CN112104323B - 适合光伏组件并联系统的mppt控制器 - Google Patents

适合光伏组件并联系统的mppt控制器 Download PDF

Info

Publication number
CN112104323B
CN112104323B CN202011031125.2A CN202011031125A CN112104323B CN 112104323 B CN112104323 B CN 112104323B CN 202011031125 A CN202011031125 A CN 202011031125A CN 112104323 B CN112104323 B CN 112104323B
Authority
CN
China
Prior art keywords
mppg
vin
iin
maximum power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011031125.2A
Other languages
English (en)
Other versions
CN112104323A (zh
Inventor
陈怡�
莫晨飞
谢路耀
周丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou Zhiqing Intellectual Property Service Co ltd
Shenggao Energy Technology Jiangsu Co ltd
Original Assignee
Shenggao Energy Technology Jiangsu Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenggao Energy Technology Jiangsu Co ltd filed Critical Shenggao Energy Technology Jiangsu Co ltd
Priority to CN202011031125.2A priority Critical patent/CN112104323B/zh
Publication of CN112104323A publication Critical patent/CN112104323A/zh
Application granted granted Critical
Publication of CN112104323B publication Critical patent/CN112104323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种适合光伏组件并联系统的MPPT控制器,包括电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器和子控制器1至子控制器3。为应对无阴影、静态阴影和动态阴影等工况,所述控制器会先寻找光伏组件并联系统输出I‑V曲线与并联MPP曲线族的交点,再从各交点中挑选出最佳交点(即具有最大功率的交点),最后在最佳交点的基础上找到光伏组件并联系统的全局最大功率点MPPg。本发明具有准确而快速的全局最大功率点跟踪能力。

Description

适合光伏组件并联系统的MPPT控制器
技术领域
本发明涉及一种最大功率点跟踪(MPPT)控制器,尤其是一种适合光伏组件并联系统的MPPT控制器,在无阴影、静态阴影和动态阴影条件下均具有全局最大功率点跟踪的能力。
背景技术
当采用并联形式时,光伏组件可实现扩流。当遮阴情况不同时,同一个光伏组件并联系统的最大功率点会呈现出不同的分布情况。即,无阴影、静态阴影和动态阴影条件下光伏组件并联系统的最大功率点是不同的。而且,在静态和动态阴影条件下,光伏组件并联系统的输出P-V(即功率-电压)曲线呈现出多峰值,光伏组件并联系统的输出I-V(即电流-电压)曲线呈现出多单调区域,局部最大功率点的存在会增加对全局最大功率点跟踪的难度。
为了最大可能地获取光伏组件并联系统的电能,现有的MPPT控制方法包括扰动观察法、电导增量法、模拟退火法、大数据统计算法等。其中,扰动观察法和电导增量法容易陷入局部最大功率点而偏离全局最大功率点;而模拟退火法和大数据统计法则无法百分百地锁定全局最大功率点,存在找到次大功率点的可能性。
为了提高准确性同时实现快速性,MPPT控制方法还需要进一步改进。
发明内容
为克服现有MPPT控制方法易陷入局部最大功率点或存在找到次大功率点可能性的缺陷,本发明提出一种适合光伏组件并联系统的MPPT控制器,可协助DC/DC变换器快速而准确地锁定光伏组件并联系统的全局最大功率点,尽最大能力地将光伏组件并联系统的电能传送至直流母线供负载使用。
本发明解决其技术问题所采用的技术方案是:
一种适合光伏组件并联系统的MPPT控制器,包括电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器和子控制器1至子控制器3;
所述电压/电流检测和处理模块检测光伏组件并联系统的输出电压vin和输出电流iin,并将它们转换成数字信号Vin(k)和Iin(k),k为整数;
所述并联MPP曲线族寄存器内部存储有n个光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin),n为光伏组件并联系统中光伏组件的个数,Vin为函数输入变量,Iref1至Irefn为函数输出变量,fref()为包含不同光照条件下单个光伏组件最大功率点MPP信息的函数,所述n个光伏组件并联MPP曲线函数与n条光伏组件并联MPP曲线对应,所述n条光伏组件并联MPP曲线与光伏组件并联系统输出I-V曲线存在n个交点,分别为Cross1至Crossn;
所述交点寄存器内部存储有n个交点Cross1至Crossn的电压值Vin_Cross1至Vin_Crossn和电流值Iin_Cross1至Iin_Crossn;
所述MPPg寄存器内部存储有全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg,还存储有与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作状态,例如:开关频率f_MPPg、占空比D_MPPg、导通时间、关断时间、电压参考值及滞环宽度等;
所述电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器、子控制器1至子控制器3之间存在信息交互;
为应对无阴影、静态阴影和动态阴影等多种工况,所述子控制器1至子控制器3按顺序分时工作输出控制信号vdriving,周而复始;子控制器1采用光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin)产生电流参考值,通过调节DC/DC变换器中电子开关的工作状态找到交点Cross1至Crossn,即使得光伏组件并联系统运行于交点Cross1至Crossn,当光伏组件并联系统运行于交点Crossj时,Vin(k)=Vin_Crossj,Iin(k)=Iin_Crossj,j的取值范围是1至n;子控制器2在交点Cross1至Crossn的基础上通过调节DC/DC变换器中电子开关的工作状态找到全局最大功率点MPPg,即使得光伏组件并联系统运行于全局最大功率点MPPg,当光伏组件并联系统运行于全局最大功率点MPPg时,Vin(k)=Vin_MPPg,Iin(k)=Iin_MPPg;子控制器3监测全局最大功率点MPPg是否发生变化,若全局最大功率点MPPg发生变化,即Vin(k)≠Vin_MPPg或者Iin(k)≠Iin_MPPg或者Vin(k)×Iin(k)≠Vin_MPPg×Iin_MPPg,则再次调用子控制器1至子控制器3找到全局最大功率点MPPg,否则,维持DC/DC变换器中电子开关的工作状态,即保持光伏组件并联系统运行于全局最大功率点MPPg。
本发明的适合光伏组件并联系统的MPPT控制器检测光伏组件并联系统的输出电压vin和输出电流iin,输出控制信号vdriving,通过调节DC/DC变换器中电子开关的工作状态,使得光伏组件并联系统最终运行于全局最大功率点MPPg。
进一步,关于适合光伏组件并联系统的MPPT控制器的第一种优选方案,所述fref()为不同光照条件下单个光伏组件最大功率点MPP的拟合曲线函数,或者是叠加电压或电流边界条件的不同光照条件下单个光伏组件最大功率点MPP的拟合曲线函数;叠加电压或电流边界条件可加快找到交点的速度。拟合函数包括指数函数、多项式函数、折线函数等;电压边界条件包括0≤Vin≤Voc,电流边界条件包括0≤Iref1≤Isc,Voc和Isc为最大光照条件下单个光伏组件的开路电压和短路电流。
关于适合光伏组件并联系统的MPPT控制器的第二种优选方案,所述电压/电流检测和处理模块包括电压检测电路、电流检测电路、模数转换电路和平均值计算器或数字滤波器,所述电压检测电路检测光伏组件并联系统的输出电压vin,所述电流检测电路检测光伏组件并联系统的输出电流iin,所述模数转换电路分别将电压检测电路和电流检测电路的模拟检测结果转换成原始的数字信号vin(k)和iin(k),所述平均值计算器采用平均算法得到原始数字信号vin(k)和iin(k)的平均值,即数字信号Vin(k)和Iin(k)。
优选地,所述平均算法采用算式
Figure BDA0002703713260000041
Figure BDA0002703713260000042
或者/>
Figure BDA0002703713260000043
Figure BDA0002703713260000044
m为正整数;也可以采用数字滤波器将原始数字信号vin(k)和iin(k)滤波处理成数字信号Vin(k)和Iin(k),所述数字滤波器可以是低通数字滤波器或带通数字滤波器。所述平均值计算器和数字滤波器作用都是降低原始数字信号的噪声。
关于适合光伏组件并联系统的MPPT控制器的第三种优选方案,所述子控制器1包括函数运算器、交点判断器、参考电压发生器1和滞回比较器1,所述函数运算器从并联MPP曲线族寄存器处提取光伏组件并联MPP曲线函数Irefj=j×fref(Vin),令函数输入变量Vin等于数字信号Vin(k),求出函数输出变量Irefj,令电流参考值Irefj(k)等于函数输出变量Irefj,j的取值范围是1至n;
所述交点判断器比较电流参考值Irefj(k)和数字信号Iin(k)的大小,若数字信号Iin(k)和电流参考值Irefj(k)的差值ΔI的绝对值小于允许误差,则判断“找到了交点Crossj”,并将对应的Vin(k)和Iin(k)作为交点Crossj的电压值Vin_Crossj和电流值Iin_Crossj存入交点寄存器中,同时令参考电压发生器1保持电压参考值vref1不变,使得光伏组件并联系统运行于交点Crossj;否则,判断“未找到交点Crossj”,令参考电压发生器1根据数字信号Iin(k)和电流参考值Irefj(k)的差值ΔI调节电压参考值vref1,若差值ΔI>0,则增大电压参考值vref1,否则,减小电压参考值vref1;
所述滞回比较器1比较电压参考值vref1和数字信号Vin(k)的大小,若Vin(k)>vref1+Δvref1,则令控制信号vdriving为高电平,若Vin(k)<vref1-Δvref1,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,Δvref1为滞回比较器1的滞环宽度;
当所述子控制器1工作时,函数运算器从所述并联MPP曲线族寄存器处按顺序或逆序依次提取光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin)。
采用滞回比较器,可实现快速的交点寻找过程。
关于适合光伏组件并联系统的MPPT控制器的第四种优选方案,所述子控制器2包括最佳交点定位器、MPPg判断器、频率计、参考电压发生器2和滞回比较器2,所述最佳交点定位器和MPPg判断器按顺序分时工作,最佳交点定位器从交点Cross1至Crossn中找出与MAX(Vin_Cross1×Iin_Cross1,…,Vin_Crossn×Iin_Crossn)对应的交点,即最佳交点,MAX()为最大值函数,MPPg判断器在最佳交点的基础上找到全局最大功率点MPPg;
当所述最佳交点定位器工作时,最佳交点定位器从交点寄存器处提取交点Cross1至Crossn的电压值Vin_Cross1至Vin_Crossn和电流值Iin_Cross1至Iin_Crossn,通过计算找出最佳交点,同时令参考电压发生器2输出的电压参考值vref2等于最佳交点的电压值,滞回比较器2比较电压参考值vref2和数字信号Vin(k)的大小,若Vin(k)>vref2+Δvref2,则令控制信号vdriving为高电平,若Vin(k)<vref2-Δvref2,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,使得光伏组件并联系统运行于最佳交点,Δvref2为滞回比较器2的滞环宽度;
当所述MPPg判断器工作时,MPPg判断器采用扰动观察法或电导增量法对是否找到全局最大功率点MPPg做出判断,若判断为“找到了全局最大功率点MPPg”,则将对应的Vin(k)和Iin(k)作为全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg存入MPPg寄存器中,同时调用频率计计算出与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作频率f_MPPg和占空比D_MPPg,并将工作频率f_MPPg和占空比D_MPPg也一起存入MPPg寄存器中,同时还令参考电压发生器2保持电压参考值vref2不变,使得光伏组件并联系统运行于全局最大功率点MPPg;若判断为“未找到全局最大功率点MPPg”,则令参考电压发生器2采用扰动观察法或电导增量法生成电压参考值vref2,滞回比较器2比较电压参考值vref2和数字信号Vin(k)的大小,若Vin(k)>vref2+Δvref2,则令控制信号vdriving为高电平,若Vin(k)<vref2-Δvref2,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,Δvref2为滞回比较器2的滞环宽度。
采用滞回比较器,可实现快速的全局最大功率点MPPg寻找过程。
关于适合光伏组件并联系统的MPPT控制器的第五种优选方案,所述子控制器3包括MPPg变化判断器,所述MPPg变化判断器从MPPg寄存器处提取全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg,比较数字信号Vin(k)和Vin_MPPg的大小,或者比较数字信号Iin(k)和Iin_MPPg的大小,又或者比较Vin(k)×Iin(k)和Vin_MPPg×Iin_MPPg的大小,若Vin(k)和Vin_MPPg的差值绝对值大于允许误差,或者Iin(k)和Iin_MPPg的差值绝对值大于允许误差,又或者Vin(k)×Iin(k)和Vin_MPPg×Iin_MPPg的差值绝对值大于允许误差时,则判断“全局最大功率点MPPg发生变化”,否则,判断“全局最大功率点MPPg未发生变化”。
更进一步,所述子控制器3还包括PWM调制器,所述PWM调制器从MPPg寄存器处提取与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作频率f_MPPg和占空比D_MPPg,并根据f_MPPg和D_MPPg的信息输出控制信号vdriving,保持光伏组件并联系统运行于全局最大功率点MPPg。所述PWM调制器的作用是使得DC/DC变换器的工作频率固定,相比滞回比较器更利于监测全局最大功率点MPPg是否发生变化。
所述电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器和子控制器1至子控制器3可采用专用集成芯片,如:LM6152和S29GL128P,也可采用可编程器件,如:TMS320F28027。
所述DC/DC变换器可以采用输入和输出电流均连续的DC/DC变换器,如:Super-Boost变换器、Super-Buck变换器、Cuk变换器等。
本发明的技术构思为:基于单个光伏组件的输出特性,通过曲线拟合生成一族并联MPP曲线。借助于并联MPP曲线族,设计的一种寻找全局最大功率点MPPg的步骤如下:首先寻找光伏组件并联系统输出I-V曲线与并联MPP曲线族的交点,再从各交点中挑选出最佳交点(即具有最大功率的交点),最后在最佳交点的基础上找到全局最大功率点MPPg。
本发明的有益效果主要表现在:采用曲线拟合方法得到的并联MPP曲线族包含了不同光照条件下单个光伏组件最大功率点MPP的信息;利用光伏组件并联系统输出I-V曲线和并联MPP曲线族的交点以及最佳交点,可规避局部最大功率点对全局最大功率点MPPg的干扰;以最佳交点为基础的全局最大功率点MPPg寻优过程或跟踪过程是快速而准确的;可应对无阴影、静态阴影和动态阴影等工况,均具有全局最大功率点跟踪的能力。
附图说明
图1是本发明适用的一种光伏发电系统框图。
图2是本发明的结构框图。
图3是本发明中电压/电流检测和处理模块的结构框图。
图4是本发明中子控制器1的结构框图。
图5是本发明中子控制器2的结构框图。
图6是本发明中子控制器3的结构框图。
图7是本发明实施例中光伏组件并联系统在光照条件1下的输出I-V曲线、并联MPP曲线族Irefj和全局最大功率点MPPg的静态示意图(j取1至3)。
图8是本发明实施例中光伏组件并联系统在光照条件1下的输出P-V曲线、并联MPP族曲线之功率Prefj和全局最大功率点MPPg的静态示意图(j取1至3)。
图9是本发明实施例中光伏组件并联系统在光照条件2下的输出I-V曲线、并联MPP曲线族Irefj和全局最大功率点MPPg的静态示意图(j取1至3)。
图10是本发明实施例中光伏组件并联系统在光照条件2下的输出P-V曲线、并联MPP曲线族之功率Prefj和全局最大功率点MPPg的静态示意图(j取1至3)。
图11是本发明实施例中光伏组件并联系统在光照条件1至2含切换时刻的输出电压vin、输出电流iin、交点Crossj、最佳交点和全局最大功率点MPPg的动态示意图(j取1至3)。
图12是本发明实施例中光伏组件并联系统在光照条件1至2含切换时刻的输出功率pin、交点Crossj、最佳交点和全局最大功率点MPPg的动态示意图(j取1至3)。
具体实施方式
下面结合附图对本发明作进一步描述。
实施例
参考图1,一种适合光伏组件并联系统的MPPT控制器,检测光伏组件并联系统的输出电压vin和输出电流iin,输出控制信号vdriving,通过调节DC/DC变换器中电子开关的工作状态,使得光伏组件并联系统最终运行于全局最大功率点MPPg。所述DC/DC变换器可以采用输入和输出电流均连续的DC/DC变换器,如:Super-Boost变换器、Super-Buck变换器、Cuk变换器等。
参考图2,所述适合光伏组件并联系统的MPPT控制器包括电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器和子控制器1至子控制器3,所述电压/电流检测和处理模块检测光伏组件并联系统的输出电压vin和输出电流iin,并将它们转换成数字信号Vin(k)和Iin(k),k为整数。所述并联MPP曲线族寄存器内部存储有n个光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin),n为光伏组件并联系统中光伏组件的个数,Vin为函数输入变量,Iref1至Irefn为函数输出变量,fref()为包含不同光照条件下单个光伏组件最大功率点MPP信息的函数,所述n个光伏组件并联MPP曲线函数与n条光伏组件并联MPP曲线对应,所述n条光伏组件并联MPP曲线与光伏组件并联系统输出I-V曲线存在n个交点,分别为Cross1至Crossn。所述fref()为不同光照条件下单个光伏组件最大功率点MPP的拟合曲线函数,或者是叠加电压或电流边界条件的不同光照条件下单个光伏组件最大功率点MPP的拟合曲线函数。叠加电压或电流边界条件可加快找到交点的速度。拟合函数包括指数函数、多项式函数、折线函数等。电压边界条件包括0≤Vin≤Voc,电流边界条件包括0≤Iref1≤Isc,Voc和Isc为最大光照条件下单个光伏组件的开路电压和短路电流。所述交点寄存器内部存储有n个交点Cross1至Crossn的电压值Vin_Cross1至Vin_Crossn和电流值Iin_Cross1至Iin_Crossn。所述MPPg寄存器内部存储有全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg,还存储有与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作状态,例如:开关频率f_MPPg、占空比D_MPPg、导通时间、关断时间、电压参考值及滞环宽度等。
所述电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器、子控制器1至子控制器3之间存在信息交互。
为应对无阴影、静态阴影和动态阴影等多种工况,所述子控制器1至子控制器3按顺序分时工作输出控制信号vdriving,周而复始;子控制器1采用光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin)产生电流参考值,通过调节DC/DC变换器中电子开关的工作状态找到交点Cross1至Crossn,即使得光伏组件并联系统运行于交点Cross1至Crossn,当光伏组件并联系统运行于交点Crossj时,Vin(k)=Vin_Crossj,Iin(k)=Iin_Crossj,j的取值范围是1至n;子控制器2在交点Cross1至Crossn的基础上通过调节DC/DC变换器中电子开关的工作状态找到全局最大功率点MPPg,即使得光伏组件并联系统运行于全局最大功率点MPPg,当光伏组件并联系统运行于全局最大功率点MPPg时,Vin(k)=Vin_MPPg,Iin(k)=Iin_MPPg;子控制器3监测全局最大功率点MPPg是否发生变化,若全局最大功率点MPPg发生变化,即Vin(k)≠Vin_MPPg或者Iin(k)≠Iin_MPPg或者Vin(k)×Iin(k)≠Vin_MPPg×Iin_MPPg,则再次调用子控制器1至子控制器3找到全局最大功率点MPPg,否则,维持DC/DC变换器中电子开关的工作状态,即保持光伏组件并联系统运行于全局最大功率点MPPg。
所述电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器和子控制器1至子控制器3可采用专用集成芯片,如:LM6152和S29GL128P,也可采用可编程器件,如:TMS320F28027。
进一步,参考图3,所述电压/电流检测和处理模块包括电压检测电路、电流检测电路、模数转换电路和平均值计算器或数字滤波器,所述电压检测电路检测光伏组件并联系统的输出电压vin,所述电流检测电路检测光伏组件并联系统的输出电流iin,所述模数转换电路分别将电压检测电路和电流检测电路的模拟检测结果转换成原始的数字信号vin(k)和iin(k),所述平均值计算器采用平均算法得到原始数字信号vin(k)和iin(k)的平均值,即数字信号Vin(k)和Iin(k)。
优选地,所述平均算法可采用算式
Figure BDA0002703713260000121
Figure BDA0002703713260000122
或者/>
Figure BDA0002703713260000123
Figure BDA0002703713260000124
m为正整数;也可以采用数字滤波器将原始数字信号vin(k)和iin(k)滤波处理成数字信号Vin(k)和Iin(k),所述数字滤波器可以是低通数字滤波器或带通数字滤波器。所述平均值计算器和数字滤波器作用都是降低原始数字信号的噪声。
参考图4,所述子控制器1包括函数运算器、交点判断器、参考电压发生器1和滞回比较器1,所述函数运算器从并联MPP曲线族寄存器处提取光伏组件并联MPP曲线函数Irefj=j×fref(Vin),令函数输入变量Vin等于数字信号Vin(k),求出函数输出变量Irefj,令电流参考值Irefj(k)等于函数输出变量Irefj,j的取值范围是1至n。所述交点判断器比较电流参考值Irefj(k)和数字信号Iin(k)的大小,若数字信号Iin(k)和电流参考值Irefj(k)的差值ΔI的绝对值小于允许误差,则判断“找到了交点Crossj”,并将对应的Vin(k)和Iin(k)作为交点Crossj的电压值Vin_Crossj和电流值Iin_Crossj存入交点寄存器中,同时令参考电压发生器1保持电压参考值vref1不变,使得光伏组件并联系统运行于交点Crossj;否则,判断“未找到交点Crossj”,令参考电压发生器1根据数字信号Iin(k)和电流参考值Irefj(k)的差值ΔI调节电压参考值vref1,若差值ΔI>0,则增大电压参考值vref1,否则,减小电压参考值vref1。所述滞回比较器1比较电压参考值vref1和数字信号Vin(k)的大小,若Vin(k)>vref1+Δvref1,则令控制信号vdriving为高电平,若Vin(k)<vref1-Δvref1,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,Δvref1为滞回比较器1的滞环宽度。当所述子控制器1工作时,函数运算器从所述并联MPP曲线族寄存器处按顺序或逆序依次提取光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin)。采用滞回比较器,可实现快速的交点寻找过程。
参考图5,所述子控制器2包括最佳交点定位器、MPPg判断器、频率计、参考电压发生器2和滞回比较器2,所述最佳交点定位器和MPPg判断器按顺序分时工作,最佳交点定位器从交点Cross1至Crossn中找出与MAX(Vin_Cross1×Iin_Cross1,…,Vin_Crossn×Iin_Crossn)对应的交点,即最佳交点,MAX()为最大值函数,MPPg判断器在最佳交点的基础上找到全局最大功率点MPPg。当所述最佳交点定位器工作时,最佳交点定位器从交点寄存器处提取交点Cross1至Crossn的电压值Vin_Cross1至Vin_Crossn和电流值Iin_Cross1至Iin_Crossn,通过计算找出最佳交点,同时令参考电压发生器2输出的电压参考值vref2等于最佳交点的电压值,滞回比较器2比较电压参考值vref2和数字信号Vin(k)的大小,若Vin(k)>vref2+Δvref2,则令控制信号vdriving为高电平,若Vin(k)<vref2-Δvref2,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,使得光伏组件并联系统运行于最佳交点,Δvref2为滞回比较器2的滞环宽度。当所述MPPg判断器工作时,MPPg判断器采用扰动观察法或电导增量法对是否找到全局最大功率点MPPg做出判断,若判断为“找到了全局最大功率点MPPg”,则将对应的Vin(k)和Iin(k)作为全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg存入MPPg寄存器中,同时调用频率计计算出与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作频率f_MPPg和占空比D_MPPg,并将工作频率f_MPPg和占空比D_MPPg也一起存入MPPg寄存器中,同时还令参考电压发生器2保持电压参考值vref2不变,使得光伏组件并联系统运行于全局最大功率点MPPg;若判断为“未找到全局最大功率点MPPg”,则令参考电压发生器2采用扰动观察法或电导增量法生成电压参考值vref2,滞回比较器2比较电压参考值vref2和数字信号Vin(k)的大小,若Vin(k)>vref2+Δvref2,则令控制信号vdriving为高电平,若Vin(k)<vref2-Δvref2,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,Δvref2为滞回比较器2的滞环宽度。采用滞回比较器,可实现快速的全局最大功率点MPPg寻找过程。
参考图6,所述子控制器3包括MPPg变化判断器,所述MPPg变化判断器从MPPg寄存器处提取全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg,比较数字信号Vin(k)和Vin_MPPg的大小,或者比较数字信号Iin(k)和Iin_MPPg的大小,又或者比较Vin(k)×Iin(k)和Vin_MPPg×Iin_MPPg的大小,若Vin(k)和Vin_MPPg的差值绝对值大于允许误差,或者Iin(k)和Iin_MPPg的差值绝对值大于允许误差,又或者Vin(k)×Iin(k)和Vin_MPPg×Iin_MPPg的差值绝对值大于允许误差时,则判断“全局最大功率点MPPg发生变化”,否则,判断“全局最大功率点MPPg未发生变化”。所述子控制器3还包括PWM调制器,所述PWM调制器从MPPg寄存器处提取与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作频率f_MPPg和占空比D_MPPg,并根据f_MPPg和D_MPPg的信息输出控制信号vdriving,保持光伏组件并联系统运行于全局最大功率点MPPg。所述PWM调制器的作用是使得DC/DC变换器的工作频率固定,相比滞回比较器更利于监测全局最大功率点MPPg是否发生变化。
以n=3为例,通过对本发明实施例进行仿真做进一步说明。如图1所示,光伏组件并联系统由3个光伏组件和3个阻逆二极管组成。取并联MPP曲线函数
Figure BDA0002703713260000151
Iref2=2×Iref1,Iref3=3×Iref1,其中Isc为最大光照条件下单个光伏组件的短路电流。取光照条件1和2为不同的2个典型静态阴影条件。从图7至10可看出,此两种情况下光伏组件并联系统输出I-V曲线均呈现出多单调区域,其输出P-V曲线也均呈现出多峰值。
进一步,如图7所示,光伏组件并联系统在光照条件1下的输出I-V曲线与并联MPP曲线族Irefj有3个交点;再对照图8,可发现光伏组件并联系统输出I-V曲线与并联MPP曲线Iref3的交点为最佳交点,与全局最大功率点MPPg在功率上非常接近。如图9所示,光伏组件并联系统在光照条件2下的输出I-V曲线与并联MPP曲线族Irefj也有3个交点;再对照图10,可发现光伏组件并联系统输出I-V曲线与并联MPP曲线Iref2的交点为最佳交点,与全局最大功率点MPPg在功率上非常接近。
同时,选取一现有方案进行对比,即提供理想Isc-Voc曲线(Vin=Voc时该曲线对应的电流值为3×Isc)作为对比曲线。从图7至10可知,本发明实施例的最佳交点比光伏组件并联系统输出I-V曲线与理想Isc-Voc曲线的交点更接近全局最大功率点MPPg。这两种情况均说明与光伏组件并联系统输出I-V曲线与理想Isc-Voc曲线的交点相比,从最佳交点出发寻找全局最大功率点MPPg将更快捷而准确。
图11是光伏组件并联系统在光照条件1至2含切换时刻的输出电压vin、输出电流iin、交点Crossj、最佳交点和全局最大功率点MPPg的动态示意图。图12是光伏组件并联系统在光照条件1至2含切换时刻的输出功率pin、交点Crossj、最佳交点和全局最大功率点MPPg的动态示意图。图11和12均展示了静态阴影和动态阴影条件下“先交点、再最佳交点、最后MPPg”的寻优过程或跟踪过程,说明本发明实施例具有全局最大功率点跟踪能力。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围的不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (9)

1.一种适合光伏组件并联系统的MPPT控制器,其特征在于:所述适合光伏组件并联系统的MPPT控制器包括电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器和子控制器1至子控制器3;
所述电压/电流检测和处理模块检测光伏组件并联系统的输出电压vin和输出电流iin,并将它们转换成数字信号Vin(k)和Iin(k),k为整数;
所述并联MPP曲线族寄存器内部存储有n个光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin),n为光伏组件并联系统中光伏组件的个数,Vin为函数输入变量,Iref1至Irefn为函数输出变量,fref()为包含不同光照条件下单个光伏组件最大功率点MPP信息的函数,所述n个光伏组件并联MPP曲线函数与n条光伏组件并联MPP曲线对应,所述n条光伏组件并联MPP曲线与光伏组件并联系统输出I-V曲线存在n个交点,分别为Cross1至Crossn;
所述交点寄存器内部存储有n个交点Cross1至Crossn的电压值Vin_Cross1至Vin_Crossn和电流值Iin_Cross1至Iin_Crossn;
所述MPPg寄存器内部存储有全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg,还存储有与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作状态;
所述电压/电流检测和处理模块、并联MPP曲线族寄存器、交点寄存器、MPPg寄存器、子控制器1至子控制器3之间存在信息交互;
所述子控制器1至子控制器3按顺序分时工作输出控制信号vdriving,周而复始;子控制器1采用光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin)产生电流参考值,通过调节DC/DC变换器中电子开关的工作状态找到交点Cross1至Crossn,即使得光伏组件并联系统运行于交点Cross1至Crossn,当光伏组件并联系统运行于交点Crossj时,Vin(k)=Vin_Crossj,Iin(k)=Iin_Crossj,j的取值范围是1至n;子控制器2在交点Cross1至Crossn的基础上通过调节DC/DC变换器中电子开关的工作状态找到全局最大功率点MPPg,即使得光伏组件并联系统运行于全局最大功率点MPPg,当光伏组件并联系统运行于全局最大功率点MPPg时,Vin(k)=Vin_MPPg,Iin(k)=Iin_MPPg;子控制器3监测全局最大功率点MPPg是否发生变化,若全局最大功率点MPPg发生变化,即Vin(k)≠Vin_MPPg或者Iin(k)≠Iin_MPPg或者Vin(k)×Iin(k)≠Vin_MPPg×Iin_MPPg,则再次调用子控制器1至子控制器3找到全局最大功率点MPPg,否则,维持DC/DC变换器中电子开关的工作状态,即保持光伏组件并联系统运行于全局最大功率点MPPg。
2.如权利要求1所述的适合光伏组件并联系统的MPPT控制器,其特征在于:所述fref()为不同光照条件下单个光伏组件最大功率点MPP的拟合曲线函数,或者是叠加电压或电流边界条件的不同光照条件下单个光伏组件最大功率点MPP的拟合曲线函数。
3.如权利要求1或2所述的适合光伏组件并联系统的MPPT控制器,其特征在于:所述电压/电流检测和处理模块包括电压检测电路、电流检测电路、模数转换电路和平均值计算器或数字滤波器,所述电压检测电路检测光伏组件并联系统的输出电压vin,所述电流检测电路检测光伏组件并联系统的输出电流iin,所述模数转换电路分别将电压检测电路和电流检测电路的模拟检测结果转换成原始的数字信号vin(k)和iin(k),所述平均值计算器采用平均算法得到原始数字信号vin(k)和iin(k)的平均值,即数字信号Vin(k)和Iin(k),所述数字滤波器将原始数字信号vin(k)和iin(k)滤波处理成数字信号Vin(k)和Iin(k)。
4.如权利要求3所述的适合光伏组件并联系统的MPPT控制器,其特征在于:所述平均算法采用算式
Figure FDA0002703713250000031
和/>
Figure FDA0002703713250000032
或者
Figure FDA0002703713250000033
和/>
Figure FDA0002703713250000034
m为正整数;所述数字滤波器是低通数字滤波器或带通数字滤波器。
5.如权利要求1或2所述的适合光伏组件并联系统的MPPT控制器,其特征在于:所述子控制器1包括函数运算器、交点判断器、参考电压发生器1和滞回比较器1,
所述函数运算器从并联MPP曲线族寄存器处提取光伏组件并联MPP曲线函数Irefj=j×fref(Vin),令函数输入变量Vin等于数字信号Vin(k),求出函数输出变量Irefj,令电流参考值Irefj(k)等于函数输出变量Irefj,j的取值范围是1至n;
所述交点判断器比较电流参考值Irefj(k)和数字信号Iin(k)的大小,若数字信号Iin(k)和电流参考值Irefj(k)的差值ΔI的绝对值小于允许误差,则判断“找到了交点Crossj”,并将对应的Vin(k)和Iin(k)作为交点Crossj的电压值Vin_Crossj和电流值Iin_Crossj存入交点寄存器中,同时令参考电压发生器1保持电压参考值vref1不变,使得光伏组件并联系统运行于交点Crossj;否则,判断“未找到交点Crossj”,令参考电压发生器1根据数字信号Iin(k)和电流参考值Irefj(k)的差值ΔI调节电压参考值vref1,若差值ΔI>0,则增大电压参考值vref1,否则,减小电压参考值vref1;
所述滞回比较器1比较电压参考值vref1和数字信号Vin(k)的大小,若Vin(k)>vref1+Δvref1,则令控制信号vdriving为高电平,若Vin(k)<vref1-Δvref1,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,Δvref1为滞回比较器1的滞环宽度。
6.如权利要求5所述的适合光伏组件并联系统的MPPT控制器,其特征在于:当所述子控制器1工作时,函数运算器从所述并联MPP曲线族寄存器处按顺序或逆序依次提取光伏组件并联MPP曲线函数Iref1=fref(Vin)至Irefn=n×fref(Vin)。
7.如权利要求1或2所述的适合光伏组件并联系统的MPPT控制器,其特征在于:所述子控制器2包括最佳交点定位器、MPPg判断器、频率计、参考电压发生器2和滞回比较器2,
所述最佳交点定位器和MPPg判断器按顺序分时工作,最佳交点定位器从交点Cross1至Crossn中找出与MAX(Vin_Cross1×Iin_Cross1,…,Vin_Crossn×Iin_Crossn)对应的交点,即最佳交点,MAX()为最大值函数,MPPg判断器在最佳交点的基础上找到全局最大功率点MPPg;
当所述最佳交点定位器工作时,最佳交点定位器从交点寄存器处提取交点Cross1至Crossn的电压值Vin_Cross1至Vin_Crossn和电流值Iin_Cross1至Iin_Crossn,通过计算找出最佳交点,同时令参考电压发生器2输出的电压参考值vref2等于最佳交点的电压值,滞回比较器2比较电压参考值vref2和数字信号Vin(k)的大小,若Vin(k)>vref2+Δvref2,则令控制信号vdriving为高电平,若Vin(k)<vref2-Δvref2,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,使得光伏组件并联系统运行于最佳交点,Δvref2为滞回比较器2的滞环宽度;
当所述MPPg判断器工作时,MPPg判断器采用扰动观察法或电导增量法对是否找到全局最大功率点MPPg做出判断,若判断为“找到了全局最大功率点MPPg”,则将对应的Vin(k)和Iin(k)作为全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg存入MPPg寄存器中,同时调用频率计计算出与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作频率f_MPPg和占空比D_MPPg,并将工作频率f_MPPg和占空比D_MPPg也一起存入MPPg寄存器中,同时还令参考电压发生器2保持电压参考值vref2不变,使得光伏组件并联系统运行于全局最大功率点MPPg;若判断为“未找到全局最大功率点MPPg”,则令参考电压发生器2采用扰动观察法或电导增量法生成电压参考值vref2,滞回比较器2比较电压参考值vref2和数字信号Vin(k)的大小,若Vin(k)>vref2+Δvref2,则令控制信号vdriving为高电平,若Vin(k)<vref2-Δvref2,则令控制信号vdriving为低电平,否则,令控制信号vdriving保持不变,Δvref2为滞回比较器2的滞环宽度。
8.如权利要求1或2所述的适合光伏组件并联系统的MPPT控制器,其特征在于:所述子控制器3包括MPPg变化判断器,所述MPPg变化判断器从MPPg寄存器处提取全局最大功率点MPPg的电压值Vin_MPPg和电流值Iin_MPPg,比较数字信号Vin(k)和Vin_MPPg的大小,或者比较数字信号Iin(k)和Iin_MPPg的大小,又或者比较Vin(k)×Iin(k)和Vin_MPPg×Iin_MPPg的大小,若Vin(k)和Vin_MPPg的差值绝对值大于允许误差,或者Iin(k)和Iin_MPPg的差值绝对值大于允许误差,又或者Vin(k)×Iin(k)和Vin_MPPg×Iin_MPPg的差值绝对值大于允许误差时,则判断“全局最大功率点MPPg发生变化”,否则,判断“全局最大功率点MPPg未发生变化”。
9.如权利要求8所述的适合光伏组件并联系统的MPPT控制器,其特征在于:所述MPPg寄存器存储的与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作状态包括开关频率f_MPPg和占空比D_MPPg,所述子控制器3还包括PWM调制器,所述PWM调制器从MPPg寄存器处提取与全局最大功率点MPPg对应的DC/DC变换器中电子开关的工作频率f_MPPg和占空比D_MPPg,并根据f_MPPg和D_MPPg的信息输出控制信号vdriving,保持光伏组件并联系统运行于全局最大功率点MPPg。
CN202011031125.2A 2020-09-27 2020-09-27 适合光伏组件并联系统的mppt控制器 Active CN112104323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011031125.2A CN112104323B (zh) 2020-09-27 2020-09-27 适合光伏组件并联系统的mppt控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011031125.2A CN112104323B (zh) 2020-09-27 2020-09-27 适合光伏组件并联系统的mppt控制器

Publications (2)

Publication Number Publication Date
CN112104323A CN112104323A (zh) 2020-12-18
CN112104323B true CN112104323B (zh) 2023-05-23

Family

ID=73755689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011031125.2A Active CN112104323B (zh) 2020-09-27 2020-09-27 适合光伏组件并联系统的mppt控制器

Country Status (1)

Country Link
CN (1) CN112104323B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113007883B (zh) * 2021-03-02 2022-04-19 珠海拓芯科技有限公司 一种抗干扰装置、电子设备以及空调

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774606A (zh) * 2016-11-28 2017-05-31 国家电网公司 一种光照不均匀下的全局mppt方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578420C (zh) * 2008-02-28 2010-01-06 上海交通大学 适应天气状况的变电压光伏系统最大功率跟踪控制方法
CN103488236B (zh) * 2013-06-20 2015-04-15 华北水利水电大学 一种风光水互补发电系统的优化调度方法
WO2015023821A1 (en) * 2013-08-14 2015-02-19 Enphase Energy, Inc. Method and apparatus for monitoring maximum power point tracking
CN103516307B (zh) * 2013-08-28 2015-11-25 浙江工业大学 适用于光伏阵列的能馈式mppt接口电路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774606A (zh) * 2016-11-28 2017-05-31 国家电网公司 一种光照不均匀下的全局mppt方法与装置

Also Published As

Publication number Publication date
CN112104323A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN112379720B (zh) 用于光伏发电系统的光伏阵列最大功率点跟踪控制器
Ahmed et al. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions
Shimizu et al. A novel high-performance utility-interactive photovoltaic inverter system
Liu et al. Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter
KR101727741B1 (ko) 3 레벨 부스트 컨버터가 구비된 고효율 태양광 인버터 시스템
CN112187168B (zh) 适合光伏组件串联系统的mppt控制器
Hossain et al. Design and implementation of MPPT controlled grid connected photovoltaic system
US10554050B2 (en) Method and apparatus for controlling solar power systems
KR101550368B1 (ko) 태양광 발전 시스템 및 태양전지 어레이의 연결을 제어하는 방법
WO2014039631A1 (en) Maximum power-point tracking method with dynamic variable step size for solar photovoltaics
CN109270982A (zh) 一种太阳能光伏最大功率跟踪控制方法
Li et al. A maximum power point tracking control strategy with variable weather parameters for photovoltaic systems with DC bus
CN109831107B (zh) 一种功率变换装置以及控制功率变换装置输出阻抗的方法
CN112104323B (zh) 适合光伏组件并联系统的mppt控制器
BAŞOĞLU et al. An improved incremental conductance based MPPT approach for PV modules
Al-Smadi et al. Image-based differential power processing for photovoltaic microinverter
Shao et al. A multi-stage MPPT algorithm for PV systems based on golden section search method
Agamy et al. A high efficiency DC-DC converter topology suitable for distributed large commercial and utility scale PV systems
Septya et al. Design and implementation soft-switching MPPT SEPIC converter using P&O algorithm
Duong et al. Influence of elemental parameter in the boost and the buck converter
US10141828B2 (en) Maximum power point tracking method and system thereof
KR20190036914A (ko) Dc-dc 전압 레귤레이터를 이용한 태양광전원의 효율향상 장치
Haghnazari et al. A novel voltage measurement technique for modular multilevel converter capacitors
Reddy et al. The quantum‐mode regulated power point tracking in a photovoltaic array for application under the quantised converter duty ratio
KR102223450B1 (ko) 태양광 발전장치의 미스매치시 최적 제어방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230504

Address after: Unit 01, Floor 1, No. 179, Suhong West Road, Suzhou Industrial Park, Suzhou Pilot Free Trade Zone, Jiangsu Province, 215000

Applicant after: Shenggao Energy Technology (Jiangsu) Co.,Ltd.

Address before: No. 9 Santong Road, Houzhou Street, Taijiang District, Fuzhou City, Fujian Province, 350000. Zhongting Street Renovation. 143 Shopping Mall, 3rd Floor, Jiahuiyuan Link Section

Applicant before: Fuzhou Zhiqing Intellectual Property Service Co.,Ltd.

Effective date of registration: 20230504

Address after: No. 9 Santong Road, Houzhou Street, Taijiang District, Fuzhou City, Fujian Province, 350000. Zhongting Street Renovation. 143 Shopping Mall, 3rd Floor, Jiahuiyuan Link Section

Applicant after: Fuzhou Zhiqing Intellectual Property Service Co.,Ltd.

Address before: 312030 no.958, Yuezhou Avenue, Keqiao District, Shaoxing City, Zhejiang Province

Applicant before: ZHIJIANG COLLEGE OF ZHEJIANG UNIVERSITY OF TECHNOLOGY

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant