CN112104340A - 一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT降虚警方法 - Google Patents
一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT降虚警方法 Download PDFInfo
- Publication number
- CN112104340A CN112104340A CN202010932326.3A CN202010932326A CN112104340A CN 112104340 A CN112104340 A CN 112104340A CN 202010932326 A CN202010932326 A CN 202010932326A CN 112104340 A CN112104340 A CN 112104340A
- Authority
- CN
- China
- Prior art keywords
- data
- input module
- switching value
- value input
- bit system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000001914 filtration Methods 0.000 title claims abstract description 20
- 239000013598 vector Substances 0.000 claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 7
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000007704 transition Effects 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000012423 maintenance Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0202—Two or more dimensional filters; Filters for complex signals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0219—Compensation of undesirable effects, e.g. quantisation noise, overflow
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0202—Two or more dimensional filters; Filters for complex signals
- H03H2017/0205—Kalman filters
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本发明提供了一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT降虚警方法。该方法可以更好地识别间歇故障,降低BIT系统的虚警率。首先,基于开关量输入模块建立BIT系统,收集其BIT检测信号的海量数据;将其分为正常、永久故障、间歇故障三种状态的样本数据;对原始信号进行Kalman滤波处理,过滤噪声;利用局部均值分解法(Local Mean Decomposition,LMD)提取特征向量;然后,对处理后的三组样本数据分别进行HMM训练;最后对BIT系统的监测的实时数据也进行Kalman滤波处理,再输入到训练好的三种HMM模型中,得出识别结果。在本发明中,Kalman滤波技术可以去除采集信号过程中出现的干扰噪声,使得HMM模型的训练效果更好,识别精度提高,从而达到降低BIT系统虚警率的目的。
Description
技术领域
本发明涉及测试领域,具体涉及一种基于Kalman滤波和HMM模型的开关量输入模块BIT降虚警方法。
背景技术
BIT技术是改善系统或设备测试性与诊断能力的重要途径,但在该领域中,由于虚警问题的存在,不可避免地会影响BIT技术的应用与发展,一些情况下,还会造成严重的后果,比如:影响设备的可用度;造成无效维修;影响维修备件供应;较高的虚警率导致设备操作人员和维修人员对BIT设备失去信任。所以解决BIT虚警率高的问题,不仅可以提高设备的安全系数,还能准确检测故障,防止事故发生,这对于BIT技术领域发展具有重大意义。
引起虚警原因有时间环境应力的和间歇故障,其中间歇故障是导致虚警的主要因素,降低虚警率最有效的办法就是准确识别间歇故障和永久故障。但是由于间歇故障重复性差,不确定性强,通过常规BIT检测方法很难将其与永久故障进行区分,容易出现误报或漏报的情况。目前已有很多降虚警的方法,在良好的工作环境下,可以很好地识别故障类型,但是受到噪声干扰时,其识别准确度就会下降。所以针对BIT系统在噪声环境下的工作情况,还有改进的空间。
发明内容
鉴于以上存在的技术问题,本发明提供一种基于HMM模型和Kalman 滤波的开关量输入模块BIT降虚警方法。
为解决上述技术问题,本发明采用如下的技术方案:
一种基于HMM模型和Kalman滤波的开关量输入模块BIT降虚警方法,包括以下步骤:
步骤一:建立开关量输入模块的分布式BIT系统,整理BIT系统检测到的历史数据,并将其分类成正常、永久故障、间歇故障三种状态;
步骤二:建立Kalman滤波器,对三种状态的样本数据进行滤波降噪处理;
步骤三:利用LMD方法(局部均值分解法)对处理后的数据进行分解,提取特征向量;
步骤四:基于步骤三,分别对三种状态的特征向量进行HMM训练;
步骤五:对开关量输入模块BIT系统的检测到的实时数据也经过Kalman 滤波器进行降噪处理,用LMD法提取特征向量;
步骤六:然后将第五步得到的结果输送到训练好的HMM模型中,进行状态识别,得出结论。
进一步地,在所述步骤一中,对开关量输入模块进行功能划分,建立分布式BIT系统,建立好的BIT系统可以对开关量输入模块进行检测,并将开关量输入模块的运行情况进行记录;在开关量输入模块正常运行时、出现永久故障时、出现间歇故障时,BIT系统所检测到的数据会有所变化,据此分别采集整理这三种状态下的样本数据,称这三种状态的样本数据为正常数据、永久故障数据、间歇故障数据;
然后分别对三种样本建立Kalman滤波器,将三组样本数据输入滤波器中,进行降噪处理;
利用LMD法对处理好的三组样本数据进行分解,获取乘积函数(ProductionFunction,PF)的瞬时幅值和瞬时频率,进一步对PF分量的瞬时幅值进行分析,在此基础上,对正常样本数据、永久故障样本数据、间歇故障样本数据进行特征提取;
对于处理后的三组样本数据,分别进行HMM训练,得到正常状态、永久故障状态、间歇故障状态的HMM模型分别为:
其中,πi(i=1,2,3)为初始概率分布矢量,Ai(i=1,2,3)为状态转移概率矩阵, Bi(i=1,2,3)为观测值概率矩阵;
采集开关量输入模块BIT系统的实时监测数据,对其同样进行Kalman 滤波降噪处理,通过LMD方法提取特征向量,设其观测序列为O={o1,o2,…,oT}(T 为观测对象数),分别求得观测序列O在HMM模型λ1、HMM模型λ2、HMM模型λ3下出现的条件概率P(O|λ1)、P(O|λ2)、P(O|λ3);
通过比较三种HMM模型中得到的条件概率大小,选取概率最大的作为决策状态,然后输出识别结果。
附图说明
图1为本发明实施流程图
图2为HMM模型诊断流程图
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明的具体实施流程图。
一种基于HMM模型和Kalman滤波的开关量输入模块BIT降虚警方法,由以下步骤实现:
步骤一:建立开关量输入模块的分布式BIT系统,整理BIT系统检测到的历史数据,并将其分类成正常、永久故障、间歇故障三种状态;
步骤二:建立Kalman滤波器,对三种状态的样本数据进行滤波降噪处理;
步骤三:利用LMD方法对处理后的数据进行分解,提取特征向量;
步骤四:基于步骤三,分别对三种状态的特征向量进行HMM训练;
步骤五:对采集的开关量输入模块BIT系统的检测到的实时数据也经过 Kalman滤波器进行降噪处理,利用LMD法提取特征向量;
步骤六:然将第五步得到的结果输送到训练好的HMM模型中,进行状态识别,得出结论。
进一步地,在所述步骤一中,对开关量输入模块进行功能划分,建立分布式BIT系统,建立好的BIT系统可以对开关量输入模块进行检测,并将开关量输入模块的运行情况进行记录;在开关量输入模块正常运行时、出现永久故障时、出现间歇故障时,BIT系统所检测到的数据会有所变化,据此分别采集整理这三种状态下的样本数据,之后会称这三种状态的样本数据为正常数据、永久故障数据、间歇故障数据;
然后分别对三种样本建立Kalman滤波器,具体如下:
对于采集到的开关量输入模块BIT系统正常信号,有:
信号状态方程为x1(k)=A1x1(k-1)+w1(k),带噪观测方程y1(k)=Hx1(k)+v1(k);其中,x1(k)是k时刻的p维信号矢量,A1是p×p维状态矩阵,表示k时刻与k-1 时刻的状态转移关系,w1(k)是p维不相关的状态激励矢量,服从高斯分布,其均值为零,协方差为p×p维的矩阵Q1,y1(k)是m维带噪声的观测矢量,H1为m×p 维的观测矩阵,v1(k)是m维噪声矢量,服从高斯分布,其均值为零,协方差为p×p 维矩阵R1;
Kalman滤波过程为:
预测误差的协方差矩阵为:P1(k|k-1)=A1P1(k-1)A1 T+Q1
更新Kalman增益矢量:K1(k)=P1(k|k-1)H1 T[H1P1(k|k-1)H1 T+R1]-1
更新误差的协方差矩阵:P1(k)=[I-K1H1]P1(k|k-1);
对于永久故障信号,和间歇故障信号采取同样的方式设置Kalman滤波器,进行降噪处理;
将三组处理好的样本数据分别进行LMD分解,获取乘积函数(ProductionFunction,PF)分类的瞬时幅值和瞬时频率;
进一步对PF分量的瞬时幅值进行分析,提取特征向量;
对于处理后的三组样本数据,分别进行HMM训练,得到正常状态、永久故障状态、间歇故障状态的HMM模型分别为:
其中,πi(i=1,2,3)为初始概率分布矢量,Ai(i=1,2,3)为状态转移概率矩阵, Bi(i=1,2,3)为观测值概率矩阵;
采集开关量输入模块BIT系统的实时监测数据,同样进行Kalman滤波降噪处理,通过LMD方法提取特征向量,设其观测序列为O={o1,o2,…,oT}(T为观测对象数),需要求得观测序列O在HMM模型λ1、HMM模型λ2、HMM模型λ3下出现的条件概率P(O|λ1)、P(O|λ2)、P(O|λ3);
使用前向算法求取观测序列在HMM模型下出现的条件概率,前向算法的使用如下所示:
计算初始时刻1的各个隐藏状态前向概率:
αt(i)=πibi(o1),i=1,2,...,N,其中bi(o1)为时刻T1时,观测值的概率;
然后递推下一时刻的前向概率:
最后,由下列公式计算最终结果,得到基于正常样本数据训练的HMM 模型λ1下所得到的观测序列的概率值;
用同一列观测序列,输入到永久故障状态HMM模型λ2中,求得其条件概率;
同样地,用同一列观测序列,输入到间歇故障状态HMM模型λ3中,求得其条件概率为:
得到观测序列在三个HMM模型下的条件概率值,选取概率最大的作为 HMM决策状态,例如,输入一段信号,由正常HMM模型所得出的的概率最大,那么这段信号就是正常的。
至此,针对三种状态的识别工作已经完成,其他信号以同样的方式进行识别。
Claims (8)
1.一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT系统降虚警方法,其特征在于,包括以下步骤:
步骤一:建立开关量输入模块的分布式BIT系统,整理BIT系统检测到的历史数据,并将其分类成正常、永久故障、间歇故障三种状态;
步骤二:建立Kalman滤波器,对三种状态的样本数据进行滤波降噪处理;
步骤三:利用LMD方法(局部均值分解法)对滤波处理后的数据进行分解,提取特征向量;
步骤四:基于第三步,分别对处理后的三类样本数据进行HMM训练;
步骤五:采集开关量输入模块BIT系统的检测到的实时数据,对其进行Kalman滤波降噪处理,获取观测序列;
步骤六:然后输送到训练好的三种HMM模型中,利用前向算法计算观测序列条件概率,选取概率值最大的模型作为决策结果。
2.根据权利要求1所述的方法,其特征在于,在所述步骤一中,对开关量输入模块进行功能划分,建立分布式BIT系统,利用建立好的BIT系统对开关量输入模块进行检测,并将开关量输入模块的运行情况进行记录,在开关量输入模块正常运行时、出现永久故障时、出现间歇故障时,BIT系统所检测到的数据会有所变化,据此分别采集整理这三种状态下的样本数据,称这三种状态的样本数据为正常数据、永久故障数据、间歇故障数据。
3.根据权利要求1所述的方法,其特征在于,在所述步骤二中,建立Kalman滤波器对三种样本数据进行滤波降噪处理。
4.根据权利要求1所述的方法,其特征在于,在所述步骤三中,对处理好的三组样本数据分别进行LMD分解,获取乘积函数(Production Function,PF)分量的瞬时幅值和瞬时频率,进一步对PF分量的瞬时幅值进行分析,再分别对正常样本数据、永久故障样本数据、间歇故障样本数据进行特征提取。
5.根据权利要求1所述的方法,其特征在于,在所述步骤四中,分别对处理好的正常样本数据、永久故障样本数据、间歇故障样本数的特征向量进行HMM训练。
7.根据权利要求1所述的方法,其特征在于,在所述步骤五中,利用BIT系统采集集开关量输入模块的运行时的实时数据,同样对其进行Kalman滤波处理和LMD分解,提取特征向量,获取观测序列。
8.根据权利要求1所述的方法,其特征在于,在所述步骤六中,将观测序列输入到三种HMM模型中,使用前向算法求取观测序列的概率,获取概率值最大的模型作为决策状态。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010932326.3A CN112104340B (zh) | 2020-09-08 | 2020-09-08 | 一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT降虚警方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010932326.3A CN112104340B (zh) | 2020-09-08 | 2020-09-08 | 一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT降虚警方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112104340A true CN112104340A (zh) | 2020-12-18 |
CN112104340B CN112104340B (zh) | 2024-04-16 |
Family
ID=73750802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010932326.3A Active CN112104340B (zh) | 2020-09-08 | 2020-09-08 | 一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT降虚警方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112104340B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113158555A (zh) * | 2021-03-29 | 2021-07-23 | 华北电力大学 | 一种基于专家系统和随机森林分类器的重型燃机控制系统模拟量输入模块bit设计方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6671666B1 (en) * | 1997-03-25 | 2003-12-30 | Qinetiq Limited | Recognition system |
CN104506162A (zh) * | 2014-12-15 | 2015-04-08 | 西北工业大学 | 基于ls-svr建模的高阶粒子滤波器的故障预示方法 |
CN104914850A (zh) * | 2015-05-20 | 2015-09-16 | 浙江大学 | 基于切换线性动态系统模型的工业过程故障诊断方法 |
US20160171377A1 (en) * | 2013-08-05 | 2016-06-16 | Movea | Method, device and system for annotated capture of sensor data and crowd modelling of activities |
CN107065545A (zh) * | 2017-04-01 | 2017-08-18 | 同济大学 | 基于马尔科夫跳变的分布式事件触发滤波系统及设计方法 |
CN108535635A (zh) * | 2018-04-17 | 2018-09-14 | 重庆大学 | 一种基于eemd和hmm的模拟电路间歇故障诊断方法 |
CN108563874A (zh) * | 2018-04-17 | 2018-09-21 | 重庆大学 | 一种模拟电路间歇故障诊断方法 |
CN108802525A (zh) * | 2018-06-06 | 2018-11-13 | 浙江宇天科技股份有限公司 | 基于小样本的设备故障智能预测方法 |
CN108845495A (zh) * | 2018-04-03 | 2018-11-20 | 南通大学 | 基于双层Kalman滤波器的间歇故障诊断与主动容错控制方法 |
CN109343507A (zh) * | 2018-10-16 | 2019-02-15 | 北京理工大学 | 一种故障检测与隔离系统及方法 |
-
2020
- 2020-09-08 CN CN202010932326.3A patent/CN112104340B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6671666B1 (en) * | 1997-03-25 | 2003-12-30 | Qinetiq Limited | Recognition system |
US20160171377A1 (en) * | 2013-08-05 | 2016-06-16 | Movea | Method, device and system for annotated capture of sensor data and crowd modelling of activities |
CN104506162A (zh) * | 2014-12-15 | 2015-04-08 | 西北工业大学 | 基于ls-svr建模的高阶粒子滤波器的故障预示方法 |
CN104914850A (zh) * | 2015-05-20 | 2015-09-16 | 浙江大学 | 基于切换线性动态系统模型的工业过程故障诊断方法 |
CN107065545A (zh) * | 2017-04-01 | 2017-08-18 | 同济大学 | 基于马尔科夫跳变的分布式事件触发滤波系统及设计方法 |
CN108845495A (zh) * | 2018-04-03 | 2018-11-20 | 南通大学 | 基于双层Kalman滤波器的间歇故障诊断与主动容错控制方法 |
CN108535635A (zh) * | 2018-04-17 | 2018-09-14 | 重庆大学 | 一种基于eemd和hmm的模拟电路间歇故障诊断方法 |
CN108563874A (zh) * | 2018-04-17 | 2018-09-21 | 重庆大学 | 一种模拟电路间歇故障诊断方法 |
CN108802525A (zh) * | 2018-06-06 | 2018-11-13 | 浙江宇天科技股份有限公司 | 基于小样本的设备故障智能预测方法 |
CN109343507A (zh) * | 2018-10-16 | 2019-02-15 | 北京理工大学 | 一种故障检测与隔离系统及方法 |
Non-Patent Citations (2)
Title |
---|
LINGBAO KONG;XING PENG;YAO CHEN;PING WANG;MIN XU;: "Multi-sensor measurement and data fusion technology for manufacturing process monitoring: a literature review", INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, no. 02, pages 315 - 319 * |
吴有龙;王晓鸣;杨玲;曹鹏;: "两级故障检测与隔离方法在组合导航中的应用分析", 弹道学报, no. 04, pages 262 - 270 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113158555A (zh) * | 2021-03-29 | 2021-07-23 | 华北电力大学 | 一种基于专家系统和随机森林分类器的重型燃机控制系统模拟量输入模块bit设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112104340B (zh) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2931624A1 (en) | Systems and methods for event detection and diagnosis | |
CN108760327B (zh) | 一种航空发动机转子故障的诊断方法 | |
CA2401685C (en) | Complex signal decomposition and modeling | |
CN110501631B (zh) | 一种在线间歇故障检测与诊断方法 | |
CN111238843B (zh) | 一种基于快速谱峭度分析的风机健康评价方法 | |
CN113344134A (zh) | 一种低压配电监控终端数据采集异常检测方法及系统 | |
CN110222765B (zh) | 一种永磁同步电机健康状态监测方法及系统 | |
CN109238455B (zh) | 一种基于图论的旋转机械振动信号监测方法及系统 | |
CN110738255A (zh) | 一种基于聚类算法的设备状态监测方法 | |
CN115424635B (zh) | 一种基于声音特征的水泥厂设备故障诊断方法 | |
Ceschini et al. | A Comprehensive Approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (DCIDS) | |
CN114244594A (zh) | 网络流量异常检测方法及检测系统 | |
Perry | Identifying the time of polynomial drift in the mean of autocorrelated processes | |
CN112104340B (zh) | 一种基于HMM模型和Kalman滤波技术的开关量输入模块BIT降虚警方法 | |
CN116482526A (zh) | 一种用于非故障相阻抗继电器的分析系统 | |
CN116641941A (zh) | 一种基于典型变量分析的液压系统早期故障动态检测方法 | |
CN114112390B (zh) | 一种非线性复杂系统早期故障诊断方法 | |
CN115169815A (zh) | 一种基于混合泛化网络的风电机组异常检测方法 | |
CN111506045B (zh) | 一种基于单值中智集相关系数的故障诊断方法 | |
Deuschle et al. | Robust sensor spike detection method based on dynamic time warping | |
CN114200232A (zh) | 一种输电线路故障行波波头检测方法及系统 | |
Ceschini et al. | A comprehensive approach for detection, classification and integrated diagnostics of gas turbine sensors (DCIDS) | |
Kats et al. | Features extraction from non-destructive testing data in cyber-physical monitoring system of construction facilities | |
CN114637793B (zh) | 一种基于大数据分析的装备故障频发区域定位方法 | |
CN108613695B (zh) | 基于ica-sprt的冗余传感器故障检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |