CN112119034A - 通过磁场增强外尔半金属的光催化水解离效率 - Google Patents

通过磁场增强外尔半金属的光催化水解离效率 Download PDF

Info

Publication number
CN112119034A
CN112119034A CN201980016975.4A CN201980016975A CN112119034A CN 112119034 A CN112119034 A CN 112119034A CN 201980016975 A CN201980016975 A CN 201980016975A CN 112119034 A CN112119034 A CN 112119034A
Authority
CN
China
Prior art keywords
magnetic field
semimetal
semimetals
taas
nbp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980016975.4A
Other languages
English (en)
Inventor
C·N·R·拉奥
C·费瑟
C·R·拉贾马提
N·库玛
U·古普塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Jawaharial Nehru Centre for Advanced Scientific Research
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Jawaharial Nehru Centre for Advanced Scientific Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV, Jawaharial Nehru Centre for Advanced Scientific Research filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of CN112119034A publication Critical patent/CN112119034A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本公开涉及通过使外尔半金属经受外部磁场来提高外尔半金属的催化效率。在本公开的优选实施方案中,所述外尔半金属选自NbP、TaP、NbAs和TaAs。

Description

通过磁场增强外尔半金属的光催化水解离效率
发明领域
本公开属于光催化水解离技术领域。更具体地,本公开涉及增强外尔半金属的催化活性的方法,所述外尔半金属适合用作用于氢气制造的光催化水解离反应中的催化剂。
背景技术
背景描述包括有助于理解本发明的信息。并不承认本文提供的任何信息是现有技术或者与当前要求保护的发明有关,或明确或隐含引用的任何出版物是现有技术。
全球能源挑战是普遍的,并且不可避免地要转向替代的可持续能源,特别是太阳。由于太阳能仅在白天可用,因此以适当的方式存储能量将非常有利。以氢气形式的存储将是实现该目标的非常有吸引力的方式。氢气制造的理想方法是将水用作氢源以及将太阳能用于转化。因此,作为最有前景的氢气制造方法之一,光催化水解离(其是光引发的水向氢气和氧气的转化反应)引起了人们的关注。
使用光催化剂进行的高效水解离对于研究人员是巨大的挑战。此外,使用可再生形式的能量进行水解离可能是针对环境和能源问题的终极解决方案。然而,由于热力学上坡反应(uphill reaction)的困难,用于水解离的高活性光催化剂的开发长期以来受到阻碍。通过设计合适的结构来改善材料、增加表面积、使用助催化剂的关注属于最常见的技术。催化剂设计的当前策略集中于增加局部催化位点的数量和活性,例如氢析出反应(HER)中的二硫化钼(MoS2)的边缘位点。
EP2 407 419A1描述了通过导电分隔层使析氧的光催化剂和析氢的光催化剂分离的解决方案。
