CN112118182B - 发送流量工程的ip路径隧道 - Google Patents

发送流量工程的ip路径隧道 Download PDF

Info

Publication number
CN112118182B
CN112118182B CN201911410823.0A CN201911410823A CN112118182B CN 112118182 B CN112118182 B CN 112118182B CN 201911410823 A CN201911410823 A CN 201911410823A CN 112118182 B CN112118182 B CN 112118182B
Authority
CN
China
Prior art keywords
path
network device
egress
network
router
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911410823.0A
Other languages
English (en)
Other versions
CN112118182A (zh
Inventor
塔雷克·萨阿德
拉文德拉·托维
维什努·帕万·比拉姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juniper Networks Inc
Original Assignee
Juniper Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juniper Networks Inc filed Critical Juniper Networks Inc
Publication of CN112118182A publication Critical patent/CN112118182A/zh
Application granted granted Critical
Publication of CN112118182B publication Critical patent/CN112118182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/726Reserving resources in multiple paths to be used simultaneously
    • H04L47/728Reserving resources in multiple paths to be used simultaneously for backup paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2592Translation of Internet protocol [IP] addresses using tunnelling or encapsulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开涉及发送流量工程的IP路径隧道。通常,描述了用于使用IP网络中的约束发送流量工程的IP路径隧道的技术。例如,IP网络的网络装置(例如,路由器)可以使用约束信息来计算IP路径,并且使用例如资源预留协议来建立IP路径,以在不使用MPLS的情况下信令IP路径。作为一个示例,出口路由器生成路径预留信令消息,该消息包括出口IP地址,该地址被分配给IP路径上的路由器使用,以通过用出口IP地址封装流量并向出口路由器转发来发送数据流的流量。当IP路径中的每个路由器接收到路径预留信令消息时,所述路由器配置转发状态,以将封装有出口IP地址的流量沿着该IP路径朝向出口路由器转发到下一跳。

Description

发送流量工程的IP路径隧道
本申请要求2019年6月21日提交的美国临时专利申请号62/864,754和2019年6月24日提交的美国临时专利申请号62/865,771的权益,这两个申请的全部内容通过引用结合于此。
技术领域
本公开涉及计算机网络,更具体地,涉及计算机网络内的工程流量流。
背景技术
计算机网络是交换数据和共享资源的互连计算装置的集合。在基于分组的网络(例如,互联网)中,计算装置通过将数据分成称为分组的小块来传送数据,这些小块通过网络从源装置单独路由到目的装置。目的装置从分组中提取数据,并将数据组装成原始形式。
网络中的某些装置(称为路由器)使用路由协议来交换和累积描述网络的拓扑信息。这允许路由器构建自己的网络路由拓扑图。一旦接收到输入数据分组,路由器检查分组中的信息,并根据累积的拓扑信息转发分组。
在一些示例中,路由器可以实现一个或多个流量工程协议,以建立用于通过选定路径转发分组的隧道。例如,多协议标签交换(MPLS)是一种用于根据网络中路由器维护的路由信息来设计互联网协议(IP)网络中流量模式的机制。通过利用MPLS协议,例如,具有流量工程扩展的资源预留协议(RSVP-TE)或具有流量扩展的网络中的源分组路由(SPRING)(SR-TE),路由器可以分发与目的地相关联的标签,以使用预先添加到流量的标签,沿着特定路径通过网络将流量转发到目的装置,即标签交换路径(LSP)。RSVP-TE或SR-TE可以使用带宽可用性等约束信息来计算路径,并沿网络中的路径建立LSP。RSVP-TE或SR-TE可以使用由IGP链路状态路由协议累积的带宽可用性信息,例如,中间系统-中间系统(IS-IS)协议或开放最短路径优先(OSPF)协议。在一些配置中,路由器也可以通过一个IP基础设施连接,在这种情况下,可以在路由器之间使用IP-in-IP或通用路由封装(GRE)隧道或其他IP隧道。然而,这种流量工程机制对于在IP网络中实现流量工程有硬件要求或硬件限制。
发明内容
通常,描述了用于使用IP网络中的约束发送流量工程的IP路径隧道的技术。例如,IP网络的网络装置(例如,路由器)可以使用约束信息来计算IP路径,并且使用例如资源预留协议(RSVP)来建立IP路径,以在不使用MPLS的情况下发送IP路径。
在一个示例实现中,该网络的入口路由器可以使用约束信息(例如,带宽可用性)来计算通向IP网络的出口路由器的IP路径。为了发送该IP路径,入口路由器可以生成资源预留协议的路径信令消息,例如,RSVP PATH消息,其包括与该IP路径相关联的路径标识信息。例如,RSVP PATH消息的路径标识信息可以包括显式路由对象(ERO),该路由对象指定了该IP路径的每跳属性(即,下一跳)和所请求的约束。在一些情况下,RSVP PATH消息的路径标识信息还可以包括与该IP路径相关联的流标签,入口路由器可以使用该流标签来封装要在该IP路径上引导的分组。入口路由器根据ERO向下游出口路由器发送RSVP PATH消息。沿着该IP路径的每台路由器(例如,中转路由器)接收RSVP PATH消息,并且如果路由器具有用于该IP路径的资源,则向下游转发RSVP PATH消息。当出口路由器接收到RSVP PATH消息时,出口路由器生成路径预留信令消息,例如,RSVP预留(RESV)消息,该消息包括出口路由器的IP地址(本文称为“出口IP地址”)。通过用出口IP地址封装流量,并向出口路由器转发,出口IP地址分配给IP路径上的路由器使用,以发送由流标签识别的数据流的流量。出口路由器可以按照与ERO指定的IP路径相反的顺序发送RSVP RESV消息。当IP路径中的每个路由器接收到RSVP RESV消息时,路由器可以配置路由器的转发信息,以将封装有出口IP地址的流量沿着该IP路径朝向出口路由器转发到下一跳。
当入口路由器接收到去往出口路由器可到达的目的网络的分组时,入口路由器可以将具有作为分组报头的出口IP地址(在某些情况下是流标签)的分组注入到该分组网络中。当每个中转路由器接收到分组时,中转路由器可以基于分组报头执行其转发信息的查找,并且经由与出口IP地址相关联的输出接口向出口路由器发送分组。当出口路由器接收到分组时,出口路由器可以解封装分组报头,并将分组转发到目的网络。
在另一示例实现中,IP网络的路由器可以另外或替代地配置旁路路径来保护该IP路径。例如,该IP路径的路由器子集可以建立旁路路径,使得在该IP路径上的链路和/或节点出现故障的情况下,该路由器子集可以被配置为将流量引导到旁路路径。为了显式地发送旁路路径,在本地修复点的路由器(例如,为链路或节点保护提供旁路路径的路由器)和旁路路径和IP路径合并的路由器(本文称为“合并点路由器”)可以使用资源预留协议(例如,RSVP)发送旁路路径。在一个示例中,在本地修复点的路由器(例如,故障链路上游的路由器)和合并点路由器(例如,故障链路下游的路由器)可以相互建立链路旁路路径,以在链路故障的情况下引导链路旁路路径上的流量。在另一示例中,在本地修复点的路由器(例如,故障节点上游的路由器)和合并点路由器(例如,故障节点下游的路由器)可以相互建立节点保护旁路(或在下一跳旁路的旁边)路径,以在节点故障的情况下引导节点旁路路径上的流量。
作为一个示例,本地修复点路由器可以发送包括ERO的RSVP PATH消息,该消息指定旁路路径的每跳属性。合并点路由器可以发送指定其IP地址(本文称为“合并点IP地址”)的RSVP RESV消息。当本地修复点路由器接收到RSVP RESV消息时,本地修复点路由器可以存储路由信息,并且在检测到链路和/或节点故障的情况下,配置本地修复点路由器的转发信息,以经由与合并点IP地址相关联的输出接口(例如,旁路隧道)向合并点路由器发送分组。以这种方式,当本地修复点路由器接收到要沿着该IP路径转发的分组并且其用于IP路径的输出链路发生故障时,本地修复点路由器可以沿着旁路路径而不是沿着该IP路径来引导该分组。例如,本地修复点路由器可以将合并点IP地址封装为分组的分组报头,以沿着旁路路径将分组引导到合并点路由器。当合并点路由器接收到分组时,合并点路由器可以解封装分组报头,基于当前分组报头(例如,出口IP地址)执行其转发信息的查找,并且经由该IP路径向出口路由器发送分组。
在一个示例中,一种方法包括由互联网协议(IP)网络的多个网络装置中的一网络装置向该IP网络的出口网络装置发送资源预留协议的路径信令消息,以在该IP网络中建立IP路径,其中,所述路径信令消息包括与该IP路径相关联的路径标识信息,所述路径标识信息使得所述多个网络装置在IP路径上引导流量。该方法还包括由网络装置接收包括出口网络装置的IP地址的资源预留协议的路径预留信令消息。该方法还包括由网络装置响应于接收到所述路径预留信令消息,配置所述网络装置的转发信息,以将IP路径上的分组转发到出口网络装置。
在另一示例中,IP网络的网络装置包括存储器。所述网络装置还包括与所述存储器通信的一个或多个处理器,其中,所述一个或多个处理器被配置为:向该IP网络的出口网络装置发送资源预留协议的路径信令消息,以在该IP网络中建立IP路径,其中,所述路径信令消息包括与该IP路径相关联的路径标识信息,所述路径标识信息使得所述IP网络的多个网络装置在IP路径上引导流量;接收包括出口网络装置的IP地址的资源预留协议的路径预留信令消息;并且响应于接收到所述路径预留信令消息,配置所述网络装置的转发信息,以将IP路径上的分组转发到出口网络装置。
在另一示例中,一种方法包括由互联网协议(IP)网络的多个网络装置的出口网络装置接收路径信令消息,以建立从IP网络的入口网络装置到出口网络装置的IP路径,其中,所述路径信令消息包括与所述IP路径相关联的路径信息,所述路径信息使得所述多个网络装置中的一个或多个中转网络装置建立IP路径。该方法还包括由出口网络装置生成路径预留信令消息,所述路径预留信令消息包括从一组IP地址中选择并分配给IP路径的出口网络装置的IP地址。该方法还包括由出口网络装置向一个或多个中转网络装置发送路径预留信令消息,以使得所述一个或多个中转网络装置和入口网络装置中的每一个配置转发状态,以将IP路径上的分组转发到出口网络装置。
本文描述的技术可以提供实现实际应用的一个或多个技术优势。例如,通过使用资源预留协议(例如,RSVP)显式地发送IP路径隧道,IP网络的路由器可以使用约束来执行流量工程,而不使用需要新硬件或数据平面支持来提供流量工程的MPLS协议,例如,RSVP-TE和SR-TE。此外,本文描述的技术本身支持针对IPv4和IPv6的IP转发,因此避免使用仅支持IPv4或仅支持IPv6的流量工程机制。通过执行本文描述的技术的一个或多个方面,IP网络的路由器也可以避免使用对封装数量有限制并且不提供带宽保证的IP-in-IP或GRE隧道机制。本文描述的技术的一个或多个方面还可以提供重新路由过程(例如,快速重新路由),几乎没有改变,并且不需要无环路的替代路由。此外,使用RSVP的先接后断过程(例如,用于IP路径替换或带宽调整)可以在几乎没有改变的情况下实现。
在附图和以下描述中阐述一个或多个示例的细节。从说明书和附图以及权利要求书中,本公开的其他特征、目的和优点将变得显而易见。
附图说明
图1是示出根据本公开中描述的技术的一个或多个方面的示例网络系统的框图,其中,网络装置使用IP网络中的约束来发送用于流量工程的显式IP路径隧道;
图2是示出根据本公开中描述的技术的一个或多个方面的另一示例网络系统的框图,其中,网络装置配置旁路路径来保护IP路径;
图3是示出路由器执行本公开中描述的技术的各个方面的框图;
图4是示出根据本公开中描述的技术的一个或多个方面的概念图的框图,该概念图示出了用于使用IP网络中的约束来发送流量工程的IP路径隧道的IP对象的示例格式;
图5是示出根据本公开中描述的技术的一个或多个方面的另一概念图的框图,该另一概念图示出了用于使用IP网络中的约束来发送流量工程的IP路径隧道的IP对象的示例格式;
图6A-图6B是示出根据本文描述的技术的在IP网络中使用约束来发送流量工程的IP路径隧道的示例操作的流程图;
图7是示出根据本公开中描述的技术的一个或多个方面的另一示例网络系统的框图,其中,网络装置执行转发信息共享。
在附图和以下描述中阐述一个或多个示例的细节。从说明书和附图以及权利要求书中,其他特征、目的和优点将变得显而易见。
具体实施方式
图1是示出根据本公开中描述的技术的一个或多个方面的示例性网络系统2的框图,其中,网络装置使用互联网协议(IP)网络中的约束(constrains)来发送(signal)用于流量工程的显式IP路径隧道。在图1的示例中,网络14可以包括网络装置,例如,路由器12A-12E(统称为“路由器12”),以在一条或多条链路(例如,链路18A-18E(统称为“链路18”)上建立一条或多条互联网协议(IP)路径。
在一些示例中,网络14可以是服务提供商网络。例如,网络14可以表示由服务提供商(通常是私有实体)拥有和运营的一个或多个网络,这些网络提供一个或多个服务,以供客户网络6A-6B(统称为“客户网络6”)的客户或用户消费。在这种背景下,网络14通常是第3层(L3)分组交换网络,其在公共网络(例如,互联网)和一个或多个客户网络6之间提供L3连接。通常,由服务提供商网络14提供的该L3连接作为数据服务或互联网服务进行销售,并且客户网络6中的用户可以订阅该数据服务。网络14可以表示L3分组交换网络,该网络提供数据、语音、电视和任何其他类型的服务,以供用户购买并供用户随后在客户网络6中消费。在图1所示的示例中,网络14可以包括支持互联网协议的网络基础设施,并且在本文可以称为IP网络14。
客户网络6可以是局域网(LAN)、广域网(WAN)或包括多个用户和/或客户装置(未示出)的其他专用网络。在一些示例中,客户网络6可以包括同一客户企业的分布式网络站点。在其他示例中,客户网络6可以属于不同的实体。客户网络6内的用户和/或客户装置(未示出)可以包括个人计算机、膝上型计算机、工作站、个人数字助理(PDA)、无线装置、网络就绪设备、文件服务器、打印服务器或能够经由网络14请求和接收数据的其他装置。虽然在图1的示例中没有示出,但是网络系统2可以包括额外的服务提供商网络、客户网络和其他类型的网络,例如,接入网络、专用网络或任何其他类型的网络。
路由器12表示通过执行基于IP的转发(例如,封装IP地址和解封装IP地址)来通过网络14路由或转发流量的任何网络装置。典型地,路由器12表示L3分组交换装置,该装置在L3操作,以使用路由协议,例如,内部网关协议(IGP)或边界网关协议(BGP),交换描述网络14的当前拓扑的路由信息。路由器12然后处理该路由信息,通过网络12的拓扑表示选择路径,以到达所有可用的目的地,从而生成转发信息。换言之,路由器12将这些路径减少到所谓的“下一跳”,其识别要将去往特定目的地的分组转发到的接口,其中,转发信息包括该下一跳列表。路由器12然后将该转发信息安装在路由器的转发组件中,于是转发组件根据转发信息转发接收的流量。通常,转发组件可以是用于在路由器的接口之间转发分组的任何组件,例如,用转发表编程的转发电路或处理器。
在图1所示的示例中,路由器12可以建立一个或多个IP路径,例如,IP路径16(用虚线表示)。路由器12A可以表示IP路径16的入口路由器,路由器12D可以表示IP路径16的出口路由器。路由器12B、12C是沿着IP路径16的中间路由器或中转路由器。IP路径16可以表示从入口路由器12A到出口路由器12D的沿着IP路径的流量的流。在IP路径16上发送的所有网络流量必须遵循已建立的路径。在图1的示例中,在链路18A-18C上建立了IP路径16。网络系统2的配置仅仅是一个示例。例如,网络系统2可以包括任意数量的中转路由器和IP路径。然而,为了便于描述,在图1的示例中仅示出了路由器12A-12D。
在一些示例中,可以基于约束信息来建立IP路径。约束信息可以包括例如预留带宽可用性、延迟、服务不连续性、共享林克链路组(Shared Rink Link Group,SRLG)等。在一些情况下,网络装置可以使用例如IGP,例如,中间系统-中间系统(IS-IS)协议或开放最短路径优先(OSPF)协议来通告约束信息,以配置IP路径。基于通告的约束信息,路由器在某些情况下可以使用通用路由封装(GRE)或IP-in-IP隧道协议建立IP路径,以基于通告的约束建立流量工程隧道。然而,实现IP-in-IP或GRE封装的网络装置受限于入口路由器可以推送(push)以实现端到端受限路径(constrained path)的IP/GRE报头的数量(例如,基于沿着路径的路由器的数量)。例如,IP/GRE报头均占据特定数量的字节(例如,IP报头可以占据20字节;GRE封装中的IP可能占用24字节)。因为入口路由器会为要遍历流量的每台路由器推送一个IP/GRE报头,所以对于受限路径,每台路由器都需要额外的处理。此外,IP-in-IP或GRE封装不提供带宽保证,路由松散(这可能导致不希望的/意外的数据流),并且可能隐藏中转路由器可以用来执行等成本多路径(ECMP)散列的流标识符。
或者,网络装置可以使用约束将MPLS用于流量工程。在这些示例中,网络装置使用具有流量工程扩展的资源预留协议(RSVP-TE)或具有流量扩展的网络中的源分组路由(SR-TE)来基于约束信息引导流量。然而,这种特定于MPLS的流量工程机制需要硬件和数据平面支持。例如,为了在IPv6数据平面(SRv6)上实现网段路由,网络装置必须具有能够支持网段路由报头(SRH)中编码的网段标识符(SID)的数量的硬件。类似地,为了在IPv6+(SRv6+)上实现网段路由,网络装置必须具有能够支持控制平面和数据平面扩展的硬件(例如,短SID到128位SID/v6地址的映射)。上述MPLS流量工程机制仅局限于IPv6,支持严格和松散路由,需要扩展现有控制平面来通告拓扑和服务SID,可能需要运营商的陡峭学习(steeplearning)曲线(例如,对于传输SID、服务SID等的变化),并且可能限于用于实现基于约束的路径的集中式带宽管理。
根据本文所述的技术,路由器12可以使用例如资源预留协议(例如,RSVP)的IP网络内的约束,发送流量工程的显式IP路径隧道,以基于路径约束(例如,带宽、低延迟路径、服务不连续性、SRLG感知路径等)发送用于沿着IP路径引导流量的显式IP路径隧道,而不必将MPLS引入网络14。
在一个示例实现中,入口路由器12A可以使用约束来计算IP路径,例如,IP路径16,并且可以使用RSVP发送控制平面预留,以建立IP路径16。IP路径16可以表示IPv4隧道或IPv6隧道。例如,当实现RSVP时,入口路由器12A可以发送路径信令消息,例如,RSVP PATH消息22,其可以包括用于IP路径16的路径标识信息。路径标识信息可以表示对IP路径16的转发等价类(FEC)的标识。例如,RSVP PATH消息22的路径标识信息可以包括显式路由对象(ERO),其指定入口路由器12A和出口路由器12D之间的IP路径16的下一跳属性。ERO可以包括沿着显式路由器(例如,IP路径16)的中转路由器(例如,路由器12B、12C和出口路由器12D)的列表。RSVP PATH消息22的路径标识信息还可以包括流量规范(TSPEC)对象,该对象指定数据流的流量特征(例如,带宽要求或其他约束)。在一些示例中,RSVP PATH消息22的路径标识信息可以包括发送者模板对象,RSVP PATH消息22的入口路由器12A使用该发送者模板对象来唯一地将入口路由器12A标识为IP路径16的流量源。例如,发送者模板对象可以包括IP路径16的路径标识符、发送者节点的IP地址以及在一些示例中发送者的端口号。
尽管关于建立IP路径的入口路由器来描述本文描述的技术,但是中央控制器可以替代地或另外执行本公开中描述的技术的一个或多个方面。例如,中央控制器可以对网络14的拓扑具有可见性,并且通过向路由器12发送控制平面预留来计算受限路径,以建立IP路径16。
中转路由器12B、12C均接收包括路径标识信息(例如,ERO)的RSVP PATH消息22,并且沿着由ERO指定的路径将RSVP PATH消息22转发到目的地。中转路由器12B、12C可以均将请求的带宽与中转路由器的输出链路上可用的带宽进行比较,并且如果中转路由器具有足够的资源用于IP路径16,则向下游转发RSVP PATH消息22。
当出口路由器12D接收到RSVP PATH消息22时,出口路由器12D可以为IP路径16生成路径预留信令消息,例如,RSVP RESV消息24,并且按照RSVP PATH消息22的ERO创建的路径状态以相反的顺序将RSVP RESV消息24向上游发送回入口路由器12A。在一些示例中,出口路由器12D可以分配一组IP地址(本文称为“出口地址块(EAB)”),例如,IP前缀,以使出口路由器12D能够接收用从EAB选择的任何IP地址封装的流量。即,出口路由器12D可以分配EAB,通过该EAB出口路由器12D可以接收封装有从EAB选择的任何IP地址的流量,而不是分配用于将MPLS中的流量引导至出口路由器12D的标签。在图1所示的示例中,出口路由器12D可以分配192.168.4.0/24的出口地址块。
出口路由器12D可以以与IP路径16相反的顺序发送RSVP RESV消息24,该消息具有从EAB选择的IP地址(本文称为“出口IP地址”)。即,例如,出口IP地址不是使用IGP来通告的,而是由RSVP来管理的。在图1的示例中,出口路由器12D可以发送包括从192.168.4.0/24的EAB中选择的出口IP地址192.168.4.1/32的RSVP RESV消息24。RSVP RESV消息24可以包括IP路径16的路径标识信息。例如,RSVP RESV消息24的路径标识信息可以包括过滤器规范(FSPEC)对象,该对象包括流量源(例如,入口路由器12A)的标识符和IP路径16的标识符。在一些示例中,在RSVP RESV消息的LSP属性对象类型长度值(TLV)中指定出口IP地址,如A.Farrel,Ed.等人于2009年2月在网络工作组RFC 5420“Encoding of Attributes forMPLS LSP Establishment Using Resource Reservation Protocol TrafficEngineering(RSVP-TE)”中所描述的,其全部内容通过引用结合于此。
出口路由器12D还可以生成转发信息,该转发信息解封装具有出口IP地址(例如,192.168.4.1/32)的分组报头,并将分组通过输出接口转发到目的地,例如,客户网络6B。
当中转路由器12C接收到RSVP RESV消息24时,中转路由器12C可以在其路由信息中存储到出口IP地址的路由。例如,中转路由器12C可以提取RSVP RESV消息24中指定的出口IP地址,并利用从包含在RSVP PATH消息22中的ERO提取下一跳,在其路由信息中编程到出口IP地址的路径。使用路由信息,中转路由器12C可以生成转发信息,该转发信息将出口IP地址(例如,出口IP地址192.168.4.1/32)与特定的下一跳和相应的输出接口相关联。在图1的示例中,中转路由器12C可以基于包含在RSVP PATH消息22中的ERO来确定该路由的下一跳去往出口路由器12D。中转路由器12C可以配置其转发信息,以通过输出接口将封装有出口IP地址的流量转发到出口路由器12D。中转路由器12C可以为输出链路(例如,链路18C)预留资源,例如,带宽,并将RSVP RESV消息24向上游发送到中转路由器12B。
当中转路由器12B接收到RSVP RESV消息24时,中转路由器12B可以在其路由信息中存储到出口IP地址的路由。例如,中转路由器12B可以提取RSVP RESV消息24中指定的出口IP地址,并且利用从包括在RSVP PATH消息22中的ERO提取的下一跳,在其路由信息中编程到出口IP地址的路径。使用路由信息,中转路由器12B可以生成转发信息,该转发信息将出口IP地址(例如,出口IP地址192.168.4.1/32)与特定的下一跳和相应的输出接口相关联。在图1的示例中,中转路由器12B可以基于包含在RSVP PATH消息22中的ERO来确定该路由的下一跳去往中转路由器12C。中转路由器12B可以配置其转发信息,以通过出站接口将封装有出口IP地址的流量转发到中转路由器12C。中转路由器12B可以为输出链路(例如,链路18B)预留带宽,并将RSVP RESV消息24向上游发送到入口路由器12A。
响应于接收到RSVP RESV消息24,入口路由器12A可以在其路由信息中存储到出口IP地址的路由。例如,中转路由器12B可以提取RSVP RESV消息24中指定的出口IP地址,并且利用从包括在RSVP PATH消息22中的ERO提取的下一跳,在其路由信息中编程到出口IP地址的路径。使用路由信息,入口路由器12A可以生成将出口地址(例如,出口地址192.168.4.1/32)与特定的下一跳和相应的输出接口相关联的转发信息。在图1的示例中,入口路由器12A可以基于包含在RSVP PATH消息22中的ERO来确定该路由的下一跳去往中转路由器12B。入口路由器12A可以配置其转发信息,以将出口IP地址封装为数据分组的报头,从而将受限路径上的分组引导到出口IP地址。入口路由器12A可以为输出链路(例如,链路18A)保留带宽,并且有效地建立IP路径16。
当入口路由器12A从客户网络6A接收到去往客户网络6B的数据分组(例如,分组26)时,入口路由器12A可以将分组26注入到IP网络14中,其中,出口IP地址(例如,192.168.4.1/32)作为分组26的分组头28,以沿着IP路径16引导分组26。例如,当入口路由器12A接收到分组26时,入口路由器12A可以执行其转发信息的查找,并确定发送分组的下一跳的特定输出接口(例如,到中转路由器12B的输出接口)。基于该查找,入口路由器12A可以执行IP-in-IP封装,其中,分组封装有作为IP传输报头的出口IP地址。入口路由器12A将分组26封装有作为分组报头28的出口IP地址,并将封装的分组发送到其下一跳,例如,路由器12B。
当中转路由器12B接收到封装有分组报头28的分组26时,中转路由器12B基于分组报头28中指定的出口IP地址来查找其转发信息,并确定用于将分组转发到下一跳(例如,中转路由器12C)的输出接口。类似地,当中转路由器12C接收到封装有分组报头28的分组26时,中转路由器12C基于分组报头28中指定的出口IP地址查找其转发信息,并确定用于将分组转发到下一跳的输出接口,例如,出口路由器12D。当出口路由器12D接收到封装有分组报头28的分组26时,出口路由器12D可以从分组26中解封装分组报头28,并将分组26转发到客户网络6B(例如,使用分组中指定的目的地址)。
在一些示例中,入口路由器12A可以另外或替代地发送RSVP PATH消息22的路径标识信息,该消息22包括与IP路径16相关联的流过滤器(例如,流标签),该流过滤器使得IP路径16上的路由器沿着IP路径16引导用流标签封装的分组。流标签可以为特定的分组流提供唯一的标识。例如,IP路径16的中转路由器可以使用流标签来执行等成本多路径(ECMP)散列,以引导IP路径16上的分组。在S.Amante等人于2011年11月的互联网工程任务组(IETF)征求意见(RFC)6437“IPv6 Flow Label Specification”以及T.Dreibholz于2019年3月6日的网络工作组draft-dreibholz-ipv4-flowlabel-29“An IPv4 Flowlabel Option”中描述流标签的额外示例,这两个文件的全部内容通过引用结合于此。
在图1所示的示例中,入口路由器12A可以分配与IP路径16相关联的流标签。入口路由器12A还可以在RSVP PATH消息22的路径标识信息中包括流标签,以使中转路由器(例如,中转路由器12B、12C)沿着IP路径16引导用流标签封装的分组。在这些示例中,路由器12可以使用流标签来区分分组流,而不是使用来自出口地址块的不同出口地址。
为了配置IP路径16,入口路由器12A可以发送RSVP PATH消息22,该消息可以包括还包括流标签的IP路径16的路径标识信息。如上所述,RSVP PATH消息22的路径标识信息可以包括ERO,其指定入口路由器12A和出口路由器12D之间的IP路径16的下一跳属性(例如,下一跳)。RSVP PATH消息22的路径标识信息还可以包括流量规范(TSPEC)对象,该对象指定数据流的流量特征(例如,带宽要求或其他约束)。路径标识信息还可以包括与IP路径16相关联的流标签,以使中转路由器(例如,中转路由器12B、12C)引导在IP路径16上具有流标签的流量。
每个中转路由器12B、12C接收包括流标签的RSVP PATH消息22。如下文进一步描述的,每个中转路由器12B、12C可以使用流标签在其转发信息中配置分类器,以引导与IP路径16上的分类器匹配的分组。每个中转路由器12B、12C沿着由ERO指定的路径向目的地转发RSVP PATH消息22。
当出口路由器12D接收到RSVP PATH消息22时,出口路由器12D可以生成转发信息,以从分组中解封装流标签,并使用分组的原始目的地址,通过输出接口将分组转发到目的地,例如,客户网络6B。出口路由器可以为IP路径16生成RSVP RESV消息24,并且按照由RSVPPATH消息22创建的路径状态以相反的顺序将RSVP RESV消息24向上游发送回入口路由器12A。出口路由器12D可以发送包括出口路由器12D的IP地址的RSVP RESV消息24。如上所述,可以在RSVP RESV消息的LSP属性对象TLV中指定出口IP地址。
当中转路由器12C接收到RSVP RESV消息24时,中转路由器12C可以在其路由信息中存储到出口地址的路由。例如,中转路由器12C可以提取RSVP RESV消息24中指定的出口IP地址,并利用从包含在RSVP PATH消息22中的ERO提取的下一跳,在其路由信息中编程到出口IP地址的路径。中转路由器12C可以用流规范(flow spec)过滤器配置其路由信息,例如,包括入口路由器12A的源地址、出口路由器12D的目的地址和IP路径16的流标签(例如,<源地址、目的地址、流标签>)的三元组。使用路由信息,中转路由器12C可以生成将出口IP地址与特定的下一跳和相应的输出接口相关联的转发信息。在图1的示例中,中转路由器12C可以基于包含在RSVP PATH消息22中的ERO来确定该路由的下一跳去往出口路由器12D。中转路由器12C可以使用其路由信息的流规范过滤器来用分类器配置其转发信息,以通过到出口路由器12D的输出接口来引导与其在IP路径16上的路由信息中的三元组相匹配的流量。中转路由器12C可以为输出链路(例如,链路18C)预留资源,例如,带宽,并将RSVP RESV消息24向上游发送到中转路由器12B。
当中转路由器12B接收到RSVP RESV消息24时,中转路由器12B可以在其路由信息中存储到出口地址的路由。例如,中转路由器12B可以提取RSVP RESV消息24中指定的出口IP地址,并且利用从包括在RSVP PATH消息22中的ERO提取的下一跳,在其路由信息中编程到出口IP地址的路径。中转路由器12B可以用流规范过滤器(例如,<入口路由器12A的源地址、出口路由器12D的目的地址和IP路径16的流标签)配置其路由信息。使用路由信息,中转路由器12B可以生成转发信息,该转发信息将出口IP地址与特定的下一跳和相应的输出接口相关联。在图1的示例中,中转路由器12B可以基于包含在RSVP PATH消息22中的ERO来确定该路由的下一跳去往中转路由器12C。中转路由器12B可以使用其路由信息的流规范过滤器来用分类器配置其转发信息,以通过到中转路由器12C的输出接口来引导与其在IP路径16上的路由信息中的三元组匹配的流量。中转路由器12B可以为输出链路(例如,链路18B)预留资源,例如,带宽,并将RSVP RESV消息24向上游发送到入口路由器12A。
响应于接收到RSVP RESV消息24,入口路由器12A可以在其路由信息中存储到出口IP地址的路由。例如,入口路由器12A可以提取在RSVP RESV消息24中指定的出口IP地址,并利用从包含在RSVP PATH消息22中的ERO提取的下一跳,在其路由信息中编程到出口IP地址的路径。使用路由信息,入口路由器12A可以生成将出口IP地址与特定的下一跳和相应的输出接口相关联的转发信息。在图1的示例中,入口路由器12A可以基于包含在RSVP PATH消息22中的ERO来确定该路由的下一跳去往中转路由器12B。入口路由器12A还可以配置其转发信息,以封装出口路由器12D的目的地址和用于IP路径16的流标签,并且通过输出接口将封装的分组转发到下一跳,例如,中转路由器12B。
当入口路由器12A从客户网络6A接收到去往客户网络6B的数据分组,例如,分组26时,入口路由器12A可以利用分组报头将分组26注入到IP网络14中,该分组报头包括出口路由器12D的目的地址和用于IP路径16的流标签。例如,当入口路由器12A接收到分组26时,入口路由器12A可以执行其转发信息的查找,并确定发送分组的下一跳的特定输出接口(例如,到中转路由器12B的输出接口)。基于该查找,入口路由器12A可以将分组26封装有出口IP地址和用于IP路径16的流标签,作为IP传输分组报头,并将封装的分组发送到其下一跳,例如,路由器12B。
当中转路由器12B接收到封装有出口IP地址和用于IP路径16的流标签的分组时,中转路由器12B可以执行其路由信息的查找,并且确定分组报头与路由信息中的流规范过滤器匹配。中转路由器12B然后执行其转发信息的查找,以确定用于将分组转发到IP路径16的下一跳的输出接口,例如,中转路由器12C。类似地,当中转路由器12C接收到封装有出口IP地址和用于IP路径16的流标签的分组时,中转路由器12C可以执行其路由信息的查找,并且确定分组报头与路由信息中的流规范过滤器匹配。中转路由器12C然后执行其转发信息的查找,以确定用于将分组转发到IP路径16上的下一跳的输出接口,例如,出口路由器12D。当出口路由器12D接收到该分组时,出口路由器12D可以从该分组中解封装出口IP地址和用于IP路径16的流标签,并且使用该分组的原始目的地址通过输出接口将该分组转发到目的地,例如,客户网络6B。
本文描述的技术可以提供一个或多个提供实际应用的技术优势。例如,通过使用资源预留协议(例如,RSVP)显式地发送IP路径隧道,IP网络的路由器可以使用约束来执行流量工程,而不使用需要新硬件或数据平面支持来提供流量工程的MPLS协议(例如,RSVP-TE和SR-TE)。此外,本文描述的技术本身支持针对IPv4和IPv6的IP转发,因此避免使用仅支持IPv4或仅支持IPv6的流量工程机制。通过执行本文描述的技术的一个或多个方面,IP网络的路由器也可以避免使用对封装数量有限制并且不提供带宽保证的IP-in-IP或GRE隧道机制。此外,使用RSVP的先接后断过程(例如,用于IP路径替换或带宽调整)可以在几乎没有改变的情况下实现。
图2是示出根据本公开中描述的技术的另一示例网络系统的框图,其中,网络装置配置旁路路径来保护IP路径。除了如下所述,图2的网络14类似于图1的网络14。
如上所述,路由器12可以建立IP路径16。在一些示例中,路由器12还可以配置旁路路径来保护IP路径16。在图2所示的示例中,路由器12B、12E和12C可以建立旁路路径30,以在链路18B出现故障时保护IP路径16。例如,除了发送RSVP PATH消息22以建立IP路径16之外,路由器12B还可以发送RSVP PATH消息32,以建立旁路路径30。在这个示例中,路由器12B可以发送包括旁路路径30的路径标识信息的RSVP PATH消息32。例如,RSVP PATH消息32的路径标识信息可以包括指定本地修复点路由器(例如,路由器12B)和合并旁路路径30和IP路径16的路由器(本文称为“合并点路由器”)(例如,路由器12C)之间的旁路路径30的ERO。旁路路径30的ERO可以指定沿着连接路由器12B和路由器12E的链路18D以及连接路由器12E和路由器12C的链路18E的路径。
当合并点路由器12C接收到RSVP PATH消息32时,合并点路由器12C可以为旁路路径30生成RSVP RESV消息34,并且沿着RSVP PATH消息32创建的路径状态以相反的顺序将RSVP RESV消息34向上游发送回本地修复点路由器12B。合并点路由器12C可以分配一组IP地址(即,出口地址块),以使合并点路由器12C能够从出口地址块接收封装有IP地址的流量。例如,合并点路由器12C可以分配192.168.3.0/24的出口地址块,通过该出口地址块,路由器12C可以从出口地址块(例如192.168.3.0/24)接收封装有IP地址的流量。
合并点路由器12C可以基于包含在RSVP PATH消息32中的ERO,以旁路路径30的相反顺序,发送带有来自由合并点路由器12C分配的地址块的IP地址(本文称为“合并点IP地址”)的RSVP RESV消息34。即,合并点路由器12C可以用作旁路路径的出口路由器操作,并且合并点IP地址将是旁路路径的出口地址块。
当路由器12E接收到RSVP RESV消息34时,路由器12E可以在其路由信息中存储合并点IP地址,作为旁路路由。使用路由信息,路由器12E可以生成将旁路路径30的目的地(例如,合并点IP地址192.168.3.0/24)与特定的下一跳和相应的输出接口相关联的转发信息。路由器12E可以基于包含在RSVP PATH消息32中的ERO来确定旁路路由的下一跳去往路由器12C。在图2的示例中,路由器12E可以配置其转发信息,以通过输出接口将封装有合并点IP地址的流量转发到合并点路由器12C。路由器12E然后将RSVP RESV消息34向上游发送到本地修复点路由器12B。
当本地修复点路由器12B接收到RSVP RESV消息34时,路由器12B可以在其路由信息中存储到合并点IP地址的旁路路由。在图2的示例中,路由器12B可以基于故障事件(称为先接后断(MBB))预先配置旁路路径30。例如,本地修复点路由器12B可以使用路由信息来生成转发信息,该转发信息将旁路路径30的目的地(例如,合并点IP地址)与特定的下一跳和相应的输出接口相关联。如果本地修复点路由器12B检测到(或得知)链路18B出现故障,则本地修复点路由器12B可以在旁路路径30上转发流量。路由器12可以使用例如诸如双向转发检测(BFD)、链路层操作、维护和管理(OAM)协议、链路状态协议(例如,IS-IS或OSPF)等协议来识别链路故障。当本地修复点路由器12B检测到链路18B出现故障时,路由器12B可以通过输出接口将封装有合并点IP地址的流量转发到中转路由器12E。路由器12B可以基于包含在RSVP PATH消息32中的ERO来确定旁路路由的下一跳去往路由器12E。
当入口路由器12A从客户网络6A接收到去往客户网络6B的分组(例如,分组26)时,入口路由器12A可以将分组26注入到具有作为分组26的分组头28的出口IP地址(例如,192.168.4.1/32)的IP网络14中,以沿着IP路径16引导分组26。当中转路由器12B接收到分组26时,中转路由器12B基于分组报头28中指定的出口IP地址来执行其转发信息的查找,并且确定将沿着旁路路径30转发分组。中转路由器12B将合并点IP地址(例如,192.168.4.0/24)封装为分组26的分组报头36,并通过输出接口将分组发送到路由器12E。当路由器12E接收到分组26时,路由器12E基于分组报头36中指定的合并点IP地址执行其转发信息的查找,并且经由输出接口向路由器12C发送分组26。当合并点路由器12C接收到分组26时,路由器12C从分组26中解封装分组报头36,并基于分组报头28(现在是IP报头)中指定的出口IP地址来执行其转发信息的查找。路由器12C基于查找来确定用于将分组26转发到出口路由器12D的输出接口,并且经由输出接口向出口路由器12D发送分组26。当出口路由器12D接收到分组26时,出口路由器12D可以从分组26中解封装分组报头28,并将分组26转发到客户网络6B。
尽管关于配置旁路路径的中转路由器来描述图2中描述的示例,但是入口路由器(充当本地修复点)可以根据本公开中描述的技术的一个或多个方面来配置旁路路径。
这样,通过根据本文描述的技术的一个或多个方面配置旁路路径,路由器可以提供重新路由过程(例如,快速重新路由),而几乎没有改变,并且不需要无环路的替代路由。
图3是示出执行本公开中描述的技术的各个方面的示例路由器40的框图。路由器40可以表示图1-图2的任何路由器12。尽管针对路由器进行了描述,但是这些技术可以由能够实现至少包括资源预留协议(例如,RSVP)和IP转发的路由协议的任何其他类型的网络装置来实现。因此,尽管针对路由器40进行了描述,但是这些技术不应局限于针对图3的示例所描述的路由器40。
在图3的示例中,路由器40包括接口卡54A-54N(“IFC 54”),所述接口卡分别经由网络链路56A-56N和57A-57N接收和发送数据单元,例如,分组流。路由器40可以包括具有多个插槽的机箱(未示出),用于容纳一组卡,包括IFC 54。每个卡可以插入机箱的相应插槽中,用于经由高速开关(未示出)将卡电耦合到路由组件44,高速开关可以包括例如开关结构、开关设备、可配置的网络开关或集线器或其他高速开关机构。IFC 54可以经由多个物理接口端口(未示出)耦合到网络链路56A-56N和57A-57N。通常,IFC 54可以均表示一个或多个网络接口,路由器40可以通过这些接口与网络的链路(例如,图1和图2的示例中所示的链路18)接合。
通常,路由器40可以包括控制单元42,该控制单元42确定接收到的分组的路由,并相应地经由IFC 54转发分组。在图3的示例中,控制单元42包括路由组件44(控制平面),其配置和控制由分组转发组件46(数据平面)应用的分组转发操作。
路由组件44可以包括路由信息70。路由信息70可以描述路由器40所驻留的网络拓扑,并且还可以描述网络中的各种路由以及每条路由的适当的下一跳,即,沿着每条路由的相邻路由装置。路由组件44分析存储在路由信息70中的信息,以生成转发信息,例如,转发信息48。路由组件44然后将转发数据结构安装到转发组件46内的转发信息48中。转发信息48将网络目的地与转发平面内的特定下一跳和相应接口端口相关联。路由组件44选择通过IP网络的特定路径,并在转发组件46内的转发信息48中沿着这些特定路径安装下一跳。
路由组件44为在网络堆栈的不同层执行的各种路由协议60提供操作环境。路由组件44负责维护路由信息70,以反映路由器40所连接的网络和其他网络实体的当前拓扑。特别地,路由协议周期性地更新路由信息70,以基于路由器40接收的路由协议消息准确地反映网络和其他实体的拓扑。协议可以是在一个或多个处理器上执行的软件进程。例如,路由组件44包括在网络堆栈的网络层运行的网络协议,这些协议通常被实现为可执行软件指令。
根据本公开中描述的技术,路由器40可以扩展RSVP 62,以发送显式IP路径隧道,从而基于诸如带宽、低延迟路径、服务分离、共享风险链路组(SRLG)感知路径等路径约束来建立IP路径(例如,图1的IP路径16或图2的旁路路径30)。
对于路由器40作为IP网络的入口路由器(例如,图1的路由器12A)操作的示例,路由器40的IP路径组件68可以扩展RSVP 62,以发送包括与IP路径相关联的路径标识信息的RSVP PATH消息。例如,IP路径组件68可以发送包括ERO的RSVP PATH消息的路径标识信息,该ERO指定了IP路径的下一跳属性和数据流的流量特征(例如,经由TSPEC对象)。如图4中进一步描述的,IP路径组件68可以扩展RSVP 62,以生成扩展的RSVP PATH消息,以包括携带该IP路径的转发等价类识别的标识的发送者模板对象。此外,或者可替换地,在一些示例中,IP路径组件68可以扩展RSVP 62,以在RSVP PATH消息中包括流标签。流标签可以由路由器40分配,并且插入到通过IP路径转发的分组中,以使得IP路径上的路由器将与流标签匹配的分组沿着IP路径转发到出口路由器。
路由器40的IP路径组件68还可以使路由器40存储到包含在RSVP RESV消息中的出口IP地址的路由。例如,路由器40可以接收RSVP RESV消息,该消息包括从出口路由器12D分配的出口地址块(图示为出口IP地址72)中选择的IP地址。在使用流标签来引导IP路径上的流量的一些示例中,路由器40可以接收包括出口路由器的IP地址的RSVP RESV消息。IP路径组件68可以使路由器40在路由信息70中存储到达出口IP地址的路由。IP路径组件68还可以确定该IP路径的下一跳。例如,IP路径组件68可以基于包含在RSVP PATH消息中的ERO来确定该IP路径的下一跳。
路由组件44分析到达存储在路由信息70中的出口IP地址72的路由,以在转发组件46内生成转发信息48。转发信息48将该IP路径的出口IP地址(例如,出口IP地址70)与转发平面内的特定下一跳和相应接口端口相关联。例如,路由组件44可以配置转发信息48中的下一跳,该下一跳使得路由器40通过连接到该IP路径的下一跳的一个IFC 54转发去往出口IP地址的流量。在路由器40表示入口路由器的示例中,路由组件44可以进一步使用到达存储在路由信息70中的出口IP地址72的路由,以配置转发信息48,该转发信息48包括用于沿着该IP路径朝向出口IP地址引导分组的输出接口和下一跳。路由组件44可以配置转发信息48,以在将分组转发到下一跳之前,将出口IP地址封装为分组的分组报头。此外,或者可替换地,路由组件44可以分配与一个IP路径相关联的流标签,并且配置转发信息48,以将该流标签封装到输出分组。
在路由器40作为IP网络的出口路由器(例如,图1的路由器12D)操作的示例中,IP路径组件68可以使路由器40生成包括路由器40的IP地址的RSVP RESV消息。例如,当作为出口路由器操作时,路由器40可以分配出口地址块,例如,IP前缀,路由器40可以通过该地址块从出口地址块接收封装有任何IP地址的流量。响应于从该IP路径的上游路由器接收到RSVP PATH消息,路由器40可以以包含在RSVP PATH消息中的ERO指定的IP路径的相反顺序,发送RSVP RESV消息。路由器40可以扩展RSVP 62,以从出口地址块生成包括出口IP地址的RSVP RESV消息。例如,路由器40可以从出口地址块中选择IP地址,并将选择的IP地址分配给一个或多个IP路径。在这些示例中,路由器40可以维护将出口地址块的特定IP地址与相应路径相关联的表。如图5中进一步描述的,IP路径组件68可以扩展RSVP 62,以生成RSVPRESV消息,从而包括携带IP路径的转发等价类的标识的过滤器规范对象。
在一些示例中,路由器40(作为出口路由器操作)可以接收包括流标签的RSVPPATH消息,并且作为响应,可以生成包括路由器40的IP地址的RSVP RESV消息。在路由器40表示出口路由器的示例中,路由组件44可以进一步使用路由信息70中的出口IP地址72来配置转发信息48,以解封装用出口IP地址82和流标签封装的分组报头,并将分组转发到目的地。
在路由器40作为IP网络的中转路由器(例如,图1的路由器12B、12C)操作的示例中,IP路径组件68可以使路由器40接收包括ERO的RSVP PATH消息,并确定路由器40是否具有足够的资源,用于所请求的约束。例如,在向下游转发RSVP PATH消息之前,IP路径组件68可以将为该IP路径请求的带宽与输出链路57上可用的带宽进行比较。IP路径组件68还可以使路由器40存储到包含在RSVP RESV消息中的出口IP地址的路由。例如,IP路径组件68可以提取包括在RSVP RESV消息中的出口路由器12D的出口IP地址,并且在路由信息70中存储到出口IP地址72的路由。IP路径组件68还可以基于包含在RSVP PATH消息中的ERO来确定该IP路径的下一跳。
在使用流标签来引导IP路径上的流量的一些示例中,路由器40(作为中转路由器操作)可以交换包括流标签的RSVP消息,并且作为响应,可以用流规范过滤器来配置路由信息70,例如,包括入口路由器的源地址、出口路由器的目的地址和IP路径的流标签的三元组。
路由组件44分析路由信息70中的出口IP地址72,以在转发组件46中生成转发信息48。转发信息48将该IP路径的出口路由器的IP地址(例如,出口IP地址72)与转发平面内的特定下一跳和相应接口端口相关联。例如,路由组件44可以配置转发信息48中的下一跳,该下一跳使得路由器40通过连接到该IP路径的下一跳的一个IFC54转发封装有出口IP地址的流量(和/或在流量额外封装有流标签的一些情况下)。
在一些示例中,在IP路径的链路出现故障的情况下,IP路径组件68可以使路由器40建立旁路路径(例如,图2的旁路路径30)来保护该IP路径。例如,假设路由器40表示旁路路径的本地修复点(例如,图2的路由器12B),而输出链路57A表示链路18B。在该示例中,在输出链路57A出现故障的情况下,IP路径组件68可以配置旁路路径。为了建立旁路路径,IP路径组件68可以扩展RSVP 62,以发送包括ERO的RSVP PATH消息,该消息指定本地修复点(例如,路由器40)和合并点(例如,图2的路由器12C)之间的旁路路径。旁路路径的ERO可以指定沿着输出链路57B(例如,图2的链路15D)的路径,该路径沿着旁路路径连接到下一跳路由器。IP路径组件68还可以使路由器40存储旁路路径的RSVP RESV消息中包括的合并点IP地址。例如,路由器40可以接收包括路由器12C的合并点IP地址的RSVP RESV消息。IP路径组件68可以使路由器40将合并点IP地址74存储在路由信息70中。
在路由器40检测到例如输出链路57A的故障的情况下,路由组件44可以使用路由信息70中的合并点IP地址74来生成转发信息48,该转发信息48将旁路路径的合并点IP地址74与转发平面内的特定下一跳和相应接口端口相关联。例如,路由器40的协议60可以包括故障检测协议,例如,BFD、OAM或链路状态协议(例如,IS-IS或OSPF),以识别链路故障。响应于检测到输出链路57A的链路故障,路由组件44可以配置转发信息48中的下一跳,该下一跳使得路由器40通过连接到旁路路径的下一跳的一个IFC 54来转发封装有出口IP地址(和/或在某些情况下流标签)的流量。在路由器40表示本地修复点路由器的示例中,路由组件44可以进一步使用路由信息70中的合并点IP地址74来配置转发信息48,以将分组封装有合并点IP地址84,作为分组报头,从而沿着旁路路径朝向合并点路由器引导分组。
以这种方式,当路由器40接收到沿着封装有出口IP地址的IP路径的分组时,转发组件46可以执行转发信息48的查找,并确定下一跳通过输出接口54B去往路由器12E。转发组件46可以将分组封装有合并点IP地址84,作为分组报头,从而沿着旁路路径引导分组。
例如,假设路由器40表示旁路路径的合并点(例如,图2的路由器12C),而输入链路57A表示链路18B。在该示例中,当路由器40接收到旁路路径的RSVP PATH消息时,IP路径组件68可扩展RSVP 62,以按照由旁路路径的RSVP PATH消息创建的路径状态以相反的顺序,向本地修复点路由器(例如,图2的路由器12B)上游发送回包括路由器40的合并点IP地址的RSVP RESV消息。路由组件44可以进一步使用路由信息70中的合并点IP地址74来配置转发信息48,以将分组报头与合并点IP84解封装,基于当前分组报头(例如,出口IP地址82)执行转发信息48的查找,并且经由一个输出接口54沿着该IP路径将分组转发到出口路由器。
尽管出于举例的目的针对路由器进行了描述,但是路由器40可以更一般地是具有路由功能的网络装置,并且不必是专用路由装置。图3中示出的路由器40的架构仅出于示例目的而示出。本公开的技术不限于这种架构。在其他示例中,路由器40可以以多种方式配置。在一个示例中,控制单元42的一些功能可以分布在IFC 54内。在另一示例中,控制单元42可以包括作为从属路由器操作的多个分组转发引擎。
控制单元42可以仅以软件或硬件实现,或者可以作为软件、硬件或固件的组合来实现。例如,控制单元42可以包括执行软件指令形式的程序代码的一个或多个处理器。在这种情况下,控制单元42的各种软件组件/模块可以包括存储在计算机可读存储介质(例如,计算机存储器或硬盘)上的可执行指令。
图4是示出了根据本公开中描述的技术的一个或多个方面的概念图的框图,该概念图示出了用于使用IP网络中的约束来发送流量工程的IP路径隧道的IP对象的示例格式。IP对象400可以表示RSVP PATH消息的修改的发送者模板对象或RSVP RESV消息的修改的过滤器规范对象。在D.Awduche等人于2001年12月的征求意见3209“RSVP-TE:Extensions toRSVP for LSP Tunnels”中描述发送者模板对象和过滤器规范对象的其他示例,其全部内容通过引用结合于此。
在图4所示的示例中,IP对象400可以包括IP隧道发送者地址字段402、路径标识符字段404(“PATH ID 404”)和保留字段406。在一些示例中,可替换地或另外,IP对象400可以包括流标签字段408。
在图4的示例中,IP隧道发送者地址字段402可以指定发送者节点的IPv4(32位)或IPv6地址(128位)。例如,IP隧道发送者地址402可以包括图1的入口路由器12A的IP地址。PATH ID 404可以指定唯一识别IP路径隧道(例如,图1的IP路径16)的标识符。PATH ID 404可以是16位标识符。保留字段406是为IP对象400的额外信息保留的字段。
在一些示例中,路由器可以使用流标签来发送显式IP路径隧道。在这样的示例中,IP对象400包括流标签字段408,流标签字段408指定由入口路由器分配的并插入在通过该IP路径转发的分组中的标识符。流标签字段408可以是20位标识符。如上所述,流标签字段408可以表示RFC6437中描述的流标签或draft-dreibholz-IPv4-flowlabel-29中描述的流标签。
IP对象400仅仅是一个示例。在其他示例中,IP对象400可以包括IP路径的转发等价类的额外信息,例如,流规范定义,如在P.Marques等人于2009年8月的征求意见5575“Dissemination of Flow Specification Rules”中描述的,其全部内容在本文中通过引用结合于此。
图5是示出根据本公开中描述的技术的一个或多个方面的另一概念图的框图,该另一概念图示出了用于使用IP网络中的约束来发送流量工程的IP路径隧道的IP对象的示例格式。IP对象500可以表示携带由出口路由器(例如,图1或2的出口路由器12D)分配的一个或多个IP地址的IP地址类型长度值(TLV)分组。例如,出口路由器可以发送包括IP对象500的RSVP RESV消息。在一些示例中,在RSVP RESV消息的LSP属性对象中携带IP对象500。在上面并入的RFC 5420中描述LSP属性对象的其他示例。
IP对象500可以包括类型字段502、长度字段504和IP地址字段506。类型字段502可以指示IP地址字段506表示的字段类型。长度字段504指定了IP地址字段506的大小。IP地址字段506可以指定由出口路由器12D分配的IPv4或IPv6地址,以接收用该IP地址封装的流量。例如,该IP地址可以表示由出口路由器12D分配的一组IP地址(例如,出口地址块)中的出口IP地址。
图6A-图6B是示出了根据本公开中描述的技术的一个或多个方面的使用IP网络中的约束来发送流量工程的IP路径隧道的示例操作的流程图。为了举例的目的,相对于图1的计算机网络2描述了图6A-图6B,但是其同样适用于图2的计算机网络2。
路由器12A计算具有一个或多个约束(例如,带宽请求)的IP路径。路由器12A可以生成路径信令消息(例如,图1的RSVP PATH消息22),以建立从IP网络的入口路由器12A到出口路由器12D的IP路径16(602)。例如,入口路由器12A可以生成包括与IP路径16相关联的路径标识信息的RSVP PATH消息。作为一个示例,入口路由器12A可以生成RSVP PATH消息的路径标识信息,以包括指定该IP路径的下一跳属性的ERO。在一些示例中,入口路由器12A可以为该IP路径分配流标签,并且生成RSVP PATH消息,以包括流标签。
入口路由器12A可以向下游向出口路由器12D发送路径信令消息(604)。中转路由器(例如,中转路由器12B或12C)接收路径信令消息(606)。中转路由器可以将请求的带宽与中转路由器的输出链路上可用的带宽进行比较,并且如果中转路由器有足够的资源用于IP路径16,则向下游转发RSVP PATH消息(608)。出口路由器12D接收路径信令消息(610)并生成路径预留信令消息(例如,图1的RSVP RESV消息24)(612)。例如,出口路由器12D可以分配一组IP地址(出口地址块),例如,IP前缀,以使出口路由器12D能够接收来自EAB的封装有任何IP地址的流量。在一些示例中,出口路由器12D可以接收包括流标签的RSVP PATH消息,并且作为响应,可以生成包括出口路由器12D的IP地址的RSVP RESV消息。
出口路由器12D按照路径信令消息创建的路径状态以相反的顺序向上游向入口路由器12A发送路径预留信令消息(614)。中转路由器接收包括出口IP地址的路径预留信令消息(616),并在其路由信息中存储到出口IP地址的路由(618)。中转路由器配置转发信息,以在IP路径上将封装有出口IP地址的分组转发到出口路由器12D(620)。例如,中转路由器可以使用路由信息来生成转发信息,该转发信息将出口IP地址与特定的下一跳和相应的输出接口相关联。在一些示例中,中转路由器可以配置转发信息,以转发与流规范过滤器匹配的分组,该流规范过滤器包括三元组,该三元组包括入口路由器的IP地址、出口路由器的IP地址和流标签。中转路由器可以基于包含在RSVP PATH消息中的ERO来确定路由的下一跳,并生成将流规范过滤器的三元组与特定的下一跳和相应的输出接口相关联的转发信息。中转路由器也可以为输出链路预留带宽。中转路由器然后向上游发送路径预留信令消息(622)。
入口路由器12A接收路径预留信令消息(624),并在其路由信息中存储出口IP地址的路由(626)。入口路由器12A配置入口路由器的转发信息,以在IP路径上将分组转发到出口路由器12D(628)。例如,入口路由器12A可以使用路由信息来生成转发信息,该转发信息将出口IP地址与特定的下一跳和相应的输出接口相关联。入口路由器12A还可以生成转发信息,以将分组封装有出口IP地址,作为分组报头,从而沿着该IP路径向出口路由器12D引导分组。此外,或者可替换地,入口路由器12A可以配置转发信息,以封装由入口路由器12A分配给输出分组的出口IP地址和流标签。
当入口路由器12A从源网络(例如,客户网络6A)接收到去往目的网络(例如,客户网络6B)的分组(例如,图1的分组26)时(632),入口路由器12A可以将分组26注入到具有作为分组26的分组头28的出口IP地址的IP网络14中,以沿着IP路径16引导分组26(634)。此外,或者可替换地,入口路由器12A可以封装出口IP地址和与该IP路径相关联的流标签,以使得该IP路径中的路由器将该IP路径上的分组转发到出口路由器12D。
当中转路由器接收到分组时(636),中转路由器确定该IP路径的下一跳(638)。例如,中转路由器基于分组报头中指定的出口IP地址(在某些情况下是三元组流规范过滤器)执行其转发信息的查找,并确定用于将分组转发到下一跳的输出接口。中转路由器将分组发送到IP路径上的下一跳(640)。
当出口路由器12D接收到分组时(642),出口路由器12D可以从分组解封装具有出口IP地址的报头(644),并将分组发送到目的地(646)。
图7是示出根据本公开中描述的技术的一个或多个方面的另一示例网络系统的框图,其中,网络装置执行转发信息共享。在图7所示的示例中,路由器712A-712F(统称为“路由器712”)可以提供多点到点路径共享。例如,如果在IP路径合并后,IP路径716共享朝向目的地(例如,出口路由器712E)的完整路径(合并后),则IP路径(例如,716A-716C)(统称为“IP路径716”)可以共享转发信息(例如,相同的EAB地址)。
出口路由器712E可以在信令期间基于记录的路径(例如,RSVP记录路由对象(RRO))来识别合并的路径(本文中也称为“共享路径”),并且为每个路径分配相同的出口地址块。在该示例中,出口路由器712E可以从每个信令的IP路径716的RRO中确定IP路径716B与IP路径716A共享来自路由器712B-712E的路径,并且IP路径716C与IP路径716A和716B共享来自路由器712C-712E的路径。
出口路由器712E可以向IP路径716A、716B和716C分配相同的出口地址。例如,路由器712C可以在每个IP路径的预留信令(例如,RSVP RESV)期间接收相同的EAB地址,并且可以配置用于IP路径716的共享转发信息,以沿着共享IP路径向出口路由器712E转发到达任一个IP路径716的流量,以转发到相同下一跳,例如,路由器712D。出口路由器712E可以跟踪哪些EAB地址分配给哪些IP路径。作为一个示例,出口路由器712E可以使用基于Patricia的树(或其他基数树)来识别哪些路径合并,并且因此可以确定哪些路径可以共享EAB地址。
本文描述的技术可以用硬件、软件、固件或其任意组合来实现。被描述为模块、单元或组件的各种特征可以一起在集成逻辑装置中实现,或者单独作为分立但可互操作的逻辑装置或其他硬件装置实现。在一些情况下,电子电路的各种特征可以实现为一个或多个集成电路装置,例如,集成电路芯片或芯片组。
如果以硬件中实现,则本公开可以涉及诸如处理器或集成电路装置(例如,集成电路芯片或芯片组)等设备。替代地或另外,如果以软件或固件实现,则这些技术可以至少部分地由包括指令的计算机可读数据存储介质来实现,所述指令在被执行时使得处理器执行一种或多种上述方法。例如,计算机可读数据存储介质可以存储由处理器执行的这些指令。
计算机可读介质可以形成计算机程序产品的一部分,该计算机程序产品可以包括包装材料。计算机可读介质可以包括计算机数据存储介质,例如,RAM、只读存储器(ROM)、非易失性随机存取存储器(NVRAM)、EEPROM、闪存、磁或光数据存储介质等。在一些示例中,制品可以包括一个或多个计算机可读存储介质。
在一些示例中,计算机可读存储介质可以包括非暂时性介质。术语“非暂时性”可以表示存储介质没有包含在载波或传播信号中。在某些示例中,非暂时性存储介质可以存储随时间变化的数据(例如,在RAM或高速缓存中)。
代码或指令可以是由处理电路执行的软件和/或固件,该处理电路包括一个或多个处理器,例如,一个或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他等效的集成或分立逻辑电路。因此,本文使用的术语“处理器”可以指任何前述结构或任何其他适合于实现本文描述的技术的结构。此外,在一些方面,可以在软件模块或硬件模块内提供本公开中描述的功能。
已经描述了各种示例。这些和其他示例在以下权利要求的范围内。

Claims (20)

1.一种用于使用互联网协议IP网络中的约束发送流量工程的IP路径隧道的方法,包括:
由IP网络的多个网络装置中的一网络装置向该IP网络的出口网络装置发送资源预留协议的路径信令消息,以在该IP网络中建立IP路径,其中,所述路径信令消息包括与该IP路径相关联的路径标识信息,所述路径标识信息使得所述多个网络装置在IP路径上引导流量,并且,其中,所述路径标识信息包括显式路由对象,所述显式路由对象指定所述IP路径的下一跳属性,和所述IP路径的一个或多个流量特征;
由网络装置接收包括出口网络装置的IP地址的资源预留协议的路径预留信令消息;并且
响应于接收到所述路径预留信令消息,该网络装置配置所述网络装置的转发信息,以向出口网络装置转发IP路径上封装有所述出口网络装置的IP地址的分组,其中,所述转发信息将所述出口网络装置的IP地址与所述显式路由对象中指定的一个或多个下一跳中的相应下一跳相关联。
2.根据权利要求1所述的方法,其中,所述网络装置作为IP网络的入口网络装置操作,所述方法还包括:
由入口网络装置生成路径信令消息,以建立从IP网络的入口网络装置到出口网络装置的IP路径。
3.根据权利要求2所述的方法,还包括:
由入口网络装置从源网络接收去往目的网络的分组;
由入口网络装置执行转发信息的查找,以确定IP网络的出口网络装置;
由入口网络装置使用出口网络装置的IP地址作为分组的分组报头来封装分组;并且
由入口网络装置向出口网络装置发送IP路径上的分组。
4.根据权利要求1所述的方法,
其中,所述路径信令消息包括资源预留协议(RSVP)路径消息,以及
其中,所述路径预留信令消息包括RSVP预留消息。
5.根据权利要求4所述的方法,其中,所述路径预留信令消息包括指定出口网络装置的IP地址的RSVP预留消息的类型长度值(TLV)对象。
6.根据权利要求1、4-5中任一项所述的方法,其中,所述路径标识信息还包括所述IP路径的标识符。
7.根据权利要求1、4-5中任一项所述的方法,其中,所述路径标识信息包括与所述IP路径相关联的流标签,所述方法还包括:
由网络装置接收流标签;并且
由网络装置配置流规范过滤器,所述流规范过滤器使得网络装置在IP路径上转发与流规范过滤器匹配的分组,其中,所述流规范过滤器包括入口网络装置、出口网络装置和流标签。
8.根据权利要求1、4-5中任一项所述的方法,其中,所述路径标识信息包括与IP路径相关联的流标签,其中,所述网络装置作为IP网络的入口网络装置操作,所述方法还包括:
由入口网络装置从源网络接收去往目的网络的分组;
由入口网络装置执行转发信息的查找,以确定IP网络的出口网络装置;
由入口网络装置使用出口网络装置的IP地址和流标签作为分组的分组报头来封装分组;并且
由入口网络装置向出口网络装置发送IP路径上的分组。
9.根据权利要求1、4-5中任一项所述的方法,其中,从由出口网络装置分配的一组IP地址中选择所述出口网络装置的IP地址,其中,所述出口网络装置的IP地址对于IP路径是唯一的。
10.根据权利要求1所述的方法,其中,所述路径信令消息包括第一路径信令消息,其中,所述路径预留信令消息包括第一路径预留信令消息,所述方法还包括:
由所述多个网络装置的子集的本地修复点网络装置生成第二路径信令消息,以建立旁路路径来保护从所述本地修复点网络装置到IP路径的多个网络装置的子集的合并点网络装置的一部分IP路径,其中,所述第二路径信令消息包括与旁路路径相关联的路径标识信息,所述路径标识信息使得多个网络装置的子集建立旁路路径;
由本地修复点网络装置点向将旁路路径与IP路径合并的合并点网络装置发送到合并点网络装置的第二路径信令消息;
由本地修复点网络装置接收第二路径预留信令消息,所述第二路径预留信令消息包括合并点网络装置的IP地址;
由本地修复点网络装置检测在该IP路径上的链路故障;并且
响应于检测到链路故障,入口网络装置配置入口网络装置的转发状态,以向所述出口网络装置转发旁路路径上的分组。
11.根据权利要求10所述的方法,还包括:
由本地修复点网络装置从该IP路径的上游路由器接收封装有作为该分组的第一分组报头的出口网络装置的IP地址的分组;并且
由本地修复点网络装置使用合并点网络装置的IP地址作为分组的第二分组报头,来封装所封装的分组,以将分组引导到合并点网络装置。
12.一种互联网协议IP网络的网络装置,包括:
存储器;以及
与所述存储器通信的一个或多个处理器,其中,所述一个或多个处理器被配置为:
向该IP网络的出口网络装置发送资源预留协议的路径信令消息,以在该IP网络中建立IP路径,其中,所述路径信令消息包括与该IP路径相关联的路径标识信息,所述路径标识信息使得所述IP网络的多个网络装置在IP路径上引导流量,并且,其中,所述路径标识信息包括显式路由对象,所述显式路由对象指定所述IP路径的下一跳属性,和所述IP路径的一个或多个流量特征;
接收包括出口网络装置的IP地址的资源预留协议的路径预留信令消息;并且
响应于接收到所述路径预留信令消息,配置所述网络装置的转发信息,以向出口网络装置转发IP路径上封装有所述出口网络装置的IP地址的分组,其中,所述转发信息将所述出口网络装置的IP地址与所述显式路由对象中指定的一个或多个下一跳中的相应下一跳相关联。
13.根据权利要求12所述的网络装置,其中,所述网络装置作为所述IP网络的入口网络装置操作,其中,所述一个或多个处理器还被配置为:
生成路径信令消息,以建立从IP网络的入口网络装置到出口网络装置的IP路径。
14.根据权利要求13所述的网络装置,其中,所述一个或多个处理器还被配置为:
从源网络接收去往目的网络的分组;
执行转发信息的查找,以确定IP网络的出口网络装置;
使用出口网络装置的IP地址作为分组的分组报头来封装分组;并且
向出口网络装置发送IP路径上的分组。
15.根据权利要求12所述的网络装置,
其中,所述路径信令消息包括资源预留协议(RSVP)路径消息,并且
其中,所述路径预留信令消息包括RSVP预留消息。
16.根据权利要求12和15中任一项所述的网络装置,其中,所述路径标识信息还包括所述IP路径的标识符。
17.根据权利要求12和15中任一项所述的网络装置,其中,所述路径标识信息包括与IP路径相关联的流标签,其中,所述一个或多个处理器还被配置为:
接收流标签;并且
配置流规范过滤器,所述流规范过滤器使得网络装置在IP路径上转发与流规范过滤器匹配的分组,其中,所述流规范过滤器包括入口网络装置、出口网络装置和流标签。
18.根据权利要求12和15中任一项所述的网络装置,其中,所述路径标识信息包括与IP路径相关联的流标签,其中,所述网络装置作为IP网络的入口网络装置操作,其中,所述一个或多个处理器还被配置为:
从源网络接收去往目的网络的分组;
执行转发信息的查找,以确定IP网络的出口网络装置;
使用出口网络装置的IP地址和流标签作为分组的分组报头来封装分组;并且
向出口网络装置发送IP路径上的分组。
19.一种用于使用互联网协议IP网络中的约束发送流量工程的IP路径隧道的方法,包括:
由IP网络的多个网络装置中的出口网络装置接收路径信令消息,以建立从IP网络的入口网络装置到出口网络装置的IP路径,其中,所述路径信令消息包括与所述IP路径相关联的路径标识信息,所述路径标识信息使得所述多个网络装置中的一个或多个中转网络装置建立IP路径,并且,其中,所述路径标识信息包括显式路由对象,所述显式路由对象指定所述IP路径的下一跳属性,和所述IP路径的一个或多个流量特征;
由出口网络装置生成路径预留信令消息,所述路径预留信令消息包括从一组IP地址中选择的并分配给IP路径的出口网络装置的IP地址;并且
由出口网络装置向一个或多个中转网络装置发送路径预留信令消息,以使得所述一个或多个中转网络装置和入口网络装置中的每一个配置转发状态,以向出口网络装置转发IP路径上封装有所述出口网络装置的IP地址的分组,其中,转发信息将所述出口网络装置的IP地址与所述显式路由对象中指定的一个或多个下一跳中的相应下一跳相关联。
20.根据权利要求19所述的方法,其中,所述IP路径包括第一IP路径,其中,所述路径信令消息包括记录路由对象,以记录建立所述第一IP路径的多个网络装置,所述方法还包括:
由出口网络装置基于所述记录路由对象,确定所述第一IP路径包括与到出口网络装置的第二IP路径的共享路径;并且
响应于确定所述第一IP路径与到出口网络装置的第二IP路径共享子路径,出口网络装置分配出口网络装置的IP地址,以使得所述多个网络装置中沿着第一IP路径和第二IP路径的共享子路径的网络装置为所述第一IP路径和所述第二IP路径配置共享转发状态,并且向出口网络装置转发所述共享子路径上的分组。
CN201911410823.0A 2019-06-21 2019-12-31 发送流量工程的ip路径隧道 Active CN112118182B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962864754P 2019-06-21 2019-06-21
US62/864,754 2019-06-21
US201962865771P 2019-06-24 2019-06-24
US62/865,771 2019-06-24
US16/588,072 US11805010B2 (en) 2019-06-21 2019-09-30 Signaling IP path tunnels for traffic engineering
US16/588,072 2019-09-30

Publications (2)

Publication Number Publication Date
CN112118182A CN112118182A (zh) 2020-12-22
CN112118182B true CN112118182B (zh) 2023-07-21

Family

ID=68808057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911410823.0A Active CN112118182B (zh) 2019-06-21 2019-12-31 发送流量工程的ip路径隧道

Country Status (3)

Country Link
US (2) US11805010B2 (zh)
EP (1) EP3754913A1 (zh)
CN (1) CN112118182B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11277280B2 (en) * 2018-03-19 2022-03-15 Cable Television Laboratories, Inc. Content centric networking systems and methods
US11805010B2 (en) 2019-06-21 2023-10-31 Juniper Networks, Inc. Signaling IP path tunnels for traffic engineering
US11677658B2 (en) * 2019-09-19 2023-06-13 Nokia Solutions And Networks Oy Packet routing based on common node protection
US11431618B2 (en) 2019-09-19 2022-08-30 Nokia Solutions And Networks Oy Flexible path encoding in packet switched networks
US11516112B2 (en) * 2020-10-20 2022-11-29 Ciena Corporation Optimized layer 3 VPN control plane using segment routing
US11043095B1 (en) * 2020-06-16 2021-06-22 Lghorizon, Llc Predictive building emergency guidance and advisement system
US11522749B2 (en) * 2021-01-11 2022-12-06 Cisco Technology, Inc. Detecting communication pathways affected by session flaps
CN114827023B (zh) * 2021-01-28 2023-06-02 中国电信股份有限公司 端到端业务保障方法和系统
CN113259241B (zh) * 2021-05-08 2022-04-26 烽火通信科技股份有限公司 一种提升SRv6转发效率的方法与电子设备
CN113472657B (zh) * 2021-06-29 2022-07-29 新华三大数据技术有限公司 一种路径优化方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178809B1 (en) * 2013-07-01 2015-11-03 Juniper Networks, Inc. End-to-end traffic engineering label switched paths in seamless MPLS

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087175A1 (fr) * 2001-04-19 2002-10-31 Fujitsu Limited Procede et appareil de restauration/protection
US20030084219A1 (en) * 2001-10-26 2003-05-01 Maxxan Systems, Inc. System, apparatus and method for address forwarding for a computer network
US7492762B2 (en) * 2002-05-13 2009-02-17 Nortel Networks Limited Method for dynamic flow mapping in a wireless network
US8014380B2 (en) * 2002-07-03 2011-09-06 Alcatel Lucent Method and system for automatically establishing a return label switched path
US7383048B2 (en) * 2002-12-04 2008-06-03 Nokia Corporation Transmission of data packets by a node
US7626925B1 (en) 2003-06-19 2009-12-01 Cisco Technology, Inc. Methods for finding a merge point node for MPLS fast re-route
JP2005340937A (ja) * 2004-05-24 2005-12-08 Fujitsu Ltd Mplsネットワーク及びその構築方法
CN100372337C (zh) 2004-05-31 2008-02-27 华为技术有限公司 一种实现跨域约束路由的选路方法
JP4729119B2 (ja) 2007-10-25 2011-07-20 富士通株式会社 ラベルスイッチングネットワークにおける通信装置
US7856018B2 (en) 2008-05-12 2010-12-21 Fujitsu Limited Provisioning point-to-multipoint paths
JP5045648B2 (ja) * 2008-11-12 2012-10-10 富士通株式会社 通信制御方法及び通信装置
EP2415212B1 (en) * 2009-03-31 2015-12-02 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for point to multipoint traffic path encoding
US8170016B2 (en) * 2009-11-30 2012-05-01 At&T Intellectual Property I, Lp Packet flow offload to remote destination with routing bypass
US9231851B2 (en) * 2011-01-31 2016-01-05 Futurewei Technologies, Inc. System and method for computing point-to-point label switched path crossing multiple domains
US9077561B2 (en) 2012-03-27 2015-07-07 Juniper Networks, Inc. OAM label switched path for fast reroute of protected label switched paths
US9350605B2 (en) 2013-10-11 2016-05-24 Ciena Corporation Method and apparatus for multi-instance control plane for dynamic MPLS-TP tunnel management via in-band communication channel (G-ACH)
US9876711B2 (en) * 2013-11-05 2018-01-23 Cisco Technology, Inc. Source address translation in overlay networks
US9537753B2 (en) * 2014-03-03 2017-01-03 Cisco Technology, Inc. Opaque profile identifiers for path computation element protocol
CN105471728A (zh) * 2014-09-12 2016-04-06 中兴通讯股份有限公司 一种信息传递主隧道的替代隧道的选择方法及装置
US10469365B2 (en) * 2014-10-27 2019-11-05 Juniper Networks, Inc. Label switched path node failure management for label switched paths having refresh interval independent fast reroute facility protection
JP2016086315A (ja) * 2014-10-27 2016-05-19 富士通株式会社 伝送装置およびパス設定方法
US10313235B2 (en) * 2015-07-13 2019-06-04 Futurewei Technologies, Inc. Internet control message protocol enhancement for traffic carried by a tunnel over internet protocol networks
CN108123901B (zh) * 2016-11-30 2020-12-29 新华三技术有限公司 一种报文传输方法和装置
US10243781B1 (en) * 2017-07-05 2019-03-26 Juniper Networks, Inc. Detecting link faults in network paths that include link aggregation groups (LAGs)
US11469917B2 (en) 2017-12-12 2022-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid access to premises equipment using both fixed-line and radio communications
WO2020100150A1 (en) * 2018-11-13 2020-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Routing protocol blobs for efficient route computations and route downloads
US11805010B2 (en) 2019-06-21 2023-10-31 Juniper Networks, Inc. Signaling IP path tunnels for traffic engineering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178809B1 (en) * 2013-07-01 2015-11-03 Juniper Networks, Inc. End-to-end traffic engineering label switched paths in seamless MPLS

Also Published As

Publication number Publication date
EP3754913A1 (en) 2020-12-23
US20200403861A1 (en) 2020-12-24
US20230142996A1 (en) 2023-05-11
US11805010B2 (en) 2023-10-31
US11811595B2 (en) 2023-11-07
CN112118182A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN112118182B (zh) 发送流量工程的ip路径隧道
CN111385206B (zh) 报文转发的方法、网络系统、相关设备及计算机存储介质
US7839767B2 (en) Path reroute in a computer network
US7602702B1 (en) Fast reroute of traffic associated with a point to multi-point network tunnel
US8467411B1 (en) Service-specific forwarding in an LDP-RSVP hybrid network
US8773978B2 (en) System and method for protecting ingress and egress of a point-to-multipoint label switched path
WO2016197344A1 (zh) 实现业务链接的方法、设备及系统
CN109309623A (zh) 用于多播保护的到冗余多播源节点的最大冗余树
CN113347091B (zh) 灵活算法感知边界网关协议前缀分段路由标识符
US9246838B1 (en) Label switched path setup using fast reroute bypass tunnel
CN112702266A (zh) 生成标签转发表的方法、报文发送方法、装置及设备
CN113452610B (zh) 跨城域网的无缝端到端分段路由的方法及区域边界路由器
CN112118178B (zh) 网络装置和用于ip网络中基于类别的流量工程的方法
CN113056891B (zh) 源路由隧道入节点保护
US8570871B2 (en) Signaling extension for a label switched path over a composite link
US7680952B1 (en) Protecting connection traffic using filters
CN114553769B (zh) 计算机网络中的端到端流监控
US11323371B1 (en) Micro SID packet processing with operations, administration, and management
KR102245989B1 (ko) 가상사설망의 이중화 관리 방법 및 그 방법이 구현된 네트워크 스위칭장치
US9049142B1 (en) Method and apparatus to enable protection for selective traffic in an MPLS network
Papán et al. The IPFRR mechanism inspired by BIER algorithm
CN113826362B (zh) 用于域间分段路由的传输端点分段
WO2018040614A1 (zh) 建立虚拟专用网标签交换路径方法、相关设备和系统
WO2014149960A1 (en) System, method and apparatus for lsp setup using inter-domain abr indication
CN117749700A (zh) 对应关系的获取方法、参数通告方法、装置、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant