CN112129212B - Method and system for measuring dynamic loop of automobile wire harness - Google Patents

Method and system for measuring dynamic loop of automobile wire harness Download PDF

Info

Publication number
CN112129212B
CN112129212B CN202010994513.4A CN202010994513A CN112129212B CN 112129212 B CN112129212 B CN 112129212B CN 202010994513 A CN202010994513 A CN 202010994513A CN 112129212 B CN112129212 B CN 112129212B
Authority
CN
China
Prior art keywords
connection point
length
flexible coil
current
wire harness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010994513.4A
Other languages
Chinese (zh)
Other versions
CN112129212A (en
Inventor
于泽涛
董斗星
胡特
程夏露
孙瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfeng Motor Corp
Original Assignee
Dongfeng Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfeng Motor Corp filed Critical Dongfeng Motor Corp
Priority to CN202010994513.4A priority Critical patent/CN112129212B/en
Publication of CN112129212A publication Critical patent/CN112129212A/en
Application granted granted Critical
Publication of CN112129212B publication Critical patent/CN112129212B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The invention discloses a method and a system for measuring a dynamic loop of an automobile wire harness, belonging to the field of automobile wire harness installation, and the method comprises the following steps: obtaining an initial length L of the flexible coil between the first connection point of the wire harness section and the first component and the second connection point of the wire harness section and the second component in a static state0(ii) a Determining the length L of the flexible coil between the first connection point and the second connection point at different moments based on the current curve of the flexible coil between the first connection point and the second connection point under different motion states of the automobilet(ii) a According to the initial length L0And length L of different time instantstDetermining reserved length L (maxL) of automobile wire harnesst‑L0. According to the invention, the change of the length is reflected by the physical quantity of the resistor due to the fact that the flexible coil is different in the clamping position of the sliding sheet and different in the resistor, so that the real relative maximum distance of the dynamic loop under each road condition of a road test can be truly reflected, and a basis is provided for designing the wire harness allowance.

Description

Method and system for measuring dynamic loop of automobile wire harness
Technical Field
The invention belongs to the field of automobile wire harness installation, and particularly relates to a method and a system for measuring an automobile wire harness dynamic loop.
Background
Since the wire harness is arranged at various positions of the automobile. If a dynamic loop (two fixed points generate relative motion) exists in the wiring harness arrangement, for example, one end of the wiring harness is fixed on an engine, and the other end of the wiring harness is fixed on a vehicle body, the two ends of the wiring harness can actually move relatively during the motion of the vehicle, and the length of the wiring harness cannot be the distance between the two points in the data due to the relative motion. The remaining distance is too short, the wire harness is in a risk of being broken, the remaining distance is too long, the wire harness is in a risk of being abraded due to the fact that the surrounding environment of the wire harness is complex, at the moment, the accurate allowance of the wire harness needs to be researched, and the stability and the reliability of the wire harness are guaranteed.
The existing mode for designing the allowance of the automobile wire harness dynamic ring mainly comprises 2 types: one is an empirical method, and an empirical value is reserved; the other is a dynamic envelope method; the empirical method is mainly to reserve a certain length through experience under the condition that the dynamic loop of the automobile wire harness is not clear, but the empirical value cannot be adapted to all assemblies carried by the automobile and is difficult to check and correct. The motion envelope method generally provides a motion envelope of an obvious moving object (such as a power assembly), and the other object with an insufficiently obvious relative motion is assumed to be in a static state, and the size of a dynamic ring is measured through the envelope, however, the acquisition of the motion envelope is also generally based on a simulation result, and is rarely an actual measurement result; in addition, another relative movement is not obvious and is not taken into account.
Disclosure of Invention
Aiming at the defects or improvement requirements in the prior art, the invention provides the method and the system for measuring the dynamic loop of the automobile wire harness, which can truly reflect the real relative maximum distance of the dynamic loop under each road condition of a road test and provide a basis for designing the wire harness allowance.
To achieve the above object, according to one aspect of the present invention, there is provided a method for measuring a dynamic loop of a vehicle harness, comprising:
obtaining an initial length L of the flexible coil between a first connection point of the wire harness section and the first component and a second connection point of the wire harness section and the second component in a static state0
Determining the length L of the flexible coil between the first connection point and the second connection point at different moments based on the current curve of the flexible coil between the first connection point and the second connection point under different motion states of the automobilet
According to the initial length L0And length L of different time instantstDetermining reserved length L (maxL) of automobile wire harnesst-L0
In some alternative embodiments, the first connection point is a fixed connection side of the flexible coil, and the second connection point is a sliding connection side of the flexible coil, which enables the length of the flexible coil to increase as the distance between the first component and the second component increases.
In some alternative embodiments, the length of the flexible coil does not change as the distance between the first component and the second component decreases.
In some optional embodiments, the method further comprises:
obtaining the current I between the first connection point and the second connection point in the initial static state0
Acquiring current I between the first connection point and the second connection point at each moment under different motion states of the automobilet
By a current I0And current ItObtaining a current curve of the flexible coil between the first connection point and the second connection point.
In some optional embodiments, the method further comprises:
obtaining a stabilized current minimum I from a current curve of the flexible coil between the first connection point and the second connection pointmin
From a current minimum value IminAnd initial current value I0Obtaining the variation delta R of the resistance of the flexible coil, and obtaining the maximum variation delta L of the length of the flexible coil according to the variation delta R of the resistancemax
By Δ Lmax+L0=maxLtDetermining maximum length maxL of a beam segmentt
According to another aspect of the present invention, there is provided a measurement system for a dynamic loop of a vehicle wiring harness, comprising:
a first length obtaining unit for obtaining an initial length L of the flexible coil between a first connection point of the wire harness section and the first component and a second connection point of the wire harness section and the second component in a static state0
A second length obtaining unit for obtaining the flexibility between the first connection point and the second connection point based on the automobile in different motion statesA current curve of the linear coil, determining the length L of the flexible coil between the first and second connection points at different timest
A reserved length determining unit for determining the length of the initial length L0And length L of different time instantstDetermining reserved length L (maxL) of automobile wire harnesst-L0
In some alternative embodiments, the first connection point is a fixed connection side of the flexible coil, and the second connection point is a sliding connection side of the flexible coil, which enables the length of the flexible coil to increase as the distance between the first component and the second component increases.
In some optional embodiments, the system further comprises:
a calibration unit for acquiring a current I between the first connection point and the second connection point in an initial static state0(ii) a Acquiring current I between the first connection point and the second connection point at each moment under different motion states of the automobilet(ii) a By a current I0And current ItObtaining a current curve of the flexible coil between the first connection point and the second connection point.
In some optional embodiments, the system further comprises:
a maximum length determination unit for obtaining a stabilized current minimum value I from a current curve of the flexible coil between the first connection point and the second connection pointmin(ii) a From a current minimum value IminAnd initial current value I0Obtaining the variation delta R of the resistance of the flexible coil, and obtaining the maximum variation delta L of the length of the flexible coil according to the variation delta R of the resistancemax(ii) a By Δ Lmax+L0=maxLtDetermining maximum length maxL of a beam segmentt
According to another aspect of the invention, a computer-readable storage medium is provided, on which a computer program is stored which, when being executed by a processor, carries out the steps of the method of any of the above.
In general, compared with the prior art, the above technical solution contemplated by the present invention can achieve the following beneficial effects:
the length change is reflected by the physical quantity of the resistor due to the fact that the flexible coil is different in the position clamped by the sliding sheet, the real relative maximum distance of the dynamic ring can be truly reflected under each road condition of a road test, and a basis is provided for designing the wire harness allowance.
Drawings
FIG. 1 is a schematic flow chart of a method for measuring a dynamic loop of an automotive wiring harness according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of a flexible coil and clamping slide connection provided by an embodiment of the present invention;
FIG. 3 is a schematic diagram of a circuit measurement provided by an embodiment of the present invention;
FIG. 4 is a schematic view of a current curve during operation of an automobile according to an embodiment of the present invention;
FIG. 5 is a resistance curve representation during operation of an automobile according to an embodiment of the present invention;
fig. 6 is a length curve illustration of an automobile provided by an embodiment of the invention in a corresponding operation process.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. In addition, the technical features involved in the embodiments of the present invention described below may be combined with each other as long as they do not conflict with each other.
In the present examples, "first", "second", etc. are used for distinguishing different objects, and are not necessarily used for describing a particular order or sequence.
In the present invention, a dynamic ring represents: one is connected with 2 object connection modes with 2 different motion modes.
Example one
Fig. 1 is a schematic flow chart of a method for measuring a dynamic loop of an automotive wiring harness according to an embodiment of the present invention, where the method shown in fig. 1 includes the following steps:
s1: obtaining an initial length L of the flexible coil between the first connection point of the wire harness section and the first component and the second connection point of the wire harness section and the second component in a static state0
In the embodiment of the invention, firstly, according to the design requirement, the end of the wire harness (which represents that two fixed points of the wire harness can obviously move relatively along with the movement of the automobile) needing the design dynamic margin is selected on the completely assembled automobile. As shown in fig. 2, for example, two fixing points of the wire harness are respectively located on a component a (e.g., a powertrain) and a component B (e.g., a vehicle body), that is, a connecting point 1 (i.e., a first connecting point) is located on the component a, and a connecting point 2 (i.e., a second connecting point) is located on the component B.
In the embodiment of the present invention, a flexible coil (clamping a slip sheet on the flexible coil to clamp the coil for conduction) is connected to the connection point 1 (the fixed point at one end of the cable segment), the length is L' (i.e. the measuring range of the flexible coil), the resistance of the flexible coil changes linearly with the length of the access circuit, i.e. the change rate per unit length is the same as: Δ R/Δ L ═ k (constant). A clamping contact piece is fixed on the connecting point 2 (the fixing point of the other end of the wire harness section), and the flexible coil can slide on the contact piece.
Then, as shown in fig. 3, the flexible coil of the connection point 1 and the slider of the connection point 2 are connected to a circuit having a constant voltage U.
S2: determining the length L of the flexible coil between the first connection point and the second connection point at different moments based on the current curve of the flexible coil between the first connection point and the second connection point under different motion states of the automobilet
S3: according to the initial length L0And length L of different time instantstDetermining reserved length L (maxL) of automobile wire harnesst-L0
In the embodiment of the invention, the flexible coil is in a linear state in the initial static state, and the clamping slide sheet is arranged at the momentAt A0, the current device measures a current I0The straight line distance between the connection point 1 and the connection point 2 is L0. I.e. the length of the beam segment is L without length reservation0. The component A (such as a power assembly) and the component B (such as a vehicle body) can move relatively during the operation of the vehicle. As shown in fig. 3, at a certain time t, because the coil is soft, the distance between the connection point 1 and the connection point 2 increases under the pulling of the component a, and the distance between the connection point 1 and the connection point 2 is LtWhen the distance between the connection point 1 and the connection point 2 is reduced at time t +1, the component a cannot push the soft coil to retract into the clamping type slider. Therefore, the clamping slide sheet can move to the right only when the relative distance between the connecting point 1 and the connecting point 2 is increased, and when the relative distance between the connecting point 1 and the connecting point 2 is reduced, the coil cannot retract because the coil is flexible. Namely, the clamping slide sheet can only be moved to the right by the relative distance between the connecting point 1 and the connecting point 2, and the distance is reduced without the phenomenon of left movement.
During the drive test, the distance between the connection point 1 and the connection point 2 changes in real time because the component a (such as a power assembly) and the component B (such as a vehicle body) always move relatively. The current profile of the slider coil was monitored dynamically throughout the process using the measurement circuit of figure 3, as shown in figure 4.
As shown in FIG. 5, the resistance of the flexible coil is linearly changed along with the change of the clamping length, and the resistance of the flexible coil connected between the connection point 1 and the connection point 2 is R through circuit calibration0When the current of the flexible coil between the connection point 1 and the connection point 2 is I0Length L of the flexible coil between connection point 1 and connection point 20. Because the slide only moves to the right, i.e. the current only decreases until the maximum distance L between the connection point 1 and the connection point 2 is reachedmaxWhen reaching the minimum IminAnd then no longer changed.
As shown in FIG. 6, after the vehicle movement is over, L reaches Lmax,ΔR=U/Imin-U/I0When Δ L is equal to Δ R/k, i.e., Δ Lmax=(U/Imin-U/I0) K is the sum of the values of k and k. After the road test is completed, the Δ L is obtainedmaxI.e. the length of the wire harness to be reserved on the dynamic loopAnd (4) degree. I.e. the length of the beam segment should be designed to be Lmax=L0+ΔLmax
In the embodiment of the invention, the maximum distance between two fixed points of a wiring harness dynamic ring (not limited to a power assembly and a vehicle body, as long as a wiring harness section is applicable between two fixed points which move relatively) is measured through a circuit, and the design allowance of the wiring harness section can be obtained. In the dynamic road test process of the actual vehicle, the real dynamic real-time distance in the vehicle motion process is obtained through measurement, and support is provided for designing the dynamic loop allowance.
Example two
In another embodiment of the present invention, there is provided a measurement system for a dynamic loop of an automotive wiring harness, including:
a first length obtaining unit for obtaining an initial length L of the flexible coil between the first connection point of the beam segment and the first component and the second connection point of the beam segment and the second component in a static state0
A second length obtaining unit, configured to determine, based on a current curve of the flexible coil between the first connection point and the second connection point in different motion states of the vehicle, a length L of the flexible coil between the first connection point and the second connection point at different timest
A reserved length determining unit for determining the length of the initial length L0And length L of different time instantstDetermining reserved length L (maxL) of automobile wire harnesst-L0
In some alternative embodiments, the first connection point is a fixed connection side of the flexible coil and the second connection point is a sliding connection side of the flexible coil, which enables the length of the flexible coil to increase as the distance between the first component and the second component increases.
In some alternative embodiments, the length of the flexible coil does not change as the distance between the first component and the second component is reduced.
In some optional embodiments, the system further comprises:
calibration unit for calibration at the beginningObtaining the current I between the first connection point and the second connection point in the initial static state0(ii) a Acquiring current I between the first connection point and the second connection point at each moment in different motion states of the automobilet(ii) a By a current I0And current ItA current curve of the flexible coil between the first connection point and the second connection point is obtained.
In some optional embodiments, the system further comprises:
a maximum length determining unit for obtaining a stabilized current minimum value I from the current curve of the flexible coil between the first connection point and the second connection pointmin(ii) a From a current minimum value IminAnd initial current value I0Obtaining the variation delta R of the resistance of the flexible coil, and obtaining the maximum variation delta L of the length of the flexible coil according to the variation delta R of the resistancemax(ii) a By Δ Lmax+L0=maxLtDetermining maximum length maxL of a beam segmentt
The embodiments of the present invention will not be repeated herein, and reference may be made to the description of the method embodiments above for the specific implementation of each unit.
In another embodiment of the present invention, a computer-readable storage medium is further provided, on which a computer program is stored, which when executed by a processor implements the steps of the above-described method for measuring a dynamic loop of a vehicle harness.
It should be noted that, according to the implementation requirement, each step/component described in the present application can be divided into more steps/components, and two or more steps/components or partial operations of the steps/components can be combined into new steps/components to achieve the purpose of the present invention.
It will be understood by those skilled in the art that the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the invention, and that any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (8)

1. A method for measuring a dynamic loop of an automobile wire harness is characterized by comprising the following steps:
obtaining an initial length L of the flexible coil between a first connection point of the wire harness section and the first component and a second connection point of the wire harness section and the second component in a static state0
Determining the length L of the flexible coil between the first connection point and the second connection point at different moments based on the current curve of the flexible coil between the first connection point and the second connection point under different motion states of the automobiletWherein the first connection point is a fixed connection side of the flexible coil, and the second connection point is a sliding connection side of the flexible coil, and the length of the flexible coil can be increased along with the distance between the first component and the second component;
according to the initial length L0And length L of different time instantstDetermining reserved length L (maxL) of automobile wire harnesst-L0
2. The method of claim 1, wherein the length of the flexible coil does not change as the distance between the first member and the second member decreases.
3. The method according to claim 1 or 2, characterized in that the method further comprises:
obtaining the current I between the first connection point and the second connection point in the initial static state0
Acquiring current I between the first connection point and the second connection point at each moment under different motion states of the automobilet
By a current I0And current ItObtaining a current curve of the flexible coil between the first connection point and the second connection point.
4. The method of claim 3, further comprising:
from the first connection pointAnd the current curve of the flexible coil between the second connection point and the first connection point obtains a stabilized current minimum value Imin
From a current minimum value IminAnd initial current value I0Obtaining the variation delta R of the resistance of the flexible coil, and obtaining the maximum variation delta L of the length of the flexible coil according to the variation delta R of the resistancemax
By Δ Lmax+L0=maxLtDetermining maximum length maxL of a beam segmentt
5. A measurement system for a dynamic loop of an automotive wiring harness, comprising:
a first length obtaining unit for obtaining an initial length L of the flexible coil between a first connection point of the wire harness section and the first component and a second connection point of the wire harness section and the second component in a static state0
A second length obtaining unit, configured to determine, based on a current curve of the flexible coil between the first connection point and the second connection point in different motion states of the vehicle, a length L of the flexible coil between the first connection point and the second connection point at different timestWherein the first connection point is a fixed connection side of the flexible coil, and the second connection point is a sliding connection side of the flexible coil, and the length of the flexible coil can be increased along with the distance between the first component and the second component;
a reserved length determining unit for determining the length of the initial length L0And length L of different time instantstDetermining reserved length L (maxL) of automobile wire harnesst-L0
6. The system of claim 5, further comprising:
a calibration unit for acquiring a current I between the first connection point and the second connection point in an initial static state0(ii) a Acquiring the first link at each moment under different motion states of the automobileA current I between the contact point and the second connection pointt(ii) a By a current I0And current ItObtaining a current curve of the flexible coil between the first connection point and the second connection point.
7. The system of claim 6, further comprising:
a maximum length determination unit for obtaining a stabilized current minimum value I from a current curve of the flexible coil between the first connection point and the second connection pointmin(ii) a From a current minimum value IminAnd initial current value I0Obtaining the variation delta R of the resistance of the flexible coil, and obtaining the maximum variation delta L of the length of the flexible coil according to the variation delta R of the resistancemax(ii) a By Δ Lmax+L0=maxLtDetermining maximum length maxL of a beam segmentt
8. A computer-readable storage medium, on which a computer program is stored, which, when being executed by a processor, carries out the steps of the method of any one of claims 1 to 4.
CN202010994513.4A 2020-09-21 2020-09-21 Method and system for measuring dynamic loop of automobile wire harness Active CN112129212B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010994513.4A CN112129212B (en) 2020-09-21 2020-09-21 Method and system for measuring dynamic loop of automobile wire harness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010994513.4A CN112129212B (en) 2020-09-21 2020-09-21 Method and system for measuring dynamic loop of automobile wire harness

Publications (2)

Publication Number Publication Date
CN112129212A CN112129212A (en) 2020-12-25
CN112129212B true CN112129212B (en) 2021-07-13

Family

ID=73841679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010994513.4A Active CN112129212B (en) 2020-09-21 2020-09-21 Method and system for measuring dynamic loop of automobile wire harness

Country Status (1)

Country Link
CN (1) CN112129212B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596458A (en) * 2014-10-27 2015-05-06 徐工集团工程机械股份有限公司 Conductor length sensor and conductor length measuring method
DE202016102194U1 (en) * 2016-04-26 2016-05-19 Paul Jehle Measuring device for determining cable lengths
CN109492186A (en) * 2018-11-06 2019-03-19 安徽江淮汽车集团股份有限公司 A kind of automotive wire bundle length in reserve calculation method and module
CN109546589A (en) * 2017-09-21 2019-03-29 本田技研工业株式会社 The harness arragement construction of electric vehicle
CN109696113A (en) * 2017-10-20 2019-04-30 帕拉贡有限股份两合公司 For determining the pull-out length of safety belt and/or the measuring device of tensile force of belt
CN111332242A (en) * 2020-02-24 2020-06-26 东风汽车有限公司 Safety belt length detection device, automobile restraint system response method and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596458A (en) * 2014-10-27 2015-05-06 徐工集团工程机械股份有限公司 Conductor length sensor and conductor length measuring method
DE202016102194U1 (en) * 2016-04-26 2016-05-19 Paul Jehle Measuring device for determining cable lengths
CN109546589A (en) * 2017-09-21 2019-03-29 本田技研工业株式会社 The harness arragement construction of electric vehicle
CN109696113A (en) * 2017-10-20 2019-04-30 帕拉贡有限股份两合公司 For determining the pull-out length of safety belt and/or the measuring device of tensile force of belt
CN109492186A (en) * 2018-11-06 2019-03-19 安徽江淮汽车集团股份有限公司 A kind of automotive wire bundle length in reserve calculation method and module
CN111332242A (en) * 2020-02-24 2020-06-26 东风汽车有限公司 Safety belt length detection device, automobile restraint system response method and electronic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
浅谈汽车线束设计要点;陆素媚,何福良;《装备制造技术》;20180930;第86-89页 *

Also Published As

Publication number Publication date
CN112129212A (en) 2020-12-25

Similar Documents

Publication Publication Date Title
CN111521979B (en) Method and device for calibrating installation angle of vehicle-mounted radar and related equipment thereof
CN102052973B (en) Methods and systems for thermistor temperature processing
Aoyama et al. A new method for detecting the contact point between a touch probe and a surface
KR20160145022A (en) Shunt current measurement featuring temperature compensation
CN112129212B (en) Method and system for measuring dynamic loop of automobile wire harness
EP1196742B1 (en) Method and device for position detection
CN102620764A (en) Metrological verification device for automatic test system
DE10393860T5 (en) Hydraulic piston position sensor
US9862550B2 (en) Device for calibrating position of truck and method thereof
CN112147572B (en) Positioning method and positioning device for railway vehicle
CN114201722B (en) Dynamic calculation method based on post-processing car body-bogie installation relationship
CN105758276A (en) Test device for measuring and simulating brake hose
CN112729725B (en) Vehicle dynamic seal index determination method and device, medium, equipment and vehicle
CN113776853A (en) Bench test system and method for WLTC (wafer level test) cycle working condition
CN104833404B (en) Oil level detecting device, automobile, fuel tank and oil level detection method
CN111881513B (en) Drag torque detection method, device, system, electronic equipment and medium
CN117040461A (en) Gain compensation method, system, electronic device and storage medium
CN114964046B (en) Method, device, equipment and medium for measuring rail profile
EP1058104A2 (en) Measurement of transmission oil pressure by monitoring solenoid current
CN106224477B (en) Double compensation formula ball-screw mobile system
CN213398040U (en) Tactile measuring device
WO2019184845A1 (en) Electric vehicle, and method and apparatus for calculating state of energy (soe) of power battery
CN112285527A (en) Fitting method and device for testing chip delay
CN220602432U (en) In-car gap measuring device
KR101779389B1 (en) Welding inspection apparatus about base assembly of shock absorbor and Welding inspection method using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant