS的第一晶体管T1包括连接到选择线Sk的第一栅电极G11和连接到感测电极1523的第二栅电极G12,并且可以被选择信号和感测电极1523的电压控制。即,第一晶体管T1可以是被选择信号控制的晶体管和被感测电极1523的电压控制的晶体管的组合。因此,因为像素传感器PS包括作为第一晶体管T1的一个晶体管,所以与当像素传感器PS包括两个晶体管时相比,可以减小像素传感器PS的区域。
根据一些示例实施例,如图8中示出的,像素传感器PS的第二晶体管T2包括连接到初始化线Ik的第一栅电极和连接到控制电压线Ck的第二栅电极和第一电极。因此,第二晶体管T2可以是如图8中示出的晶体管T2T和二极管T2D的组合。因为像素传感器PS包括作为第二晶体管T2的一个晶体管(晶体管T2T和二极管T2D组合成所述一个晶体管),所以与当像素传感器PS包括两个元件(即,晶体管T2T和二极管T2D)时相比,可以减小像素传感器PS的区域。
图17是图8的超声波感测器件1520的像素传感器PS的示例的剖视图。
参照图17,超声波感测器件1520可以包括第二基底SUB2、位于第二基底SUB2上的第一金属层ML1至第五金属层ML5、有源层ACT以及第一绝缘层INS1至第七绝缘层INS7。
第二基底SUB2可以由塑料或玻璃制成。间隔件1530可以位于第二基底SUB2下方,超声波发射器件1510可以位于间隔件1530下方。
第一绝缘层INS1可以形成在第二基底SUB2上。第一绝缘层INS1可以形成在第二基底SUB2上以保护晶体管T1和T2与电容器Cp免受通过第二基底SUB2(容易渗透湿气)引入的湿气的影响。第一绝缘层INS1可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。
包括电容器Cp的第二电容器电极CE2的第一金属层ML1可以形成在第一绝缘层INS1上。第一金属层ML1可以是由钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)及其合金中的任意一种或更多种制成的单层或多层。
第二绝缘层INS2可以形成在第一金属层ML1上。第二绝缘层INS2可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。
包括第一晶体管T1的第二栅电极G12、第二晶体管T2的第二栅电极G22和电容器Cp的第一电容器电极CE1的第二金属层ML2可以形成在第二绝缘层INS2上。第一晶体管T1的第二栅电极G12和第一电容器电极CE1形成在同一层上。第一晶体管T1的第二栅电极G12和第一电容器电极CE1彼此直接接触。第一电容器电极CE1可以在作为厚度方向的第三方向(Z轴方向)上与第二电容器电极CE2叠置。第二金属层ML2可以是由钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)及其合金中的任意一种或更多种制成的单层或多层。
第三绝缘层INS3可以形成在第二金属层ML2上。第三绝缘层INS3可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。
包括第一晶体管T1的第一有源层ACT1和第二晶体管T2的第二有源层ACT2的有源层ACT可以形成在第三绝缘层INS3上。第一有源层ACT1可以在作为厚度方向的第三方向(Z轴方向)上与第一晶体管T1的第二栅电极G12叠置。第二有源层ACT2可以在作为厚度方向的第三方向(Z轴方向)上与第二晶体管T2的第二栅电极G22叠置。有源层ACT可以由硅基半导体材料或氧化物基半导体材料制成。例如,有源层ACT可以由多晶硅、非晶硅和氧化物中的任意一种制成。
第四绝缘层INS4可以形成在有源层ACT上。第四绝缘层INS4可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。
包括第一晶体管T1的第一栅电极G11和第二晶体管T2的第一栅电极G21的第三金属层ML3可以形成在第四绝缘层INS4上。第一晶体管T1的第一栅电极G11可以在作为厚度方向的第三方向(Z轴方向)上与第一有源层ACT1叠置。第二晶体管T2的第一栅电极G21可以在作为厚度方向的第三方向(Z轴方向)上与第二有源层ACT2叠置。第三金属层ML3可以是由钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)及其合金中的任意一种或更多种制成的单层或多层。
第五绝缘层INS5可以形成在第三金属层ML3上。第五绝缘层INS5可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。
包括第一晶体管T1的第一电极S1和第二电极D1以及第二晶体管T2的第一电极S2和第二电极D2的第四金属层ML4可以形成在第五绝缘层INS5上。第四金属层ML4可以是由钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)及其合金中的任意一种或更多种制成的单层或多层。
第一接触孔CNT1可以穿透第四绝缘层INS4和第五绝缘层INS5以暴露第一有源层ACT1的一部分。第一晶体管T1的第一电极S1可以通过第一接触孔CNT1连接到第一晶体管T1的第一有源层ACT1。
第二接触孔CNT2可以穿透第四绝缘层INS4和第五绝缘层INS5以暴露第一有源层ACT1的另一部分。第一晶体管T1的第二电极D1可以通过第二接触孔CNT2连接到第一晶体管T1的第一有源层ACT1。
第三接触孔CNT3可以穿透第四绝缘层INS4和第五绝缘层INS5以暴露第二有源层ACT2的一部分。第二晶体管T2的第一电极S2可以通过第三接触孔CNT3连接到第二晶体管T2的第二有源层ACT2。
第四接触孔CNT4可以穿透第四绝缘层INS4和第五绝缘层INS5以暴露第二有源层ACT2的另一部分。第二晶体管T2的第二电极D2可以通过第四接触孔CNT4连接到第二晶体管T2的第二有源层ACT2。
第五接触孔CNT5可以穿透第三绝缘层INS3、第四绝缘层INS4和第五绝缘层INS5以暴露第二晶体管T2的第二栅电极G22。第二晶体管T2的第一电极S2可以通过第五接触孔CNT5连接到第二晶体管T2的第二栅电极G22。
第六绝缘层INS6可以形成在第四金属层ML4上。第六绝缘层INS6可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。
包括感测电极1523的第五金属层ML5可以形成在第六绝缘层INS6上。第五金属层ML5可以是由钼(Mo)、铝(Al)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)及其合金中的任意一种或更多种制成的单层或多层。
第六接触孔CNT6可以穿透第三绝缘层INS3、第四绝缘层INS4、第五绝缘层INS5和第六绝缘层INS6以暴露第一晶体管T1的第二栅电极G12。感测电极1523可以通过第六接触孔CNT6连接到第一晶体管T1的第二栅电极G12。
第七绝缘层INS7可以形成在第五金属层ML5上。第七绝缘层INS7可以是其中选自氧化硅(SiOx)层、氮化硅(SiNx)层和SiON层中的一个或更多个无机层交替地堆叠的多层。
第二压电层1524可以位于第七绝缘层INS7上,感测驱动电极1522可以位于第二压电层1524上。保护层1525可以位于感测驱动电极1522上。保护层1525可以使用诸如PSA的粘合构件附着到显示面板300的基底SUB1(见图4)。
当第一超声波传感器510和第二超声波传感器520与显示面板300一体地形成时,可以省略显示面板300的基底SUB1(见图4)。在这种情况下,显示面板300的缓冲层302(见图4)可以位于保护层1525上。
根据一些示例实施例,如图17中示出的,像素传感器PS的第一晶体管T1包括连接到选择线Sk的第一栅电极G11和连接到感测电极1523的第二栅电极G12,并且可以被选择信号和感测电极1523的电压控制。即,第一晶体管T1可以是被选择信号控制的晶体管和被感测电极1523的电压控制的晶体管的组合。因此,因为像素传感器PS包括作为第一晶体管T1的一个晶体管,所以与当像素传感器PS包括两个晶体管时相比,可以减小像素传感器PS的区域。
根据一些示例实施例,如图17中示出的,像素传感器PS的第二晶体管T2包括连接到初始化线Ik的第一栅电极G21和连接到控制电压线Ck的第二栅电极G22和第一电极S2。因此,第二晶体管T2可以如图8中示出是晶体管T2T和二极管T2D的组合。因为像素传感器PS包括作为第二晶体管T2的一个晶体管(晶体管T2T和二极管T2D组合成所述一个晶体管),所以与当像素传感器PS包括两个元件(即,晶体管T2T和二极管T2D)时相比,可以减小像素传感器PS的区域。
根据一些示例实施例,如图17中示出的,第一晶体管T1的第二栅电极G12和电容器Cp的第一电容器电极CE1位于同一层上并且彼此直接接触且彼此直接连接,第一电容器电极CE1在作为厚度方向的第三方向(Z轴方向)上与第二电容器电极CE2叠置。因此,可以使形成有第一晶体管T1和电容器Cp的区域最小化,从而减小像素传感器PS的区域。
尽管在此已经描述了某些示例实施例和实施方式,但是通过该描述,其他实施例和修改将是明显的。因此,发明构思不限于这样的实施例,而是限于所附权利要求及其等同物以及如对本领域普通技术人员而言将是明显的各种明显的修改和等同布置的更宽范围。

Claims (26)

1.一种超声波感测器件,所述超声波感测器件包括:
感测层,在驱动电极与感测电极之间,其中,所述感测层被构造为根据超声波产生电信号;以及
第一晶体管,包括连接到选择线的第一栅电极和连接到所述感测电极的第二栅电极。
2.根据权利要求1所述的超声波感测器件,其中,所述第一晶体管还包括:有源层,在所述第一栅电极下方且在所述第二栅电极上。
3.根据权利要求2所述的超声波感测器件,其中,所述第一晶体管还包括:第一电极,连接到感测线;以及第二电极,连接到被构造为接收第一驱动电压的第一驱动电压线。
4.根据权利要求2所述的超声波感测器件,所述超声波感测器件还包括:电容器,所述电容器包括连接到所述第一晶体管的所述第二栅电极的第一电容器电极和被构造为接收第二驱动电压的第二电容器电极。
5.根据权利要求4所述的超声波感测器件,其中,所述第一晶体管的所述第二栅电极和所述第一电容器电极在同一层上,并且所述第二电容器电极在所述第一电容器电极下方。
6.根据权利要求4所述的超声波感测器件,所述超声波感测器件还包括:第二晶体管,所述第二晶体管包括连接到初始化线的第一栅电极、连接到控制电压线的第二栅电极和第一电极以及连接到所述感测电极的第二电极。
7.根据权利要求6所述的超声波感测器件,其中,所述驱动电极、所述感测电极和所述感测层在所述第一晶体管和所述第二晶体管上。
8.根据权利要求6所述的超声波感测器件,其中,所述第二晶体管被构造为在第一时段期间导通以将所述第一晶体管的所述第二栅电极的电压和所述感测电极的电压初始化。
9.根据权利要求8所述的超声波感测器件,其中,在所述第一时段期间,具有栅极截止电压的选择信号发送到所述选择线,具有栅极导通电压的初始化信号发送到所述初始化线,并且具有所述栅极截止电压的控制电压施加到所述控制电压线。
10.根据权利要求8所述的超声波感测器件,其中,在所述第一时段之后的第二时段期间,通过所述感测层产生的所述感测电极的感测电压施加到所述第一晶体管的所述第二栅电极。
11.根据权利要求10所述的超声波感测器件,其中,在所述第二时段期间,具有栅极截止电压的选择信号发送到所述选择线,具有所述栅极截止电压的初始化信号发送到所述初始化线,并且具有在栅极导通电压与所述栅极截止电压之间的偏置电压的控制电压施加到所述控制电压线。
12.根据权利要求10所述的超声波感测器件,其中,在所述第二时段之后的第三时段期间,所述第一晶体管导通,并且流过所述第一晶体管的沟道的驱动电流根据施加到所述第一晶体管的所述第二栅电极的所述感测电压而变化。
13.根据权利要求12所述的超声波感测器件,其中,在所述第三时段期间,具有栅极导通电压的选择信号发送到所述选择线,具有栅极截止电压的初始化信号发送到所述初始化线,并且具有所述栅极截止电压的控制电压施加到所述控制电压线。
14.根据权利要求12所述的超声波感测器件,其中,所述第一晶体管的阈值电压随着施加到所述第一晶体管的所述第二栅电极的所述感测电压的增大而减小。
15.根据权利要求12所述的超声波感测器件,其中,当具有栅极导通电压的选择信号发送到所述第一晶体管的所述第一栅电极时,所述驱动电流随着施加到所述第一晶体管的所述第二栅电极的所述感测电压的增大而增大。
16.根据权利要求6所述的超声波感测器件,所述超声波感测器件还包括:第一绝缘层,在所述第二电容器电极上,其中,所述第一晶体管的所述第二栅电极、所述第二晶体管的所述第二栅电极和所述第一电容器电极在所述第一绝缘层上。
17.根据权利要求16所述的超声波感测器件,所述超声波感测器件还包括:第二绝缘层,在所述第一晶体管的所述第二栅电极、所述第二晶体管的所述第二栅电极和所述第一电容器电极上,
其中,所述第一晶体管的所述有源层和所述第二晶体管的有源层在所述第二绝缘层上。
18.根据权利要求17所述的超声波感测器件,所述超声波感测器件还包括:第三绝缘层,在所述第一晶体管的所述有源层和所述第二晶体管的所述有源层上,
其中,所述第一晶体管的所述第一栅电极和所述第二晶体管的所述第一栅电极在所述第三绝缘层上。
19.根据权利要求18所述的超声波感测器件,所述超声波感测器件还包括:第四绝缘层,在所述第一晶体管的所述第一栅电极和所述第二晶体管的所述第一栅电极上,
其中,所述第一晶体管的所述第一电极和所述第二电极以及所述第二晶体管的所述第一电极和所述第二电极在所述第四绝缘层上。
20.根据权利要求19所述的超声波感测器件,其中,所述第一晶体管的所述第一电极和所述第二电极分别通过穿透所述第三绝缘层和所述第四绝缘层的第一接触孔和第二接触孔连接到所述第一晶体管的所述有源层。
21.根据权利要求19所述的超声波感测器件,其中,所述第二晶体管的所述第一电极和所述第二电极分别通过穿透所述第三绝缘层和所述第四绝缘层的第三接触孔和第四接触孔连接到所述第二晶体管的所述有源层。
22.根据权利要求19所述的超声波感测器件,其中,所述第二晶体管的所述第一电极通过穿透所述第二绝缘层、所述第三绝缘层和所述第四绝缘层的第五接触孔连接到所述第二晶体管的所述第二栅电极。
23.根据权利要求19所述的超声波感测器件,所述超声波感测器件还包括:第五绝缘层,在所述第一晶体管的所述第一电极和所述第二电极以及所述第二晶体管的所述第一电极和所述第二电极上,其中,所述感测电极在所述第五绝缘层上。
24.根据权利要求23所述的超声波感测器件,其中,所述感测电极通过穿透所述第二绝缘层、所述第三绝缘层、所述第四绝缘层和所述第五绝缘层的第六接触孔连接到所述第一晶体管的所述第二栅电极。
25.根据权利要求23所述的超声波感测器件,其中,所述感测层在所述感测电极上,并且所述驱动电极在所述感测层上。
26.根据权利要求1所述的超声波感测器件,其中,所述感测层包括具有压电效应的压电材料。
CN202010588339.3A 2019-06-25 2020-06-24 超声波感测器件 Active CN112130703B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0075410 2019-06-25
KR1020190075410A KR20210000766A (ko) 2019-06-25 2019-06-25 초음파 감지 장치와 이를 포함하는 표시 장치

Publications (2)

Publication Number Publication Date
CN112130703A true CN112130703A (zh) 2020-12-25
CN112130703B CN112130703B (zh) 2024-05-10

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759400A (zh) * 2011-04-25 2012-10-31 三星电子株式会社 光感测装置和驱动光感测装置的方法
US20130088460A1 (en) * 2011-10-05 2013-04-11 Samsung Electronics Co., Ltd. Optical touch screen apparatus and method of manufacturing the optical touch screen apparatus
US20170059699A1 (en) * 2015-09-01 2017-03-02 Qualcomm Incorporated Pixel receiver with capacitance cancellation for ultrasonic imaging apparatus
US20190057236A1 (en) * 2017-02-28 2019-02-21 Boe Technology Group Co., Ltd. Display panel, driving method therefor, and display device
US20190079186A1 (en) * 2017-09-14 2019-03-14 Qualcomm Incorporated Ultrasonic transducer pixel readout circuitry and methods for ultrasonic phase imaging
CN109800623A (zh) * 2017-11-17 2019-05-24 三星显示有限公司 指纹传感器和包括指纹传感器的显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759400A (zh) * 2011-04-25 2012-10-31 三星电子株式会社 光感测装置和驱动光感测装置的方法
US20130088460A1 (en) * 2011-10-05 2013-04-11 Samsung Electronics Co., Ltd. Optical touch screen apparatus and method of manufacturing the optical touch screen apparatus
US20170059699A1 (en) * 2015-09-01 2017-03-02 Qualcomm Incorporated Pixel receiver with capacitance cancellation for ultrasonic imaging apparatus
US20190057236A1 (en) * 2017-02-28 2019-02-21 Boe Technology Group Co., Ltd. Display panel, driving method therefor, and display device
US20190079186A1 (en) * 2017-09-14 2019-03-14 Qualcomm Incorporated Ultrasonic transducer pixel readout circuitry and methods for ultrasonic phase imaging
CN109800623A (zh) * 2017-11-17 2019-05-24 三星显示有限公司 指纹传感器和包括指纹传感器的显示装置

Also Published As

Publication number Publication date
US11450133B2 (en) 2022-09-20
EP3767525A3 (en) 2021-03-31
US20200410192A1 (en) 2020-12-31
JP2021005362A (ja) 2021-01-14
KR20210000766A (ko) 2021-01-06
EP3767525B1 (en) 2023-06-28
EP3767525A2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US10720474B2 (en) Electronic device
US10911851B2 (en) Display device and method of driving the same
US11023064B2 (en) Display device having at least one pressure sensor
US20230251733A1 (en) Display device including force sensor and vibration generator
US10861908B2 (en) Display device
US11736843B2 (en) Display device
US11171184B2 (en) Display device and method of manufacturing the same
US11521415B2 (en) Display device
US20200057475A1 (en) Sound generator, display device including the same, and method of driving display device
US11836312B2 (en) Display device
US11638076B2 (en) Display device
CN112445369A (zh) 感测电路和显示装置
KR20210018702A (ko) 센서 유닛, 그를 포함하는 표시 장치, 및 그의 수분 측정 방법
US11127796B2 (en) Display panel with integrated pressure sensor and printed circuit board
US11650621B2 (en) Circuit board having sound generator and display device including the same
US11849612B2 (en) Display panel, display device including same, and method for manufacturing display device
EP3767525B1 (en) Ultrasonic sensing device
CN112130703B (zh) 超声波感测器件
US20210102823A1 (en) Pressure sensor and display device including the same
US11941195B2 (en) Display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant