CN112119207A - 用于分布式热电联产的紧凑型朗肯涡轮发电机设备 - Google Patents

用于分布式热电联产的紧凑型朗肯涡轮发电机设备 Download PDF

Info

Publication number
CN112119207A
CN112119207A CN201980032634.6A CN201980032634A CN112119207A CN 112119207 A CN112119207 A CN 112119207A CN 201980032634 A CN201980032634 A CN 201980032634A CN 112119207 A CN112119207 A CN 112119207A
Authority
CN
China
Prior art keywords
generator
compact
working fluid
fuel
cogeneration plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980032634.6A
Other languages
English (en)
Inventor
E·J·埃切尼克
S·拉博利塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart E Co ltd
Original Assignee
Smart E Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart E Co ltd filed Critical Smart E Co ltd
Publication of CN112119207A publication Critical patent/CN112119207A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • F01D25/125Cooling of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/51Magnetic
    • F05D2240/511Magnetic with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/52Axial thrust bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

一种紧凑型热电联产设备包括:a)连接至蒸汽发生器的发热系统、冷凝器和内部工作流体,其中所述蒸汽通过锅炉中合适燃料的外部燃烧和/或将外部热气体引导至锅炉而获得;b)发电机系统,其包括:i)一个或多个径向和/或轴向涡轮机;ii)轴流式发电机;和iii)电子控制逆变器。燃料可为固态、液态或气态燃料。涡轮机和发电机二者都具有被动磁性轴承和电动轴承。设备不使用机械密封件,因为全部的运动零部件被容纳在工作流体的压力容器的工作流体内。

Description

用于分布式热电联产的紧凑型朗肯涡轮发电机设备
技术领域
本发明涉及发电和发热设备领域。具体地,本发明涉及热电联产的设备或小型装备。
背景技术
分布式发电装备是低功率发电系统(低于1000千瓦),其可以补充用户设施的部分电力消耗(而不影响电网)或在不需要对其进行修改的情况下向电网注入电力。
热电联产系统是利用发电装备的余热来完全或部分地供给用户热量需求的设备或固定设施。相反地,存在利用热力过程(炉子、锅炉等)的余热来发电的热电联产系统。
本发明能够在两种方案中的任何一种中起作用,即,自行发热或利用外部余热发热。在这两种情况下,该设备发的电部分或全部地补充了用户的电力消耗,并且通过联合供应而不是单独供应热能和电能,显著降低了总燃料需求。
实现此目的的方式是基于朗肯(Rankine)型热循环(液-汽)的实施,该热循环驱动高速微型涡轮机,该微型涡轮机驱动永磁发电机。电子逆变器将电力供给至本地电网(用户设施)。
存在实现热电联产的许多不同技术方案。热机可基于各种热循环,比如布雷顿(Bryton)循环、奥托(Otto)循环、狄塞尔(Diesel)循环和斯特林(Stir ling)循环。发电机可与电网同步,也可以为电子逆变器供电。热机和发电机之间可存在直接耦合,或者可存在中间固定或可变减速箱。甚至还存在基于燃料电池的系统,在这种情况下,热机和发电机是同一个设备。
现有技术中现存的热电联产系统面临以下本申请的设备旨在克服的技术问题:
a)基于Otto和Diesel循环的机器(活塞式发动机)对于它们使用的燃料类型和质量极度敏感。这些机器必须具有良好控制的特性,比如辛烷值、粘度、杂质含量、湿度等。附加地,由于它们使用的内部机制,它们的部件经受极大地摩擦力。因此,它们需要复杂的润滑系统和定期且严格的预防性维护。
b)使用Bryton循环的机器(燃气轮机)部分或完全地不需要润滑,因为它们由数量少得多的运动零部件组成。它们的主要问题是对燃料质量的敏感性。当使用内燃时,燃油中存在的杂质会在对热和机械要求最高的部件中造成严重的燃烧后腐蚀问题。
c)Stirling型机器(双活塞系统)通过使用外燃室解决了对于燃料的敏感性问题。当它们使用活塞时没有解决润滑问题。利用Stirling机器的主要问题是它们要求大尺寸才能产生与先前的系统相似的功率。
公开号为US6234400的美国专利文献涉及一种用于建筑物和房屋的热电联产的设备,其中,热循环的冷凝器是用于加热的空气冷却器和/或储热水箱。它使用从外部耦合至低速螺旋型膨胀机的径流式发电机。它没有指定所使用的轴承或润滑剂类型,这似乎看起来常规的。
公开号为US2006/220388的美国专利文献涉及一种组合型Bryton/Rankine涡轮组,其中涡轮机和压缩机安装在与永磁体和径流式发电机相同的轴上。该组件容纳在同一外壳内且由常规轴承支承。Rankine涡轮机的工作流体通过常规机械密封件与其余流体隔离。
通用电气公司根据卡伦提克斯技术(Calentix Technologies)的许可提供通用电气清洁循环设备(GE CleanCycle device)。这是一种有机Rankine循环,其将高速涡轮发电机组件送入密封容器内,而无需机械密封和润滑。在这种情况下,发电机是径向式发电机。旋转组件由主动磁性轴承支承,不同于完全被动的系统,该主动磁性轴承需要复杂的控制电子设备和恒定的电源。在完全断电的情况下,主动磁性轴承会使轴暴露在与定子的直接机械接触中,从而导致严重损坏。
凯普斯通涡轮机公司(Capstone Turbine Corporation)开发了紧凑型Bryton涡轮发电机,其中涡轮机-压缩机-发电机组件由被动空气轴承支承。在这种情况下,发电机是径向式发电机,空气轴承基于取决于气体(通常为空气)特性的流变现象,在启闭期间会经受机械磨损。此外,Bryton循环的内燃使其对燃料的类型和质量高度敏感。
发明内容
本发明是一种紧凑型热电联产设备,其使用各种类型的燃料(气态或液态碳氢化合物、生物燃料、固体有机物等)作为能量源。所述设备允许提供电力至隔离的或互连的低电压电网,同时提供热量至外部冷却流体,该冷却流体可被用作用于其它处理过程的加热源或热源。
本发明基于使用新的且工业上鲜为人知的技术,如轴流式和低磁滞发电机、被动磁性轴承和被动电动轴承。
反过来,本发明选自现有的且广泛传播的技术,比如:燃气、柴油、颗粒燃烧器;壳管式换热器、板式换热器、同心管式换热器;径向和轴向微型涡轮机;离心泵和容积泵;电力电子设备和微控制器组成的组。
在高运行可靠性和最低维护要求方面,与现有技术相比,使用具有低磁滞和被动磁轴承的微型涡轮机、发电机赋予本发明优越的运行特性。
在可接受的燃料类型和质量方面,外部燃料燃烧器和换热器的使用赋予本发明优于现有技术的通用性。
附图说明
图1是本发明的实施例的示意图,其中燃料被用作能量源。
图2是本发明的替代实施例的示意图,其中使用来自另一处理过程的废热。
图3是旋转系统的截面图。
图4是轴流式发电机的截面示意图。
图5是轴17的一端的截面示意图。
图6示出了紧凑型热电联产设备的三个视图,并以普通成人体形作为参考来比较其尺寸。
具体实施方式
本发明是紧凑型热电联产设备,其使用各种燃料(气态或液态碳氢化合物、生物燃料、固体有机物等)作为能量源。该设备还能够使用来自另一独立处理过程的废热作为能量源来发电。
图1示出了燃料燃烧器13、高压涡轮机01、低压涡轮机02和用于冷却流体的回热式换热器(recuperator)07。
液压泵04将处于高压流体状态的内部工作流体(如水或某些有机流体)泵送至换热器05的一侧。在换热器05的另一侧,热气体的混合物在适合其类型的燃烧器13中燃烧一些气态、液态或固态燃料12而循环。图2示出了该方案的变型,其中另一机器或单独处理过程32的热废气被适当地引导33至换热器05。在此方案中,未自行燃烧燃料。
图3示出了旋转系统,该旋转系统包括两个涡轮机01和02、发电机09、被动磁性轴承14、电动轴承15和整个涡轮组压力容器16。
工作流体在换热器05中受热且经历相变,直到它变成干燥或稍湿的蒸汽并被引导至涡轮机01,在涡轮机01中,工作流体以降低其压力和温度为代价来提供机械动力。在本发明的替代方案中,工作流体被引导至第二涡轮机02,在第二涡轮02中,工作流体经历第二膨胀和冷却,从而提供更多的机械动力。
低压下的工作流体进入换热器03的一侧,该工作流体在换热器03中冷却以进行完全冷凝,然后被引回至液压泵04,该工作流体始终保持在闭合回路内并与系统的其余部分和周围环境液压隔离。
冷却流体06循环通过换热器03的另一侧,并吸收由设备的工作流体所提供的热量。这种不与工作流体直接接触的冷却剂通过换热器07,以吸收来自燃烧器13的燃烧气体或来自外部处理过程的热气体的废热,因此提高了其温度和设备的整体效率。这种较高温度的冷却流体08允许过量的热被输送用于加热建筑物或作为各种工业处理的热源。在本发明的替代方案中,冷却剂不通过换热器07,而是直接被引导至冷却塔。
涡轮机01和02与轴一致旋转,该轴也包含永磁体和轴流式发电机09的转子。所述涡轮组以高速且可变速度旋转,并允许发电机以高频交流电的形式提供电力。电子设备10适配于由发电机提供的电力,并将其注入可连接至各种负载的低压电网(如380伏)。低压电网可连接至或不连接至更大的配电网络。
涡轮组由径向被动磁性轴承14支承并径向居中。所述涡轮组可以垂直或水平定向,并借助一个或多个被动电动轴承15在一定转速以上运行而保持其轴向位置。当它高速旋转时,涡轮组与设备的其余部分保持无机械接触,而仅由被动电磁力支承和稳定。
涡轮组、发电机的线圈、被动磁性轴承14、电动轴承15和用于起动的其它支承系统完全容纳在密封容器16内,该密封容器将工作流体保持在前述闭合回路内。
图4示出了轴流式发电机09,其包括连接至轴17的两个或多个转子盘18,每个转子盘包含永磁体19。在每对盘之间放置带有绕组22的定子和带有它们各自冷却管道24的铁磁芯21。也就是说,轴流式发电机09由转子组件和定子组件形成。转子组件被固定至涡轮组的轴17并具有偶数个永磁体19,永磁体19接合在非铁磁盘18中并以吸引构造彼此相对。发电机可包含两个或更多个带磁体的盘。在各个端部的盘的外表面上,与转子一致的铁磁材料盘20闭合磁路。
定子组件容纳导体22,导体22缠绕在许多高电阻铁磁材料芯21上。这些芯允许闭合每对相对磁体之间的磁路。导体的外周与导热材料23接触,导热材料23将内部热量散发到发电机外壳。导热体和铁磁芯内的循环管道24允许由粘滞力引起的处理过程气体在转子和定子之间流动。这种流动增加了定子最内部区域的除热和热量输送。
图5示出了一个被动磁性轴承14的位置,该被动磁性轴承包括一个移动磁体25和一个固定磁体26以及轴止动件28和用于启停的辅助轴承29。在轴的同一端示出了电动轴承15,该电动轴承15由与轴一致的导体盘30和固定永磁体31的组件形成。涡轮组在其轴17的端部附近由两个被动磁性轴承14径向支承。每个轴承由一对或多对永久且同心环形的磁体形成,一对磁体中的一个是活动磁体25,另一个是固定磁体26。后者位于轴向对准器27上,该对准器允许其即使在涡轮组和组件的定子之间可能存在长度差异情况下的正确对齐。涡轮组轴向位置的稳定是通过一个或多个电动轴承实现的,该电动轴承包括固定至轴的实心或穿孔导体盘30和由固定盘支承的呈排斥布置的彼此相对的两套永磁体31。这种构造可以反过来,如图3所示,其中驱动盘固定至外壳且支承磁体的盘与轴一起旋转。
本设备的新颖技术特征是:
1.它使用安装在同一轴上的由液-汽热循环(Rankine型)驱动的涡轮机和一个低磁滞轴流式发电机作为发电站。以这种方式,发电机可高效地高速(高频)运行。
虽然Rankine循环发电站已经被公开,但是这些发电站往往很大。一些紧凑型发电机系统使用Rankine循环,但它们通常在涡轮机和发电机之间夹装减速装置,这与电网同步。
2.它的任何部件都不需要润滑。包括涡轮机和发电机的旋转系统不需要任何类型的润滑,因为使用了磁性和电动轴承而没有机械摩擦。常规发电机(发电机,包括大型发电站)在全部旋转和摩擦零部件上使用润滑油。该设备的轴承由被动电磁力驱动,也不需要像主动磁性轴承那样的监控和控制电子设备。
3.热源和冷源完全在热循环之外。不同于活塞式发动机或燃气轮机(Bryton循环),这种系统类似于锅炉而在外部燃烧燃料。通常,这种方法用于大型发电站,但不适用于小型装备。
关于上述技术特征,可以注意到以下优点:
1.通过不使用减速装置而显著减少运动零部件的数量。因为涡轮机和发电机被包含在同一个密封容器内且被淹没在工作流体中,所以它不需要机械密封。这些特性提高了整体系统性能。
2.需要非常少的维护,因为没有必要更换润滑剂或因摩擦而严重磨损的零部件。该系统的可靠性很高,因为被动轴承设计简单并且即使在系统完全停机的情况下也能工作,直至涡轮组大幅降低速度且可依靠在辅助起动轴承上为止。
3.外部燃烧消除了与内燃系统中与燃烧产物相关的一般腐蚀和应力腐蚀问题。以这种方式,最小化对燃料质量(存在腐蚀剂、湿度等)和燃料类型的要求(发热量、火焰速度等)。这使得使用的燃料类型(包括固体燃料比如生物质)具有很大的灵活性。还可使用来自其它处理过程的废热,而不需要额外的燃料。

Claims (11)

1.一种基于朗肯循环的紧凑型热电联产设备,其包括发电站,该发电站由连接至轴流式发电机的一个或多个径向涡轮机和/或轴向涡轮机形成,其中该涡轮机和该发电机被安装在同一轴上,形成涡轮发电机组件。
2.根据权利要求1所述的紧凑型热电联产设备,其中该涡轮发电机组件由被动磁性轴承径向支承,该被动磁性轴承包括一个或多个同心移动环形磁体和一个或多个固定环形磁体,该被动磁性轴承被安装至所述轴的端部附近。
3.根据权利要求2所述的紧凑型热电联产设备,其中该被动磁性轴承具有轴向对准器以吸收定子和转子之间的长度差异,从而确保它们正确对齐。
4.根据权利要求2所述的紧凑型热电联产设备,其中该涡轮发动机组件被一个或多个被动电动轴承和用于启停的常规辅助轴承轴向支承和稳定。
5.根据权利要求4所述的紧凑型热电联产设备,其中该被动电动轴承包括实心或穿孔的导体盘和呈排斥布置相对的一组永磁体。
6.根据权利要求5所述的紧凑型热电联产设备,其中该导体盘和所述一组永磁体中的一个被固定至外壳,该导体盘和所述一组永磁体中的另一个被连接至所述轴。
7.根据权利要求1所述的紧凑型热电联产设备,其中燃料包括固态、液态或气态燃料。
8.根据权利要求4所述的紧凑型热电联产设备,其中所述涡轮发电机组件和所述被动磁性轴承以及所述被动电动轴承一起被容纳在包含工作流体压力且没有机械密封的密封容器内。
9.根据权利要求8所述的紧凑型热电联产设备,其中该发电机包括内部冷却管道,工作流体在粘滞力驱动下在转子和定子之间流过该内部冷却管道。
10.根据权利要求1所述的紧凑型热电联产设备,其中该发电机具有低磁滞和高电阻铁芯。
11.根据权利要求1所述的紧凑型热电联产设备,其中热源和冷源在热循环之外,因此燃料在外部燃烧,且冷却剂不接触工作流体。
CN201980032634.6A 2018-06-11 2019-06-07 用于分布式热电联产的紧凑型朗肯涡轮发电机设备 Pending CN112119207A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862683386P 2018-06-11 2018-06-11
US62/683386 2018-06-11
PCT/US2019/036156 WO2019241078A1 (en) 2018-06-11 2019-06-07 Compact rankine turbogenerator device for distributed co-generation of heat and electricity

Publications (1)

Publication Number Publication Date
CN112119207A true CN112119207A (zh) 2020-12-22

Family

ID=68843182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980032634.6A Pending CN112119207A (zh) 2018-06-11 2019-06-07 用于分布式热电联产的紧凑型朗肯涡轮发电机设备

Country Status (9)

Country Link
US (1) US20210367481A1 (zh)
EP (1) EP3749839A4 (zh)
JP (1) JP2021527775A (zh)
CN (1) CN112119207A (zh)
AR (1) AR115519A1 (zh)
BR (1) BR112020025255A2 (zh)
CA (1) CA3096174A1 (zh)
MX (1) MX2020009480A (zh)
WO (1) WO2019241078A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020117321B4 (de) * 2020-07-01 2022-05-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Abgasturbolader und Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252077A1 (en) * 2007-04-16 2008-10-16 Calnetix, Inc. Generating energy from fluid expansion
US20120013125A1 (en) * 2010-07-19 2012-01-19 Calnetix, Inc. Generating energy from fluid expansion
US20140306460A1 (en) * 2013-04-16 2014-10-16 Icr Turbine Engine Corporation High speed direct drive generator for a gas turbine engine
US20160344258A1 (en) * 2012-09-11 2016-11-24 Concepts Nrec, Llc ORC Turbine and Generator, And Method Of Making A Turbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508998A (en) * 1981-02-09 1985-04-02 David H. Rush Brushless disc-type DC motor or generator
JPH08218816A (ja) * 1995-02-16 1996-08-27 Mitsubishi Heavy Ind Ltd 低温発電装置
JP2007071104A (ja) * 2005-09-07 2007-03-22 Ntn Corp 熱発電システム
JP2007198162A (ja) * 2006-01-24 2007-08-09 Matsushita Electric Ind Co Ltd 蒸気タービン及びこれを用いたランキンシステム
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
FR2962505B1 (fr) * 2010-07-08 2012-08-10 Mecanique Magnetique Sa Palier magnetique a reglage axial et procede de montage
US9404532B2 (en) * 2013-07-10 2016-08-02 BenMaan I. Jawdat HTS bearing system and method
JP6232359B2 (ja) * 2014-09-08 2017-11-15 株式会社豊田中央研究所 圧粉磁心、磁心用粉末およびそれらの製造方法
JP6823649B2 (ja) * 2015-09-10 2021-02-03 ロックハート, ダグラス ロイドLOCKHART, Douglas Lloyd せん断流ターボ機械装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252077A1 (en) * 2007-04-16 2008-10-16 Calnetix, Inc. Generating energy from fluid expansion
US20120013125A1 (en) * 2010-07-19 2012-01-19 Calnetix, Inc. Generating energy from fluid expansion
US20160344258A1 (en) * 2012-09-11 2016-11-24 Concepts Nrec, Llc ORC Turbine and Generator, And Method Of Making A Turbine
US20140306460A1 (en) * 2013-04-16 2014-10-16 Icr Turbine Engine Corporation High speed direct drive generator for a gas turbine engine

Also Published As

Publication number Publication date
EP3749839A4 (en) 2021-11-10
EP3749839A1 (en) 2020-12-16
AR115519A1 (es) 2021-01-27
BR112020025255A2 (pt) 2021-03-09
CA3096174A1 (en) 2019-12-19
JP2021527775A (ja) 2021-10-14
US20210367481A1 (en) 2021-11-25
WO2019241078A1 (en) 2019-12-19
MX2020009480A (es) 2021-02-17

Similar Documents

Publication Publication Date Title
EP1668226B1 (en) Energy recovery system
US20040020206A1 (en) Heat energy utilization system
US10326334B2 (en) Electrical turbo-machine and a power plant
US20050012397A1 (en) Methods and system for power generation
ZA200602322B (en) Energy recovery system
US6032459A (en) Turbine exhaust cooling in a microturbine power generating system
Mascuch et al. Towards development of 1-10 kW pilot ORC units operating with hexamethyldisiloxane and using rotary vane expander
RU2704385C2 (ru) Двухкаскадное газотурбинное устройство
CN112119207A (zh) 用于分布式热电联产的紧凑型朗肯涡轮发电机设备
EP3058186B1 (en) An energy converter and an electrical turbo-machine for it
RU2322588C1 (ru) Газотурбинный двигатель
RU2583478C2 (ru) Рекуперационная установка
CN111058945A (zh) 一种微型燃气轮机
FI125189B (en) Heat exchanger and energy converter
Osintsev et al. The use of drive turbine cooling systems based on renewable energy sources
GB2073862A (en) Heat Actuated Heat Pump and Turbine
CN212535796U (zh) 半封闭螺杆式余热发电系统
KR100314948B1 (ko) 마이크로 터어빈 발전시스템
KR20070020365A (ko) 에너지 회수 시스템
WO2020144492A1 (en) A combined cycle generator with a 100% efficiency
Hosseini et al. Development of an Affordable MGT-CHP for Domestic Applications
van Buijtenen Design, development & operation of the Tri-O-Gen ORC power unit
RU2323346C1 (ru) Способ работы тепловой электрической станции
Nakhamkin et al. Cascaded humidified advanced turbine
RU2020133767A (ru) Компактное турбогенераторное устройство рэнкина для распределенной когенерации тепла и электроэнергии

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40042798

Country of ref document: HK

RJ01 Rejection of invention patent application after publication

Application publication date: 20201222

RJ01 Rejection of invention patent application after publication