US2012/0145532 A1公开了使用贵金属芯/半导体壳的杂化纳米颗粒的宽频谱激发用于水的无辅助光催化离解。金属芯/半导体壳的复合纳米颗粒包含贵金属(例如Au,Ag,Pt,Pd或贵金属合金)芯,所述贵金属芯涂覆有对可见光和近红外(NIR)光谱范围内的光激发透明的宽带隙半导体光催化剂(例如TiO2,ZnS,Nb2O5),该光激发与金属芯的等离激元吸收带一致。
US2015/0010463 A1涉及一种使用可见光辐射从水产生氢气的光催化剂,其包含纳米晶体氧化钴(II)纳米颗粒。
H.Li,C.Tsai,A.L.Koh,L.Cai,A.W.Contryman,A.H.Fragapane,J.Zhao,H.S.Han,H.C.Manoharan,F.Abild-Pedersen,J.K.Norskov,X.Zheng(Nat.Mater.2016,15,48);D.Voiry,M.Salehi,R.Silva,T.Fujita,M.Chen,T.Asefa,V.B.Shenoy,G.Eda,M.Chhowalla,(Nano Lett.2013,13,6222)和U.Maitra,U.Gupta,M.De,R.Datta,A.Govindaraj,C.N.R.Rao(Angew.Chem.Int.Ed.2013,52,13057)报导了在用于氢气制造的光催化剂中,MoS2纳米颗粒表现出催化光化学和电化学HER的高效率。
C.Tsai,K.Chan,J.K.
Figure BDA0002664485530000021
F.Abild-Pedersen(Surf.Sci.2015,640,133)发现金属性过渡金属二卤化物(TMD)是HER的极佳候选物。
Adv,Mater.2017,1606202,“Weyl semimetals as Hydrogen EvolutionCataysts”描述了过渡金属单磷族元素化物NbP、TaP、NbAs和TaAs作为HER的催化剂。这些单磷族元素化物是拓扑外尔半金属。
本文中的所有出版物均通过引用而并入,其程度如同明确且单独地指出每个出版物或专利申请通过引用而被并入。当在并入的参考文献中术语的定义或使用与本文所提供的该术语的定义不一致或相反时,本文提供的该术语的定义适用,而参考文献中该术语的定义不适用。
本文公开的发明的替代要素或实施方案的分组不应解释为限制。每个组成员可以被单独涉及和要求,也可以与该组的其它成员或本文中出现的其它要素组合。出于方便和/或可专利性的原因,组中的一个或多个成员可以被包括在组中或者从组中删除。
发明目的
本公开的目的是提高氢析出反应(HER)的效率。
本公开的另一个目的是提高用于HER的催化剂的催化效率。
本公开的另一个目的是提高过渡金属单磷族元素化物NbP、TaP、NbAs和TaAs作为HER催化剂的催化效率。
本公开的又一个目的是提供一种用于处理外尔半金属(Weyl semimetal)以增强其光催化水解离效率的方法。
发明内容
本发明人发现,通过使外尔半金属经受外部磁场,可以提高外尔半金属的催化效率。因此,本公开的一个方面提供了一种通过使外尔半金属经受外部磁场(>0T)来提高外尔半金属的催化活性的方法。在该方面的一个优选实施方案中,可以通过将至少一部分外尔半金属暴露于磁场强度大于0.1T的外部磁场来增强外尔半金属的催化活性。可以通过将至少一部分外尔半金属暴露于>0.3T的外部磁场来增强外尔半金属的催化活性。
在本公开的优选实施方案中,所述外尔半金属选自NbP、TaP、NbAs和TaAs。
本公开的另一方面涉及通过根据本公开实施方案的方法获得的具有增强的催化活性的外尔半金属在从水光催化制氢中的用途。
由以下对优选实施方案的详细描述以及附图,本发明主题的各个目的、特征、方面和优点将变得更加明显,其中相同的附图标记表示相同的部件。
附图说明
包括附图以提供对本公开的进一步理解,并且附图被并入本说明书中并构成本说明书的一部分。附图示出了本公开的示例性实施方案,并且与描述一起用于解释本公开的原理。
图1示出了具有(以“m”表示)和没有外部磁场的情况下MoS2和NbP的HER催化活性的比较。
图2包括两个曲线“a”和“b”,显示了在施加磁场(曲线a)和没有磁场(曲线b)的情况下,外尔半金属NbP、TaP、NbAs和TaAs中的HER活性的比较。
图3是用于催化染料敏化氢析出的外尔半金属的示意图。
图4示出了根据本公开的实施方案的用于通过光催化水解离产生氢气的示例性实验装置。
图5示出了在具有或没有磁场的情况下,外尔半金属TaP作为HER的电催化剂的催化活性。
具体实施方式
以下是本公开的实施方案的详细描述。对实施方案进行详述以便清楚地传达本公开。然而,所提供的细节量并不意图限制实施方案的预期变型;相反,意图是涵盖落入由所附权利要求书限定的本公开的精神和范围内的所有修改、等同形式和替代形式。
除非上下文另外要求,否则在随后的整个说明书中,词语“包含”及其变体(例如“包括”和“含有”)应以开放、包含性的含义来解释,即“包括但不限于”
在整个说明书中,提及“一个实施方案”或“实施方案”意味着结合至少一个实施方案中的实施方案描述的特定特征、结构或特性。因此,在整个说明书中各处出现的短语“在一个实施方案中”或“在实施方案中”不一定都指的是同一实施方案。此外,在一个或多个实施方案中,可以按任何合适的方式来组合所述特定特征、结构或特性。
正如在本文的描述中以及在随后的整个权利要求书中所使用的,a”、“an”和“the”的含义包括复数引用,除非上下文另有明确指示。此外,正如本文的描述中所使用的,“在...中”的含义包括“在...中”和“在...上”,除非上下文另有明确指示。
本文中数值范围的列举仅意图用作分别指代落在该范围内的每个单独数值的简写方法。除非本文另有指示,否则每个单独值都被并入说明书中,如同它在本文中被单独列举。
本文描述的所有方法均能够以适当的顺序执行,除非本文另有指示或在其他方面与上下文明显矛盾。相对于本文的某些实施方案提供的任何和所有实例或示例性语言(例如“诸如”)的使用仅旨在更好地阐述本发明,而不对以另外方式要求保护的本发明的范围构成限制。说明书中的任何语言都不应被解释成表示对实施本发明而言必不可少的任何未要求的要素。
本文提供的标题和发明摘要仅是为了方便起见,并不解释实施方案的范围或含义。
本文使用各种术语。如果下文没有对权利要求中使用的术语进行定义,则应给予其相关领域技术人员已赋予该术语的最宽定义,如提交时的印刷出版物和授权专利中所反映的。
外尔半金属是拓扑绝缘体。外尔半金属的前提条件是能带反转。含有重金属的许多化合物显示出这样的能带反转,更通常被称为惰性电子对效应(inert pair effect)。在相对论能带结构中,能带交叉被禁止,使得在拓扑绝缘体中新的带隙打开,并出现具有狄拉克锥电子结构的表面态。外尔半金属出现在拓扑绝缘体和平凡绝缘体之间的边界处。在外尔半金属中,在材料的本体中形成成对的狄拉克锥,其中狄拉克锥对的数目取决于特定金属或化合物的详细对称性。外尔半金属还表现出具有开放费米弧的不寻常的表面态。
NbP、TaP、NbAs和TaAs是半金属,其中外尔点位于费米能级附近,在第一布里渊区中具有总共12对外尔节点。
在HER中,太阳光被光子捕获系统吸收,例如曙红Y(EY)。在牺牲剂的存在下,例如三乙醇胺(TEAO),生成的激发电子可以转移到外尔半金属表面,从而导致电荷分离,使水中的H+还原从而形成H2。尽管上述外尔半金属(本身)已经是良好的HER催化剂,但令人惊讶地发现,这些外尔半金属中每一种的催化HER效率在大于0T的外部磁场中甚至可进一步提高。在0.3T的磁场中,催化效率(作为随时间[小时]以μmol·g-1催化剂中析出的H2来测量)提高至少20%,优选提高至少40%,更优选提高至少50%,对于一些外尔半金属甚至高达约70%。特别地,在3小时的HER后,在0.3T的永磁体附近,NbP遇到几乎翻倍的活性。图2中示出了当存在(和不存在)外部磁场时一些外尔半金属的活性。
“在外部磁场中”是指在永磁体或电磁体附近,使得催化材料经受>0T,优选地>0.1T,更优选地≥0.3T的磁场;当然,这意味着施加的外部磁场要强于地球的磁场(其在约20至50μT之间)。尽管催化材料的至少一部分表面应暴露于磁场,但优选整个催化材料,即至少70%,更优选至少90%的催化材料暴露于>0T,优选>0.1T,更优选>0.3T的磁场。
据报道,在用于氢气制造的光催化剂中,MoS2(一种常规的拓扑平凡催化剂)具有催化光化学以及电化学HER的高效率。然而,当暴露于外部磁场时,MoS2的催化行为几乎不变化(参见图1)。磁场仅影响外尔半金属。在不存在磁场和存在磁场的情况下(0.3T,6小时)MoS2显示出约625μmol·g-1的催化活性。使用TaP作为电催化剂,利用113Oe的磁场,催化效率提高了34%。
外尔半金属的制造可包括提供等摩尔比的金属(Ta,Nb)粉末和砷粉末;加热混合的粉末以形成多晶二元1:1磷族元素化物。将所述多晶磷族元素化物和转移剂(例如SnI4或TeI4)密封在封闭安瓿的第一端;并在第一端处将所述封闭的安瓿加热至约800℃,并且在所述安瓿的第二端处加热至约1000℃,以产生沿所述封闭安瓿的长度的温度梯度,从而通过化学气相转移(CVT)反应来生长所述磷族元素化物外尔半金属晶体。可以通过800℃至1100℃范围内的温度下的固态反应来制备相应的含磷化合物。
实施例
下面参考实施例更详细地解释本发明。按以下实施例的形式进一步解释本公开。然而,应理解,前述实施例仅是示例性的,并且不应被视为对本发明范围的限制。本领域技术人员将清楚对所公开的实施方案的各种改变和修改。可以进行这种改变和修改而不脱离本发明的范围。
TaAs的制造
称量3.536g钽粉(纯度:99.98%)和1.464g砷粉(纯度:99.999%),得到5g(1:1摩尔比)混合物。将该混合物填充在氧化硅管中。然后将抽空的管(压力<1Pa)密封并在电炉中在600℃加热36小时。此后,使温度在50小时内从600℃缓慢升高至1050℃,并在1050℃保持36小时。
将300mg所得多晶TaAs和60mg SnI4置于氧化硅安瓿的底部。然后,将氧化硅安瓿抽真空并用氩气(99.999%)流通,然后再次抽真空(压力<1Pa)并密封。然后将封闭的安瓿瓶放入三区炉中。含有多晶TaAs的封闭安瓿的末端在第一区内,而安瓿的相对末端在第三区内。第二(中间)区位于第一区和第三区之间。将含有多晶TaAs的第一区设定为800℃,并且将中间区设定为1000℃。CVT反应时间为170小时。在氧化硅安瓿的中部至不含多晶TaAs的末端形成TaAs单晶。
使用研杵和研钵将单晶体粉碎,并使用20μm筛子分离。
NbAs的制造
按上文关于TaAs所述的相同方式从元素铌和砷的化学计量比混合物制造NbAs。
NbP、TaP和MoS2的制造
通过固相反应(与TaAs相同但没有CVT)从元素的化学计量比混合物生长NbP、TaP和MoS2
通过XRD表征所有的化合物。
HER实验装置
实验装置如图4所示,它是由以下组成的组装件:卤素灯(1),反应容器(2)和永磁体对(3)。将卤素灯泡(1)与玻璃反应容器(2)对齐放置,并将磁体(3)置于反应容器(2)下方。每隔1小时从容器(2)的顶部空间(4)收集析出的H2,并使用Perkin Elmer 580C气相色谱仪中的热导检测器进行分析。
实验细节
在玻璃容器中,将3-4mg的催化剂分散在50mL的含有三乙醇胺(TEAO)的水中。将装有样品的玻璃容器直接放在NdFeB磁体上(参见图4,两个相互粘合的棒状磁体,B~3000高斯)。在开始反应之前,向混合物中加入曙红Y染料。
在磁场的存在下进行实验之后,在没有磁场的情况下进行对照反应。所有测量均在室温(约23℃)下进行,并为重现性重复三次。
图1示出了具有(以“m”表示)和没有外部磁场的情况下MoS2和NbP的HER催化活性的比较。在施加外部磁场时,拓扑非平凡NbP的活性显著提高(NbP(m)),而拓扑平凡MoS2的活性变化不大(MoS2(m)和MoS2)。
图2示出了外尔半金属NbP、TaP、NbAs和TaAs中的HER活性的比较:
(曲线a)具有施加磁场,和
(曲线b)没有磁场。
在0.3T的外部磁场中,NbP、TaP、TaAs和NbAs的活性(3小时后)分别从420、220、180和390μmol·g-1提高到720、320、280和450μmol·g-1
图3是用于催化染料敏化的氢析出的外尔半金属的示意图。当光照射在曙红Y上时,它被激发,并且在牺牲剂三乙醇胺(TEAO)的存在下,染料将电子转移到外尔半金属的表面,导致电荷分离,从而将水(H2O中的H+)还原为氢气。
图5示出了TaP作为HER催化剂的催化性能。在测量中使用相对于可逆氢电极(RHE)为-0.36V的电位。当不施加磁场时,观察到0.129mA的电流。当施加113Oe的磁场时,电流增加到0.172mA。这对应于34%的效率提高。

Claims (6)

1.外尔半金属在大于0T的磁场中的用途,用于提高氢析出反应的效率。
2.根据权利要求1的用途,其中与不施加磁场的效率相比,效率提高至少20%。
3.根据权利要求1或2的用途,其中所述外尔半金属选自NbP、TaP、NbAs和TaAs中的一种或多种化合物。
4.提高外尔半金属的催化活性的方法,该方法包括使外尔半金属经受大于0T的外部磁场。
5.根据权利要求4的方法,其中所述外尔半金属选自NbP、TaP、NbAs和TaAs中的一种或多种化合物。
6.根据权利要求4或5的方法,其中在氢析出反应中的催化活性增加。
CN201980016975.4A 2018-02-14 2019-02-06 通过磁场增强外尔半金属的光催化水解离效率 Pending CN112119034A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201811005625 2018-02-14
IN201811005625 2018-02-14
PCT/EP2019/052874 WO2019158414A1 (en) 2018-02-14 2019-02-06 Enhancing photocatalytic water splitting efficiency of weyl semimetals by a magnetic field

Publications (1)

Publication Number Publication Date
CN112119034A true CN112119034A (zh) 2020-12-22

Family

ID=65496739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016975.4A Pending CN112119034A (zh) 2018-02-14 2019-02-06 通过磁场增强外尔半金属的光催化水解离效率

Country Status (6)

Country Link
US (1) US11638913B2 (zh)
EP (1) EP3752452A1 (zh)
JP (1) JP7270321B2 (zh)
KR (1) KR102662594B1 (zh)
CN (1) CN112119034A (zh)
WO (1) WO2019158414A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798332A1 (en) * 2019-09-25 2021-03-31 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method of boosting hydrogen evolution activity of electrocatalysts
CN113145133B (zh) * 2020-02-17 2022-11-22 山东大学 一种基于金属-半导体复合结构的光催化材料及其制备方法与磁场辅助应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011064A2 (en) * 2009-07-24 2011-01-27 Stc.Unm Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles
US20170138844A1 (en) * 2015-11-16 2017-05-18 Trustees Of Princeton University Method for production and identification of weyl semimetal
US20180016700A1 (en) * 2016-07-13 2018-01-18 Tsinghua University Method for making semimetal compound of pt
US20180016707A1 (en) * 2016-07-13 2018-01-18 Tsinghua University Semimetal compound of pt and method for making the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346271B2 (ja) 1999-11-12 2009-10-21 株式会社Tasプロジェクト 触媒反応の強化方法
US8012269B2 (en) * 2004-12-27 2011-09-06 Shin-Etsu Chemical Co., Ltd. Nd-Fe-B rare earth permanent magnet material
EP2407419A1 (en) 2010-07-16 2012-01-18 Universiteit Twente Photocatalytic water splitting
JP5775784B2 (ja) * 2011-10-06 2015-09-09 日立造船株式会社 水素製造設備
US9259714B2 (en) 2013-07-05 2016-02-16 University Of Houston High-efficiency solar water splitting by nanocrystalline cobalt (II) oxide photocatalyst and uses thereof
US20150259810A1 (en) * 2014-03-17 2015-09-17 California Institute Of Technology Hydrogen evolution reaction catalysis
KR101709014B1 (ko) 2015-09-17 2017-03-09 한양대학교 산학협력단 광전기 화학 전극 및 이를 포함하는 광전기 화학 장치
WO2018017976A1 (en) * 2016-07-21 2018-01-25 Massachusetts Institute Of Technology Far-infrared detection using weyl semimetals
EP3548184A4 (en) * 2016-12-01 2020-05-06 Cetamax Ventures Ltd. DEVICE AND METHOD FOR PRODUCING HYDROGEN BY ELECTROLYSIS
US10256391B2 (en) * 2017-08-25 2019-04-09 International Business Machines Corporation Thermoelectric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011064A2 (en) * 2009-07-24 2011-01-27 Stc.Unm Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles
US20170138844A1 (en) * 2015-11-16 2017-05-18 Trustees Of Princeton University Method for production and identification of weyl semimetal
US20180016700A1 (en) * 2016-07-13 2018-01-18 Tsinghua University Method for making semimetal compound of pt
US20180016707A1 (en) * 2016-07-13 2018-01-18 Tsinghua University Semimetal compound of pt and method for making the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATHERINE R. RAJAMATHI等: "Weyl Semimetals as Catalysts", 《百度学术》 *
范植坚等: "《电解加工技术及其研究方法》", 国防工业出版社 *

Also Published As

Publication number Publication date
JP7270321B2 (ja) 2023-05-10
KR20200141030A (ko) 2020-12-17
KR102662594B1 (ko) 2024-05-03
US11638913B2 (en) 2023-05-02
JP2021515691A (ja) 2021-06-24
EP3752452A1 (en) 2020-12-23
WO2019158414A1 (en) 2019-08-22
US20200376470A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
Liu et al. Efficient photoelectrochemical water splitting by gC 3 N 4/TiO 2 nanotube array heterostructures
Phuan et al. Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review
Pandikumar et al. Titania@ gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells
Zhang et al. Surface localization of defects in black TiO2: enhancing photoactivity or reactivity
Yang et al. Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis
Katz et al. Toward solar fuels: Water splitting with sunlight and “rust”?
Santato et al. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications
Yang et al. Carrier transport in dye-sensitized solar cells using single crystalline TiO2 nanorods grown by a microwave-assisted hydrothermal reaction
Khan et al. Effect of oxygen content on the photoelectrochemical activity of crystallographically preferred oriented porous Ta3N5 nanotubes
Jung et al. Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation
Li et al. Templating sol–gel hematite films with sacrificial copper oxide: enhancing photoanode performance with nanostructure and oxygen vacancies
CN101143712B (zh) 一种利用太阳能分解水制氢纳米电极制备方法
Deng et al. Nanomaterial-based photocatalytic hydrogen production
Tsui et al. Titania nanotubes by electrochemical anodization for solar energy conversion
Fu et al. ZnO nanowire arrays decorated with PtO nanowires for efficient solar water splitting
Zhu et al. Interfacial charge and surface defect regulation for high-efficiency CdIn2S4-based photoanodes
CN112119034A (zh) 通过磁场增强外尔半金属的光催化水解离效率
Karuturi et al. CdS/TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation
JPS5990368A (ja) 化合物の光触媒的解離方法およびこれに用いるダイオ−ド
CN112958116A (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
Mei et al. Tuning nanosheet Fe 2 O 3 photoanodes with C 3 N 4 and p-type CoO x decoration for efficient and stable water splitting
Ye et al. Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production
Yang et al. A simple flame strategy for constructing W‐doped BiVO4 photoanodes with enhanced photoelectrochemical water splitting
Lv et al. Improved photocatalytic activity of highly ordered TiO2 nanowire arrays for methylene blue degradation
Pihosh et al. Ubiquitous element approach to plasmonic enhanced photocatalytic water splitting: the case of Ti@ TiO2 core-shell nanostructure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination