CN112111530B - Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish - Google Patents

Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish Download PDF

Info

Publication number
CN112111530B
CN112111530B CN202010718924.0A CN202010718924A CN112111530B CN 112111530 B CN112111530 B CN 112111530B CN 202010718924 A CN202010718924 A CN 202010718924A CN 112111530 B CN112111530 B CN 112111530B
Authority
CN
China
Prior art keywords
tcf3a
sequence
zebra fish
muscle
loxp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010718924.0A
Other languages
Chinese (zh)
Other versions
CN112111530A (en
Inventor
顾珊烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Xinjia Pharmaceutical Technology Co ltd
Original Assignee
Nanjing Xinjia Pharmaceutical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Xinjia Pharmaceutical Technology Co ltd filed Critical Nanjing Xinjia Pharmaceutical Technology Co ltd
Priority to CN202010718924.0A priority Critical patent/CN112111530B/en
Publication of CN112111530A publication Critical patent/CN112111530A/en
Application granted granted Critical
Publication of CN112111530B publication Critical patent/CN112111530B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2999/00Further aspects of viruses or vectors not covered by groups C12N2710/00 - C12N2796/00 or C12N2800/00
    • C12N2999/007Technological advancements, e.g. new system for producing known virus, cre-lox system for production of transgenic animals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish, which comprises the following steps: (1) preparing a tcf3a conditional knockout strain using non-homologous end joining; (2) constructing a transposon mediated expression plasmid marker muscle cell; (3) simultaneous marker plasmid and Cre mRNA injection into conditioned knockout embryos of tcf3a achieved tcf3a knockdown and muscle development and growth was observed and evaluated by fluorescence. The invention can study the growth and development of muscle in vivo and conditionally. According to the invention, the zebra fish with the tcf3a conditionally knocked out and the zebra fish with the specifically labeled rapid skeletal muscle cells are combined, so that the method for researching the muscle growth by knocking out tcf3a after the conditioned induction of the living body can be well realized.

Description

Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish
Technical Field
The invention relates to the technical field of genetic engineering, in particular to a method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish.
Background
The zebrafish tcf3a gene (designated in the literature as E12) is very important for skeletal muscle formation (see reference 1). The promoter of the mylpfa gene is used for specifically marking the fast skeletal muscle cells, and the method is a very good living body marking method for researching the muscle formation.
Currently, there is no conditional induction method for this gene in zebrafish to study muscle formation.
Disclosure of Invention
The invention aims to provide a method for researching muscle development and growth by realizing conditional induction of tcf3a knockout in zebrafish through manipulation of tcf3a gene and fluorescent labeling of muscle cells.
The purpose of the invention is realized by the following technical scheme: the invention discloses a method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish, which comprises the following steps:
(1) searching specific recognition sites of two nucleases in introns at two ends of the 4 th exon of the zebra fish tcf3a, wherein the specific recognition sites are a sgRNA1 target spot and a sgRNA2 target spot;
(2) constructing a non-homologous end-linked knock-in plasmid, wherein the knock-in plasmid contains a left homologous arm and a right homologous arm, the left homologous arm contains one nuclease recognition site sgRNA1, the right homologous arm contains the other nuclease recognition site sgRNA2, an exogenous gene sequence to be replaced is contained between the left arm and the right arm, and the exogenous gene sequence comprises loxP sites on two sides of a 4 th exon and a myocardial cell marker red fluorescent protein capable of being used for screening; injecting a nuclease system into the fertilized eggs of the zebra fish by microinjection; culturing the injected fertilized eggs into fish, and confirming the conditional knockout of the zebra fish by the tcf3a through fluorescence and genotype identification;
(3) constructing an expression plasmid for marking the muscle of the zebra fish, wherein the expression plasmid drives CFP fluorescent protein to express by using a zebra fish mylpfa promoter, and transposon sequences are added at two ends;
(4) the above-described marker plasmid, Cre mRNA and the mRNA of tol2 transposase were co-injected into embryos generated by crossing in tcf3a conditional knockout lines, and zebrafish embryos were used after 3 days to identify deletion of tcf3a, overall phenotypic observation and phenotypic observation of muscle.
Further, in step (1), the nucleases are CRIPSR nuclease and Cas9 nuclease.
Further, in step (2), the nuclease system includes Cas9 protein or mRNA producing Cas9 protein, sgRNA1 and sgRNA2, tcf3a knock-in plasmids.
Further, in step (2), the target sequence of sgRNA1 is: GGACGCAGCTATCAGTGGCGT, respectively; the target sequence of sgRNA2 is: GCTGGTCTAGTGCTGATCTC are provided.
Further, in the step (2), the sequence of the left homology arm is shown in SEQ ID NO:1, and the sequence of the right homologous arm is shown as SEQ ID NO:1, 3253-3676, and the sequence of the exogenous gene needing to be replaced between the right arms is shown as SEQ ID NO:1, 543-th position 2710.
Further, in the step (2), constructing a left homologous arm and a right homologous arm of the knock-in plasmid connected with the non-homologous ends, taking a zebra fish genome as a template, and adding enzyme cutting sites and protective bases into a PCR primer for amplification to obtain the zebra fish genome; a sequence between two loxP sites of the fourth exon takes a zebra fish genome as a template, a loxP-tcf3a _ exon4-frt fusion sequence is obtained by amplifying a loxP and frt fusion sequence PCR primer, and the PCR primer is added with a restriction enzyme site and a protective base; the red fluorescent protein sequence can be marked by the screened cardiac muscle cells, the loxP-myl7-DsRed-pA-frt fusion sequence is obtained by amplifying the fusion sequence PCR primer of loxP and frt, and the PCR primer is added with the enzyme cutting site and the protective basic group.
Further, in step (2), knock-in donor plasmids were prepared and zebrafish zygotes were injected and screened for conditional knock-in strains that yielded tcf3 a.
Further, in the step (3), the sequence of the zebrafish mylpfa promoter is shown as SEQ ID NO: 2, and the ECFP sequence is shown as SEQ ID NO: 2558 and 3277 in FIG. 2.
Has the advantages that: the invention can study the growth and development of muscle in vivo and conditionally. According to the invention, the zebra fish with the tcf3a conditionally knocked out and the zebra fish with the specifically labeled rapid skeletal muscle cells are combined, so that the method for researching the muscle growth by knocking out tcf3a after the conditioned induction of the living body can be well realized.
The invention has the following advantages:
(1) the method provided by the invention is applied to research on the muscle growth and development of zebra fish, can induce the knockout of the tcf3a gene at different times, can research the effect of tcf3a in the muscle growth and development in different development stages, and is a latest method for applying an inducible gene knockout technology to muscle research.
(2) The invention utilizes zebra fish living model and observes the growth and differentiation of muscle cells by a fluorescent protein labeling method.
Drawings
For ease of illustration, the invention is described in detail by the following specific examples and figures:
FIG. 1 is a schematic diagram of the integration of the dual loxP sites into zebrafish tcf3a gene using non-homologous recombination as a mediator in accordance with the present invention;
the zebrafish tcf3a gene (also known as E12) plays an important role in early developmental stage muscle development (Chong et al, 2007). sgRNA1 and sgRNA2 targets are indicated by red or blue arrows, respectively. In the tcf3a conditioned donor (tcf3a-loxP-exon4-frt-SM-frt-loxP), two loxP sites and homology arms (double-arrowed brown line) were added. The left and right arms are 530bps and 424bps long, respectively. To reduce the effort of intensive screening for conditional alleles, a selectable marker (SM, 1.2kb) can express DsRed under the control of the myl7 promoter in the reverse direction of transcription compared to tcf3 a. SM is also flanked by frt recombination sites and can therefore be excised by Flp recombinase. Zebrafish tcf3a had 19 exons and E4 (exon 4) contained 68 bps. After co-injection of donors with sgRNA1, sgRNA2 and zCas9 mRNA, endogenous E4 was replaced by tcf3a-loxP-exon4-frt-SM-frt-loxP at the tcf3a site. Black short arrows indicate primers used for validation (F1, R1, F2, R2).
FIG. 2 is a graph of PCR and phenotypic characterization of a tcf3a conditional knockout line of the invention following Cre mRNA injection; C) no ("-Cre") or ("+ Cre") Cre mRNA was injected at the single cell stage into the cell at the heterozygote Ki (tcf3 a)f1) Mated embryos were subjected to PCR analysis. The red arrow indicates the product at 1.0kb, which is in principle excised from the original 3.9kb fragment by Cre. (D and E)2.5-dpf Ki (tcf3 a)fl/+) Brightfield images of mating-produced embryos at the single-cell stage (D) with or without (E) Cre mRNA injection, show that Cre mRNA injection results in loss of DsRed expression in the heart (inset D, ratio 80/82) and defects in overall morphology (D, ratio 21/82). Scale bar: 250 μm (D, E).
FIG. 3 is a graph of the phenotypic characterization of the tcf3a conditional knockout line of the invention after plasmid injection of Cre mRNA and labeled muscle cells; no ("-Cre") or ("+ Cre") Cre mRNA was injected at the single cell stage into the cell at the heterozygote Ki (tcf3 a)f1) The embryos were mated and injected simultaneously with mylpfa-ECFP plasmid, which labeled muscle cells. Fluorescence images of embryos developed to 2.5dpf, showing that Cre mRNA injection results in defects in growth and development of muscle cells.
Detailed Description
The present invention is further illustrated in detail by the following examples, but it should be noted that the scope of the present invention is not limited by these examples at all.
The invention discloses a method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish, which comprises the following steps:
(1) searching specific recognition sites of two nucleases in introns at two ends of the 4 th exon of the zebra fish tcf3a, wherein the specific recognition sites are a sgRNA1 target spot and a sgRNA2 target spot; the nuclease is CRIPSR nuclease and Cas9 nuclease.
(2) Constructing a non-homologous end-linked knock-in plasmid, wherein the knock-in plasmid contains a left homologous arm and a right homologous arm, the left homologous arm contains one nuclease recognition site sgRNA1, the right homologous arm contains the other nuclease recognition site sgRNA2, an exogenous gene sequence to be replaced is contained between the left arm and the right arm, and the exogenous gene sequence comprises loxP sites on two sides of a 4 th exon and a myocardial cell marker red fluorescent protein capable of being used for screening; injecting a nuclease system into the fertilized eggs of the zebra fish by microinjection; culturing the injected fertilized eggs into fish, and confirming the conditional knockout of the zebra fish by the tcf3a through fluorescence and genotype identification;
the nuclease system comprises Cas9 protein or mRNA for generating Cas9 protein, sgRNA1 and sgRNA2, tcf3a knock-in plasmids.
The target sequence of sgRNA1 is: GGACGCAGCTATCAGTGGCGT, respectively; the target sequence of sgRNA2 is: GCTGGTCTAGTGCTGATCTC are provided.
The sequence of the left homologous arm is shown as SEQ ID NO:1, and the sequence of the right homologous arm is shown as SEQ ID NO:1, 3253-3676, and the sequence of the exogenous gene needing to be replaced between the right arms is shown as SEQ ID NO:1, 543-th position 2710.
Constructing a left homologous arm and a right homologous arm of a knock-in plasmid connected with a non-homologous end, taking a zebra fish genome as a template, and adding a restriction enzyme site and a protective base into a PCR primer for amplification to obtain the zebra fish genome; a sequence between two loxP sites of the fourth exon takes a zebra fish genome as a template, a loxP-tcf3a _ exon4-frt fusion sequence is obtained by amplifying a loxP and frt fusion sequence PCR primer, and the PCR primer is added with a restriction enzyme site and a protective base; the red fluorescent protein sequence can be marked by the screened cardiac muscle cells, the loxP-myl7-DsRed-pA-frt fusion sequence is obtained by amplifying the fusion sequence PCR primer of loxP and frt, and the PCR primer is added with the enzyme cutting site and the protective basic group.
Knock-in donor plasmids were prepared and zebrafish zygotes were injected and screened for conditional knock-in strains that yielded tcf3 a.
(3) Constructing an expression plasmid for marking the muscle of the zebra fish, wherein the expression plasmid drives CFP fluorescent protein to express by using a zebra fish mylpfa promoter, and transposon sequences are added at two ends; the sequence of the zebrafish mylpfa promoter is shown as SEQ ID NO: 2, and the ECFP sequence is shown as SEQ ID NO: 2558 and 3277 in FIG. 2.
(4) The above-described marker plasmid, Cre mRNA and the mRNA of tol2 transposase were co-injected into embryos generated by crossing in tcf3a conditional knockout lines, and zebrafish embryos were used after 3 days to identify deletion of tcf3a, overall phenotypic observation and phenotypic observation of muscle.
Example 1
The design idea of the invention is as follows:
1. designing specific guide RNA aiming at the sequences at both sides of the target segment of the target gene.
2. PDM-19T is used as a framework to construct donor plasmids. The plasmid comprises three parts: left arm sequence, exogenous sequence and right arm sequence. The sequence of the left arm is the genomic sequence 5' upstream of the segment of interest and comprises the left guide RNA target sequence. The left arm sequence is followed by the exogenous sequence. Next is the right arm, the 3' downstream sequence of the right arm target segment, and contains the guide RNA target sequence on the right.
3. The above synthesized guide RNA and donor plasmid, together with optimized zebrafish Cas9 mRNA, were co-microinjected into one-cell stage zebrafish zygotes and further screened for conditional knockout lines.
4. Constructing a transgenic plasmid mylpfa-ECFP for marking muscle cells of the zebra fish;
5. simultaneously microinjecting the transgenic plasmids mylpfa-ECFP and Cre mRNA into embryos generated by conditional knockout heterozygote internal crossing of tcf3a, and identifying and analyzing the phenotype of muscle growth and development of zebrafish.
Example 2
Materials and methods:
1. construction of a knock-in Donor plasmid for loxP-tcf3a _ exon4-frt-SM-frt-loxP
The genome of zebra fish and DsRed plasmid marking the heart of zebra fish are taken as templates, and loxP-tcf3a _ exon4-frt-SM-frt-loxP fusion sequences are obtained by PCR primer amplification of the loxP and frt fusion sequences. Adding enzyme cutting sites and protecting bases into the PCR primer.
LF:ctcGGTACCCTCCTGTCAGTCAGTCAGTC(SEQ ID NO:3)
LR:tatGAGCTCATGCGATTTGGGACGCAGCT(SEQ ID NO:4)
MF:CATGAGCTCataacttcgtatagcatacattatacgaagttatacttatgcactattctacgc(SEQ ID NO:5)
MR:taagcatgcgaagttcctatactttctagagaataggaacttccactaaacatgatcaactaa(SEQ ID NO:6)
SM-F:ttcgcatgcttaagatacattgatgagtt(SEQ ID NO:7)
SM-R:
TATagatctGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCtcatccatccttttcatccc(SEQ ID NO:8)
RF:
TTCagatctATAACTTCGTATAGCATACATTATACGAAGTTATATCCTCATGTTTA CCTGCTG(SEQ ID NO:9)
RR:cagGTCGACTTGTATATTTATACACACTA(SEQ ID NO:10)
loxP is a sequence recognized by Cre recombinase, and a sequence between two loxP sites in the same orientation can be deleted by Cre recombinase.
The amplified sequences were ligated sequentially into pMD-19T vector (purchased from Takara) to form the final donor plasmid.
2. Synthesis of sgRNA and zCas9 mRNA
Plasmid pGH-T7-ZCAS9 expressing ZCAS9 was obtained from the university of Beijing, Life sciences college. The plasmid was linearized with Xba I endonuclease and purified by transcription with mMACHINE T7 Ultra kit (Ambion) to obtain ZCAS9 mRNA.
The DNA sequences used to prepare the different sgrnas are shown below:
tcf3a sgRNA 1: GGACGCAGCTATCAGTGGCGT (SEQ ID NO:11) (reverse strand, on the antisense strand);
tcf33a sgRNA 2: GCTGGTCTAGTGCTGATCTC (SEQ ID NO:12) (forward strand, on the sense strand);
the above sgRNA sequences were cloned into BbsI sites of pT7-sgRNA plasmids (obtained from Life sciences of Beijing university) and subjected to cloning by Maxisscript T7 kit (Ambion)By external transcription with mirVanaTMAnd recovering the miRNA Isolation Kit (Ambion) Kit to obtain the guide RNA.
3. Zebra fish strain and breeding
The adult zebra fish is cultured in an aquatic animal culture system of Beijing Aisheng company in an environment with the water temperature of 28 ℃, the pH value of 7-8 and the photoperiod of 14 hours light/10 hours dark. Embryos were raised in 10% Hank's solution. The solution composition was as follows (millimoles): 140NaCl, 5.4KCl, 0.25Na2HPO4,0.44KH2PO4,1.3CaCl2,1.0MgSO4And 4.2NaHCO3(pH 7.2)。
4. Microinjection
zCas9 mRNA, sgRNA and donor plasmid were injected together by microinjection into one-cell stage zebrafish zygotes. Each fertilized egg was injected with 1nl of liquid. Containing 600 ng/. mu.l zcAS9 mRNA, 100 ng/. mu.l sgRNA, and 15 ng/. mu.l donor plasmid. The fertilized eggs can directly develop into the zebra fish under the in vitro culture condition (see 3. zebra fish feeding). The injection concentration of Cre mRNA was 100ng/ul, and the injection concentrations of mylpfa-EGFP plasmid and tol2 mRNA were 25ng/ul, respectively.
5. PCR validation of genomic substitutions
Extracting gene DNA of zebra fish embryo, identifying correct insertion and gene replacement by PCR method, using primers as follows:
tcf3a-LF:TTTGCCGACCTCACCCATC(SEQ ID NO:13);
DsRed-R:CCCACAACGAGGACTACACC(SEQ ID NO:14);
DsRed-F:CCCTTGGTCACCTTCAGCTT(SEQ ID NO:15);
tcf3a-RR:TTTAAAGGGACTTGGAGTAAAAGTG(SEQ ID NO:16);
6. confocal imaging
Confocal imaging successive fluorescence pictures were taken in the Z-axis direction using FV1000 confocal microscope (Olympus, Japan) with 20-fold or 40-fold water scope (n.a., 0.80) in the form of optical sections. The resolution of all pictures is 1024 × 1024 or 800 × 600. Structural morphology was later reconstructed by ImageJ software (NIH).
The foregoing shows and describes the general principles, essential features, and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are described in the foregoing description only for the purpose of illustrating the principles of the present invention, but that various changes and modifications may be made therein without departing from the spirit and scope of the invention as defined by the appended claims, specification, and equivalents thereof.
Sequence listing
<110> Nanjing and admire technology and technology Limited
<120> a method for studying the effect of tcf3a gene in muscle growth by conditional induction in zebrafish
<130> 2020
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6341
<212> DNA
<213> Artificial sequence (knock-in plasmid sequence)
<400> 1
ggtaccctcc tgtcagtcag tcagtctgtc agcacgtcac cttaaagggt taaacaaata 60
acgcacagca ctactacagt tacagaaaag cttgcgctgt tataatttac ttacctttga 120
atgcgttttg gtgcgattta taacctgcta ttaaaacaac aacaatgact gaatgttttg 180
aatgagaagc tgtaatgtag ccgtagcggg atgaattttg gtgtagaggg tccattaaat 240
ggcacaacat aaaatgaaaa ccgaaaattt ggtcaatctc taatatcaaa acaaatttag 300
agtcccattg ttacatattt ctgctgtgtg attggctctc agatcaatat agagtaatta 360
gtccagagct tcttgttatt aacaaacatt tttttgcgat tcgatataat actgtttacc 420
agcccagccc taatgtatat gatttttaca aaaaaacatt tctcacttag aatttttgtc 480
ttgtttctag tccaaatgtc tacctacgcc actgatagct gcgtcccaaa tcgcatgagc 540
tcataacttc gtatagcata cattatacga agttatactt atgcactatt ctacgccatt 600
ttgtagtata aatagtgtga gtagtgcgtt cacactggaa actcgaacaa ttataagtgc 660
acttgaatta cccggatgat gcactcattc agccagtata atgaagtgtg taatgatgga 720
cacttcacgc actcaacgat cgcaggtttg cttatgtagc ggaaggggca gagctattgg 780
gcgcacatgt tggataactt tatttatttt ggatgttgaa agcaaaattc tcctacgaga 840
gtgattatag cgcctcctga tggtgaatgc ggttatactc acggcaggta ttattggata 900
attcggtcgt ttatttcact gatttggcaa ccgtcaaacg tcatcaggga aactatttta 960
atttccaatt agaaaaaaac attagtgtgc catttgggac gccactactt acatatacta 1020
tcctgttaag tgtggaagtg cataagtgca tagtgcatag tgtgccattt gggatgcagc 1080
tataattttc ttaaaacaag ctcttaattt gcatttattt cttcaggcgg tgaaaaacta 1140
aacaactttt tactttgtct gaggtttttt ttgtgatatt tggactagaa acaagacaaa 1200
aagtaagaaa atatagatat ttttttgcat tgtgattatt caatttcttt tgttgtactc 1260
cgtaaaaacc ttctgaaaat attcatattg cgatatttat cacgtaaaaa ttcaatatta 1320
ttatatcaga ttccaatatc gtgcagccct aatctgttta ttattgttct ttacttgttt 1380
gtttggtttt atttaccagg ttacacctca gtgccttgca gtaaggtcca tttaagtggt 1440
ctgtccagaa agggtggggt aggggctgtc agaaaataat gtttacttgt gcattgattt 1500
gattctgtaa attgcaaatg tgaaaataaa tatgttgata tataataatt ggtaaattta 1560
ttcacactga tgtttgtttg tttgtttgtg tttcaggttt agatgacaga aatggctccg 1620
gctcctgggg ttcagaagca aacagtcctt cattcggcgc acgggtatga acacacacac 1680
acacacacag agataacgtc tctggtgaag cattaaacct taatccctaa agaaaacaaa 1740
cccgacagga tcagatctgt aatgcacttg aagacgtctc ctgttttgac tcgtgatgct 1800
ttatttgggg gaaaccgcgc gcgcgtgtgt gtgtgtgtaa gtgtgtgtgt gtgtaagtgt 1860
gtgtgtatag agtgcgagat caggagacgt gtgttagtag gtcagtcggt cggtggctga 1920
gattagttga tcatgtttag tggaagttcc tattctctag aaagtatagg aacttcgcat 1980
gcttaagata cattgatgag tttggacaaa ccacaactag aatgcagtga aaaaaatgct 2040
ttatttgtga aatttgtgat gctattgctt tatttgtaac cattataagc tgcaataaac 2100
aagttaacaa caacaattgc attcatttta tgtttcaggt tcagggggag gtgtgggagg 2160
ttttttaaag caagtaaaac ctctacaaat gtggtatggc tgattatgat ctagagtcgc 2220
ggccgctaca ggaacaggtg gtggcggccc tcggcgcgct cgtactgctc cacgatggtg 2280
tagtcctcgt tgtgggaggt gatgtccagc ttggagtcca cgtagtagta gccgggcagc 2340
tgcacgggct tcttggccat atagatagac ttgaactcca ccaggtagtg gccgccgtcc 2400
ttcagcttca gggccttgtg gatctcgccc ttcagcacgc cgtcgcgggg gtacaggcgc 2460
tcggtggagg cctcccagcc catagtcttc ttctgcatta cggggccgtc ggaggggaag 2520
ttcacgccga tgaacttcac cttgtagatg aaggagccgt cctgcaggga ggagtcctgg 2580
gtcacggtca ccacgccgcc gtcctcgaag ttcatcacgc gctcccactt gaagccctcg 2640
gggaaggaca gcttcttgta gtcggggatg tcggcggggt gcttcacgta caccttggag 2700
ccgtactgga actgggggga caggatgtcc caggcgaagg gcagggggcc gcccttggtc 2760
accttcagct tggcggtctg ggtgccctcg taggggcggc cctcgccctc gccctcgatc 2820
tcgaactcgt ggccgttcac ggagccctcc atgcgcacct tgaagcgcat gaactccttg 2880
atgacgtcct cggaggaggc cataccggtt cactgtctgc tttgctgttg gtctgggctc 2940
ctgggtcact gacttactaa tggagtcttt atgtatgagg actcttatca tttgttcttc 3000
tataaaggtc tgcagtgttt ctgttcgtcc cctacatgga cacccagagc ctcctaaata 3060
caggagccct gataactgca caagtgctca gattccagca gggtggaaaa tgagataaag 3120
tgtgcagatg gggaggggga cgtgaatgag agatttgagg gatgaaaagg atggatgaga 3180
agttcctatt ctctagaaag tataggaact tcagatctat aacttcgtat agcatacatt 3240
atacgaagtt atatcctcat gtttacctgc tggtctagtg ctgatctcag gaagtgtgag 3300
tgatccgtcc tctcctgtct gtggcctact ttacttttag actcagaaac cttcaaatat 3360
aacttgaata aagccctgat taaacttgat gaagcctgat attgcacaca cagtcagata 3420
gtgtgtataa atacaacaca cataaacaaa tttacatcaa actttacatc catttatatt 3480
aatagtgaac acatgtttat gcagtgcgta taaatatata caaatgcact tatatactac 3540
tttacattta taattataat gcacacgtta atatagtgat tataaatgac ataaatatac 3600
acaaatgcag ttgtacacta cttcacatcc ctttatattc atattgcacg ttaatatagt 3660
gtgtataaat atacaagtcg acctgcaggc atgcaagctt ggcgtaatca tggtcatagc 3720
tgtttcctgt gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca 3780
taaagtgtaa agcctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct 3840
cactgcccgc tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac 3900
gcgcggggag aggcggtttg cgtattgggc gctcttccgc ttcctcgctc actgactcgc 3960
tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt 4020
tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg 4080
ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccccctgacg 4140
agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 4200
accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc ctgccgctta 4260
ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct 4320
gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc 4380
ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa 4440
gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg 4500
taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaagaacag 4560
tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt 4620
gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta 4680
cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc 4740
agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca 4800
cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa 4860
cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat 4920
ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct 4980
taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt 5040
tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat 5100
ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta 5160
atagtttgcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg 5220
gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt 5280
tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg 5340
cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg 5400
taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc 5460
ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa 5520
ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac 5580
cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt 5640
ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg 5700
gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa 5760
gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata 5820
aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc taagaaacca 5880
ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtctcgcgc 5940
gtttcggtga tgacggtgaa aacctctgac acatgcagct cccggagacg gtcacagctt 6000
gtctgtaagc ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg ggtgttggcg 6060
ggtgtcgggg ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata 6120
tgcggtgtga aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgccattcgc 6180
cattcaggct gcgcaactgt tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc 6240
agctggcgaa agggggatgt gctgcaaggc gattaagttg ggtaacgcca gggttttccc 6300
agtcacgacg ttgtaaaacg acggccagtg aattcgagct c 6341
<210> 2
<211> 6660
<212> DNA
<213> Artificial sequence (sequence of Zebra fish)
<400> 2
gggcgaattg ggcccagagg tgtaaagtac ttgagtaatt ttacttgatt actgtactta 60
agtattattt ttggggattt ttactttact tgagtacaat taaaaatcaa tacttttact 120
tttacttaat tacatttttt tagaaaaaaa agtacttttt actccttaca attttattta 180
cagtcaaaaa gtacttattt tttggagatc acttcattct attttccctt gctattacca 240
aaccaattga attgcgctga tgcccagttt aatttaaata gatctggcca tctagagcgg 300
ccgctatcac cccatatgtc ccatgctcag catatatgag tacacccctc tagcctgatc 360
tcaagagaaa acgcgagtat tttatgtttt gccagtttag ttcagtcatt gggggatgag 420
caaatcatac taaaatgtac gaattagttc gtacgaatta gccactaaat gaaaaagtta 480
caaatttgtg ttgacccctc acaaatctgt cttcattcat tttcttttag gcttagtccc 540
tttattaatc aggattcgcc acagaggaat gagccaccaa ctcatccagt gtatttttta 600
tgcagcggat gcccatccag ttgcagccct acactgggaa acacccaaat ctgtctttta 660
aattaatatt tttaatagga agctatacaa tgttatattt gtgcatatac attagattag 720
tcagtacact ctcagaaata aaggtccgca agctgtcact gcggtggtac cttttcaaaa 780
ggtacatatt tgtacttaaa gggtccatat tgatacctca aaagtatata ttagtgccta 840
aaaattttaa gagaaacact tttgtacttt ttaggtacta atatataccc ttgaggtttt 900
attatggacc tttaaggtac aaatttttat catttggaaa ggtaccaccc cagtgacagt 960
ttacaccctt tatttctgag agtgaagcta aatctggagc ttatttaaca aaataactta 1020
tgataacggt ccaaaaacta ctacacccat atttatatgt tattgaaaaa tattaaatac 1080
aaattttaaa acagggaaaa atcaagagaa gcaaaacaat ggaaaaaaat ttgttcaaaa 1140
tttgtaggtt gtaatttttt tgttgcaata tttagcttta tttaaattgt tttatctttc 1200
aattttgtga ctaaaatatt attttaataa atatagctgt ttaataaatc tgttttgttt 1260
aaatgcacca aaatacattg cctatattaa ctgagagatg gagaaaaata ttcattttca 1320
aaatgggctg tactcaatta ctctgagcac tgtaattatc tgtttttcta ggtactgtaa 1380
aataatgcta atcttaaaca attttggaac aagaaggagc aaaacaagcc gacagactca 1440
caggatatca aattagtcta aagaaagaag ggaatgcaca acaaactcaa gggggacaaa 1500
acagtgactg atgaattaga caagaaaaag agagcaagga gcgctcaaga ttgtttagct 1560
attttggtca cccacagctg ttccttatgc ctgccttccc aaaaaaaaac tgtcttaagc 1620
ctcaaatttc tcttcatgag ggtccaacat caaccactca gagggctgta gtgtgctgac 1680
catctaaaaa ctgggaaaaa ggggtaatta cgtgcttgtc cacagggcag cttcccacaa 1740
atggcacctc acagtcactg aagtgaccgg gtgaggtcat aggtcgatcg gcagagagag 1800
agagagagag agagagagag agagtgctga atatgggcat ggccatgtgg acgggtgtgg 1860
tgggggcact tgaaccgaaa tcttacagca tcactatact aggaaaagca ttaaaaccta 1920
ttttcgatta gggctgattt gaaataaggg ttaagacacc agaacgtcct cttatatatc 1980
agccaggggc gtgaacaaat atgaacaaca taatcattgg ctcaaaaaat ctctggattg 2040
aaatccatca ggatctatca ctgcaaccct ccccatccaa caagtaatcc tgcaagataa 2100
gccagtattg atctgctgct aatctaactt taggggaggg agttgcgtcc cctttagact 2160
cagtggctac agctcattca tttcaaattg agttatgtga ttgtatgaag ctcaaacagt 2220
cccttacgtc cccatgtcct tattagtcaa cgcgagacat gcaggccgct gccatcagta 2280
tcagattcat cccattccaa gactccaata gctatttctg agcactgtaa gatgatagta 2340
catcccagcc ggtgtccctc catcactttc cccctacctc atagtttttc ctctttctct 2400
ctcggtctgc tatttcccaa acctcactta aggttgggtc tataattagc aaggggcctt 2460
cgtcagtata taagcccctc aagtacagga cactacgcgg cttcagactt ctcttcttga 2520
tcttcttaga cttcacacat accgtctcga cgccaccatg gtgagcaagg gcgaggagct 2580
gttcaccggg gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt 2640
cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc aagctgaccc tgaagttcat 2700
ctgcaccacc ggcaagctgc ccgtgccctg gcccaccctc gtgaccaccc tgacctgggg 2760
cgtgcagtgc ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc 2820
catgcccgaa ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa 2880
gacccgcgcc gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg 2940
catcgacttc aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacatcag 3000
ccacaacgtc tatatcaccg ccgacaagca gaagaacggc atcaaggcca acttcaagat 3060
ccgccacaac atcgaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc 3120
catcggcgac ggccccgtgc tgctgcccga caaccactac ctgagcaccc agtccgccct 3180
gagcaaagac cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc 3240
cgggatcact ctcggcatgg acgagctgta caagtaacgg ccgcgactct agatcataat 3300
cagccatacc acatttgtag aggttttact tgctttaaaa aacctcccac acctccccct 3360
gaacctgaaa cataaaatga atgcaattgt tgttgttaac ttgtttattg cagcttataa 3420
tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca 3480
ttctagttgt ggtttgtcca aactcatcaa tgtatcttag gtaccctgca gaagcttaaa 3540
caagaatctc tagttttctt tcttgctttt acttttactt ccttaatact caagtacaat 3600
tttaatggag tactttttta cttttactca agtaagattc tagccagata cttttacttt 3660
taattgagta aaattttccc taagtacttg tactttcact tgagtaaaat ttttgagtac 3720
tttttacacc tctgctcgac catatgggag agctcccaac gcgttggatg catagcttga 3780
gtattctata gtgtcaccta aatagcttgg cgtaatcatg gtcatagctg tttcctgtgt 3840
gaaattgtta tccgctcaca attccacaca acatacgagc cggaagcata aagtgtaaag 3900
cctggggtgc ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt 3960
tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 4020
gcggtttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg cgctcggtcg 4080
ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat 4140
caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 4200
aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa 4260
atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc 4320
cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt 4380
ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 4440
gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc gttcagcccg 4500
accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 4560
cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 4620
cagagttctt gaagtggtgg cctaactacg gctacactag aagaacagta tttggtatct 4680
gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac 4740
aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 4800
aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag tggaacgaaa 4860
actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatccttt 4920
taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact tggtctgaca 4980
gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 5040
tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc 5100
ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa 5160
accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc 5220
agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca 5280
acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat 5340
tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 5400
cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac 5460
tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 5520
ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt 5580
gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc 5640
tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 5700
ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca 5760
gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 5820
cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg 5880
gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 5940
ttccgcgcac atttccccga aaagtgccac ctgatgcggt gtgaaatacc gcacagatgc 6000
gtaaggagaa aataccgcat caggaaattg taagcgttaa tattttgtta aaattcgcgt 6060
taaatttttg ttaaatcagc tcatttttta accaataggc cgaaatcggc aaaatccctt 6120
ataaatcaaa agaatagacc gagatagggt tgagtgttgt tccagtttgg aacaagagtc 6180
cactattaaa gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg 6240
gcccactacg tgaaccatca ccctaatcaa gttttttggg gtcgaggtgc cgtaaagcac 6300
taaatcggaa ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg 6360
tggcgagaaa ggaagggaag aaagcgaaag gagcgggcgc tagggcgctg gcaagtgtag 6420
cggtcacgct gcgcgtaacc accacacccg ccgcgcttaa tgcgccgcta cagggcgcgt 6480
ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg cctcttcgct 6540
attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg taacgccagg 6600
gttttcccag tcacgacgtt gtaaaacgac ggccagtgaa ttgtaatacg actcactata 6660
<210> 3
<211> 29
<212> DNA
<213> Artificial sequence (LF)
<400> 3
ctcggtaccc tcctgtcagt cagtcagtc 29
<210> 4
<211> 29
<212> DNA
<213> Artificial sequence (LR)
<400> 4
tatgagctca tgcgatttgg gacgcagct 29
<210> 5
<211> 63
<212> DNA
<213> Artificial sequence (MF)
<400> 5
catgagctca taacttcgta tagcatacat tatacgaagt tatacttatg cactattcta 60
cgc 63
<210> 6
<211> 63
<212> DNA
<213> Artificial sequence (MR)
<400> 6
taagcatgcg aagttcctat actttctaga gaataggaac ttccactaaa catgatcaac 60
taa 63
<210> 7
<211> 29
<212> DNA
<213> Artificial sequence (SM-F)
<400> 7
ttcgcatgct taagatacat tgatgagtt 29
<210> 8
<211> 63
<212> DNA
<213> Artificial sequence (SM-R)
<400> 8
tatagatctg aagttcctat actttctaga gaataggaac ttctcatcca tccttttcat 60
ccc 63
<210> 9
<211> 63
<212> DNA
<213> Artificial sequence (RF)
<400> 9
ttcagatcta taacttcgta tagcatacat tatacgaagt tatatcctca tgtttacctg 60
ctg 63
<210> 10
<211> 29
<212> DNA
<213> Artificial sequence (RR)
<400> 10
caggtcgact tgtatattta tacacacta 29
<210> 11
<211> 21
<212> DNA
<213> Artificial sequence (nucleotide sequence of sgRNA 1)
<400> 11
ggacgcagct atcagtggcg t 21
<210> 12
<211> 20
<212> DNA
<213> Artificial sequence (nucleotide sequence of sgRNA 2)
<400> 12
gctggtctag tgctgatctc 20
<210> 13
<211> 19
<212> DNA
<213> Artificial sequence (tcf3a-LF primer)
<400> 13
tttgccgacc tcacccatc 19
<210> 14
<211> 20
<212> DNA
<213> Artificial sequence (DsRed-R primer)
<400> 14
cccacaacga ggactacacc 20
<210> 15
<211> 20
<212> DNA
<213> Artificial sequence (DsRed-F primer)
<400> 15
cccttggtca ccttcagctt 20
<210> 16
<211> 25
<212> DNA
<213> Artificial sequence (tcf3a-RR primer)
<400> 16
tttaaaggga cttggagtaa aagtg 25

Claims (4)

1. A method for conditionally inducing tcf3a gene knockout in zebrafish for studying muscle growth, comprising the steps of:
(1) searching specific recognition sites of two nucleases in introns at two ends of the 4 th exon of the zebra fish tcf3a, wherein the specific recognition sites are a sgRNA1 target spot and a sgRNA2 target spot; the nuclease is CRIPSR nuclease and Cas9 nuclease;
(2) constructing a knock-in plasmid connected with non-homologous ends, wherein the knock-in plasmid contains a left homologous arm and a right homologous arm, the left homologous arm contains a nuclease recognition site sgRNA1, the right homologous arm contains another nuclease recognition site sgRNA2, an exogenous gene sequence to be replaced is contained between the left arm and the right arm, and the exogenous gene sequence comprises loxP sites on two sides of a 4 th exon and cardiac muscle cell marker red fluorescent protein capable of being used for screening; injecting a nuclease system into the fertilized eggs of the zebra fish by utilizing microinjection; culturing the injected fertilized eggs into fish, and confirming the conditional knockout of the zebra fish by the tcf3a through fluorescence and genotype identification; the nuclease system comprises Cas9 protein or mRNA for generating Cas9 protein, sgRNA1 and sgRNA2, tcf3a knock-in plasmids; the target sequence of sgRNA1 is: GGACGCAGCTATCAGTGGCGT, respectively; the target sequence of sgRNA2 is: GCTGGTCTAGTGCTGATCTC, respectively;
(3) constructing an expression plasmid for marking the muscle of the zebra fish, wherein the expression plasmid drives CFP fluorescent protein to express by using a zebra fish mylpfa promoter, and transposon sequences are added at two ends;
(4) the above-described marker plasmid, Cre mRNA and the mRNA of tol2 transposase were co-injected into embryos generated by crossing in tcf3a conditional knockout lines, and zebrafish embryos were used after 3 days to identify deletion of tcf3a, overall phenotypic observation and phenotypic observation of muscle.
2. The method for conditionally inducing tcf3a gene knock-out in zebrafish of claim 1 for studying muscle growth, wherein: in the step (2), the sequence of the left homology arm is shown as SEQ ID NO:1, and the sequence of the right homologous arm is shown as SEQ ID NO:1, 3253-3676, and the sequence of the exogenous gene needing to be replaced between the right arms is shown as SEQ ID NO:1, 543-th position 2710.
3. The method for conditionally inducing tcf3a gene knock-out in zebrafish of claim 2 for studying muscle growth, wherein: in the step (2), constructing the left homologous arm and the right homologous arm of the knock-in plasmid connected with the non-homologous ends, taking a zebra fish genome as a template, and adding enzyme cutting sites and protective bases into a PCR primer for amplification to obtain the zebra fish genome; a sequence between two loxP sites of the fourth exon takes a zebra fish genome as a template, a loxP-tcf3a _ exon4-frt fusion sequence is obtained by amplifying a loxP and frt fusion sequence PCR primer, and the PCR primer is added with a restriction enzyme site and a protective base; the red fluorescent protein sequence can be marked by the screened cardiac muscle cells, the loxP-myl7-DsRed-pA-frt fusion sequence is obtained by amplifying the fusion sequence PCR primer of loxP and frt, and the PCR primer is added with the enzyme cutting site and the protective basic group.
4. The method for conditionally inducing tcf3a gene knock-out in zebrafish of claim 3 for studying muscle growth, wherein: in the step (3), the sequence of the zebrafish mylpfa promoter is shown as SEQ ID NO: 2, and the ECFP sequence is shown as SEQ ID NO: 2558 and 3277 in FIG. 2.
CN202010718924.0A 2020-07-23 2020-07-23 Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish Active CN112111530B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010718924.0A CN112111530B (en) 2020-07-23 2020-07-23 Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010718924.0A CN112111530B (en) 2020-07-23 2020-07-23 Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish

Publications (2)

Publication Number Publication Date
CN112111530A CN112111530A (en) 2020-12-22
CN112111530B true CN112111530B (en) 2022-02-22

Family

ID=73798966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010718924.0A Active CN112111530B (en) 2020-07-23 2020-07-23 Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish

Country Status (1)

Country Link
CN (1) CN112111530B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921037B (en) * 2021-03-25 2023-11-03 福州百维斯生物科技有限公司 Method for realizing fixed-point insertion type knockout and identification in zebra fish genome
CN113388639B (en) * 2021-06-04 2024-01-12 湖南师范大学 Method for breeding zebra fish vmhcEGFP-KI strain by gene knock-in

Also Published As

Publication number Publication date
CN112111530A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
CN107384967B (en) Method for inserting exogenous gene into silkworm W chromosome at fixed point
CN112111530B (en) Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish
US5981274A (en) Recombinant hepatitis virus vectors
RU2718248C2 (en) Adeno-associated virus vectors for treating lysosomal storage diseases
CN107074913B (en) Dengue virus chimeric polyepitope comprising fragments of non-structural proteins and uses thereof
CN109825520B (en) Novel method for gene assembly by using improved CRISPR-Cpf1
CN112921054B (en) Lentiviral vector for treating beta-thalassemia and preparation method and application thereof
KR20220128607A (en) Synthetic DNA Vectors and Methods of Use
CN103224955A (en) Vector for efficiently labeling zebra fish PGC, and preparation method and use of transgenic fish
CN114606251B (en) DNA delivery system using exosome as carrier
CN104593413A (en) Method for synthesizing secreted human serum albumin employing bombyx mori posterior silk gland
CN115867561A (en) Expression of SARS-CoV proteins, nucleic acid constructs, virus-like proteins (VLPs), and methods related thereto
CN111850127A (en) Application of NTNG1 protein in preparation of liver cancer diagnostic reagent or kit
CN117545765A (en) Chimeric antigen receptor T cells
CN110305872A (en) The construction method of miniature pig diabetes B model and application
CN103397046B (en) Vector used for oriented screening of homologous recombination PGC, and construction method and application thereof
CN111893185A (en) Construction method and application of cell strain expressing NTNG1 gene
CN111909918B (en) Endolysin mutant and coding gene and application thereof
CN110484517A (en) A kind of composition and preparation method of the Rift Valley fever virus being used to prepare weak poison, RVFV attenuated vaccine
CN108060175B (en) Construction and application of inducible yeast transformation recombination system
CN117355608A (en) Transcriptional modulators and polynucleotides encoding same
CN108118007A (en) A kind of method and its genetic engineering bacterium of genetic engineering bacterium production beta carotene
CN101358202A (en) Recombinant canine adenovirus type 2 transfer vector, construction method and application thereof
CN114540355A (en) HHEX cartilage tissue specificity knockout mouse animal model and construction method thereof
CN111455092B (en) Internal reference strain for quantitative PCR detection of verticillium dahliae and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant