CN112100812B - 一种实现超导纳米线单光子探测器宽带光吸收的方法 - Google Patents

一种实现超导纳米线单光子探测器宽带光吸收的方法 Download PDF

Info

Publication number
CN112100812B
CN112100812B CN202010813477.7A CN202010813477A CN112100812B CN 112100812 B CN112100812 B CN 112100812B CN 202010813477 A CN202010813477 A CN 202010813477A CN 112100812 B CN112100812 B CN 112100812B
Authority
CN
China
Prior art keywords
layer
half cavity
index
medium
lower half
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010813477.7A
Other languages
English (en)
Other versions
CN112100812A (zh
Inventor
赵雨辰
赵博洋
张金生
刘江凡
宋忠国
席晓莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202010813477.7A priority Critical patent/CN112100812B/zh
Publication of CN112100812A publication Critical patent/CN112100812A/zh
Application granted granted Critical
Publication of CN112100812B publication Critical patent/CN112100812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/83Element shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种实现超导纳米线单光子探测器宽带光吸收的方法,具体为:首先,遍历单光子探测器上半腔的厚度参数,在对应厚度下,得到上半腔每一层介质的输入阻抗;将上半腔最顶层的输入阻抗与自由空间阻抗值之差的绝对值作为上半腔的阻抗匹配指标,选取该指标最小的若干个结果作为候选;遍历下半腔的厚度参数,在对应厚度下,得到下半腔每一层介质的输入阻抗;将下半腔最顶层的输入阻抗的虚部与jX之差的绝对值作为下半腔的阻抗匹配指标,选取这一指标最小的一个结果作为最优参数;最后计算电长度指标和品质因数指标。本方法加入了用于衡量谐振波长处带宽的两个额外指标,即电长度指标和品质因数指标,即可实现基于点匹配方法的宽带光吸收设计。

Description

一种实现超导纳米线单光子探测器宽带光吸收的方法
技术领域
本发明属于单光子探测器技术领域,具体涉及一种实现超导纳米线单光子探测器宽带光吸收的方法。
背景技术
作为光量子信息系统的重要器件,单光子探测器的研究具有十分重要的理论意义和实际价值。相比于传统的半导体单光子探测器,超导纳米线单光子探测器因其探测效率高、暗计数低、恢复时间短等诸多优点,从2001年提出以来,就获得了研究人员的广泛关注。
由于对入射光的吸收效率直接决定了超导纳米线单光子探测器的探测效率,再加上在许多情况对探测器的响应带宽都有一定的要求,因此,需要对超导纳米线单光子探测器的宽带光吸收设计方法进行深入研究。总的来说,现有的设计方法可以分为点匹配遍历搜寻方法和智能优化方法两种。前者通常从基本的阻抗匹配原理入手,通过遍历可设计的器件结构参数以实现在某些期望波长处器件表面输入阻抗与自由空间阻抗的完全匹配。后者通常采用成熟的智能优化算法,比如粒子群算法、遗传算法等,在预设的器件结构参数范围内搜索全局最优解。点匹配遍历搜寻方法的优点在于物理原理清晰,而且能够为设计人员提供整个预设的搜索范围内,器件结构变化对于光吸收特性影响的详细数据,便于研究人员总结其中的规律。但其缺点也较为明显,即遍历过程计算量较大,需要研究人员对实际物理过程具有较为深刻的理解,从而能在预设参数阶段就避免选择过于复杂的器件结构和过大的遍历搜寻范围。智能优化方法恰恰相反,由于不再采用遍历的搜索方法,对于器件结构的复杂性和参数的范围都具有较高的适应性。但其搜索过程中的诸多随机性使得研究人员很难直观地掌握器件结构对于光吸收特性影响的规律,反而不利于对于实际问题的深入理解。不仅如此,如果缺乏对于实际问题的足够理解,研究人员就很难为智能优化方法开发更为合适的目标函数,从而容易形成一定程度上的恶性循环。因此,需要首先以点匹配遍历搜寻方法作为出发点,通过对物理过程的深入理解,来寻找能够更好地服务于宽带光吸收这一设计目标的新方法。
传统点匹配方法的基本原理是在特定波长点处实现良好的阻抗匹配,在这一过程中缺乏衡量谐振波长处带宽的指标,这种单一的评价标准往往会造成单个波长处阻抗匹配很好,吸收率很高,但稍微偏离这一波长,匹配和吸收急剧恶化的窄带现象。因此,为了实现宽带吸收的设计目标,就需要开发一种更完善的点匹配方法来解决上述这些问题。
发明内容
本发明的目的是提供一种实现超导纳米线单光子探测器宽带光吸收的方法,解决了现有超导纳米线单光子探测器光吸收特性的点匹配设计方法无法衡量不同匹配结果在谐振波长处带宽的问题。
本发明所采用的技术方案是,一种实现超导纳米线单光子探测器宽带光吸收的方法,具体实施过程包括以下步骤:
步骤1,将单光子探测器的结构为三部分:上半腔、纳米线层和下半腔;上半腔、下半腔均为多层介质结构,总的介质层数为N;下半腔采用金反射镜作为负载;
步骤2,设单光子探测器期望的谐振波长为λq,将上半腔的多层介质结构从上到下依次递增编号,最顶层记为第1层,最底层记为第N1层,遍历上半腔的厚度参数,在对应厚度下,得到上半腔每一层介质的输入阻抗Zp
步骤3,在期望的谐振波长λq处,将上半腔最顶层的输入阻抗Z1与自由空间阻抗值之差的绝对值作为上半腔的阻抗匹配指标,选取这一指标最小的若干个结果作为候选;每一个结果由上半腔介质层厚度d1,…,dN1和代表下半腔输入阻抗的jX两部分组成;
步骤4,将下半腔的多层介质结构从上到下依次递增编号,最顶层记为第N1+1层,最底层记为第N层,在期望的谐振波长λq处,遍历下半腔的厚度参数,在对应厚度下,得到下半腔每一层介质的输入阻抗Zp′
步骤5,在期望的谐振波长λq处,对于步骤3所得到的最佳的若干个组合中的每一个都遍历下半腔介质层的厚度dN1+1,…,dN,将下半腔最顶层的输入阻抗的虚部与jX之差的绝对值作为下半腔的阻抗匹配指标,选取这一指标最小的一个结果作为每一个d1,…,dN1和jX组合所对应的最优下半腔结构参数;
步骤6,计算电长度指标,完成设计。
本发明的特点还在于,
步骤2中,第N1层的负载阻抗ZL1的计算公式如式(2)所示;
式(2)中,j是虚数单位,dwire为纳米线层厚度;ηwire为纳米线层的特性阻抗,其计算公式如式(3)所示;kwire为纳米线层的波数,其计算公式如式(4)所示;
其中,g表示NbN纳米线的占空比,纳米线和背景媒质的折射率分别为nNbN和nb
步骤2中,Zp的迭代表达式,如式(1)所示;
式(1)中,Zp+1为第p层介质的负载阻抗,dp为上半腔第p层介质的厚度,np为第p层介质的折射率,,ηp为第p层介质的特性阻抗,ηp=377/np,kp为第p层介质中的波数,kp=2πnpq
步骤4中,Zp′的迭代公式,如式(6)所示;
式(6)中,Zp′+1为第p′层介质的负载阻抗,dp′为下半腔第p′层介质的厚度,np′为第p′层介质的折射率,ηp′为第p′层介质的特性阻抗,ηp′=377/np′,kp′为第p′层介质中的波数,kp′=2πnp′q
将下半腔最底层的介质层记为第N层,其负载为金反射镜,则第N层介质的负载阻抗ZL2的计算公式如式(7)所示;
ZL2=377/nAu (7);
其中,nAu表示金的折射率。
步骤6中,具体为:
在通过上述步骤得到了若干个最佳的上半腔介质层厚度d1,…,dN1中间变量jX和下半腔介质层厚度dN1+1,…,dN的组合后,计算每个组合中所有介质层厚度其相对于谐振波长λq的电长度并进行求和,记为电长度指标s1,如式(9)所示;
如果仅有一个组合具有最小的电长度指标,则选取该组合作为最终的宽带设计结果,完成设计;
如果有若干个组合都具有最小的电长度指标,或者极为接近最小值的电长度指标,则继续计算品质因数指标,具体为:
对于若干个都具有最小的电长度指标,或者极为接近最小值的电长度指标的组合,分别计算每个组合在谐振波长λq处上半腔最底层的介质层的负载阻抗,记为品质因数指标s2,如式(10)所示;
最后,选取这个指标最小时所对应的组合作为最终的宽带设计结果,完成设计。
本发明的有益效果是:
在传统的点匹配设计过程中,加入了用于衡量谐振波长处带宽的两个额外指标,即电长度指标和品质因数指标,在此基础上,即可实现基于点匹配方法的宽带光吸收设计。
附图说明
图1是超导纳米线单光子探测器的结构示意图;
图2是简化后的超导纳米线单光子探测器结构示意图;
图3是实施例1中带宽、电长度指标、品质因数指标的归一化对比图;
图4是实施例1中最优的10个点匹配结果中具有代表性的光吸收曲线对比图;
图5是实施例2中带宽、电长度指标、品质因数指标的归一化对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种实现超导纳米线单光子探测器宽带光吸收的方法,具体实施过程包括以下步骤:
步骤1,将单光子探测器的结构为三部分:上半腔、纳米线层和下半腔,如图1所示;上半腔、下半腔均为多层介质结构,总的介质层数为N;下半腔采用金反射镜作为负载,能够极大地减小透射掉的光波能量,将代表下半腔输入阻抗的中间变量简化为一个纯电抗负载,记为jX,其中j是虚数单位,X代表电抗值的大小;
纳米线层由超导纳米线和背景媒质组成,其厚度为dwire,纳米线和背景媒质的折射率分别为nNbN和nb;超导纳米线的材料为氮化铌(NbN);
步骤2,设单光子探测器期望的谐振波长为λq,将上半腔的多层介质结构从上到下依次递增编号,最顶层记为第1层,最底层记为第N1层,则根据传输线理论,遍历上半腔的厚度参数,在对应厚度下,得到上半腔每一层介质的输入阻抗Zp的迭代表达式,如式(1)所示;
式(1)中,Zp+1为上半腔第p+1层介质的输入阻抗,也就是第p层介质的负载阻抗,dp为上半腔第p层介质的厚度,np为第p层介质的折射率,j是虚数单位,ηp为第p层介质的特性阻抗,ηp=377/np,kp为第p层介质中的波数,kp=2πnpq
第N1层的负载阻抗ZL1的计算公式如式(2)所示;
式(2)中,j是虚数单位,dwire为纳米线层厚度;ηwire为纳米线层的特性阻抗,其计算公式如式(3)所示;kwire为纳米线层的波数,其计算公式如式(4)所示;
其中,g表示NbN纳米线的占空比,纳米线和背景媒质的折射率分别为nNbN和nb
步骤3,在期望的谐振波长λq处,将上半腔最顶层的输入阻抗Z1与自由空间阻抗值(自由空间阻抗值为377Ω)之差的绝对值作为上半腔的阻抗匹配指标,选取这一指标最小的若干个结果作为候选。用数学语言可以将这一过程表达为如式(5)所示;
F1(d1,…,dN1,X)=Min{|Z1q)-377|} (5);
其中,等号左边函数F1表示寻找上半腔多层介质结构中每层的厚度d1,…,dN1和代表下半腔输入阻抗的中间变量jX的最佳组合或最佳的若干个组合,使得等号右边的阻抗匹配条件,即|Z1q)-377|,取得最小值或最小的若干个值;
步骤4,将下半腔的多层介质结构从上到下依次递增编号,最顶层记为第N1+1层,最底层记为第N层,在期望的谐振波长λq处,遍历下半腔的厚度参数,在对应厚度下,同样由传输线理论可以得到下半腔每一层介质的输入阻抗Zp′的迭代公式,如式(6)所示;
式(6)中,Zp′+1为下半腔第p′+1层介质的输入阻抗,也就是第p′层介质的负载阻抗,dp′为下半腔第p′层介质的厚度,np′为第p′层介质的折射率,j是虚数单位,ηp′为第p′层介质的特性阻抗,ηp′=377/np′,kp′为第p′层介质中的波数,kp′=2πnp′q
将下半腔最底层的介质层记为第N层,其负载为金反射镜,则第N层介质的负载阻抗ZL2的计算公式如式(7)所示;
ZL2=377/nAu (7);
其中,nAu表示金的折射率;
步骤5,在期望的谐振波长λq处,对于步骤3所得到的最佳的若干个d1,…,dN1和jX组合中的每一个,都遍历下半腔介质层的厚度dN1+1,…,dN,计算下半腔最顶层的输入阻抗的虚部与jX之差的绝对值作为下半腔的阻抗匹配指标,选取这一指标最小的一个结果作为每一个d1,…,dN1和jX组合所对应的最优下半腔结构参数,用数学语言可以将这一过程表达为如式(8)所示;
F2(dN1+1,…,dN)=Min{|Im[ZN1+1q)]-jX|} (8);
其中,等号左边函数F2表示寻找下半腔多层介质结构中每层的厚度dN1+1,…,dN的最佳结果,使得等号右边的阻抗匹配条件,即|Im[ZN1+1q)]-jX|,取得最小值,Im表示取虚部;
步骤6,计算电长度指标,具体为:
在通过上述步骤得到了若干个最佳的上半腔介质层厚度d1,…,dN1中间变量jX和下半腔介质层厚度dN1+1,…,dN的组合后,计算每个组合中所有介质层厚度其相对于谐振波长λq的电长度并进行求和,记为电长度指标s1,如式(9)所示;
如果仅有一个组合具有最小的电长度指标,则选取该组合作为最终的宽带设计结果,完成设计;
如果有若干个组合都具有最小的电长度指标,或者极为接近最小值的电长度指标,则继续计算品质因数指标,具体为:
对于若干个都具有最小的电长度指标,或者极为接近最小值的电长度指标的组合,分别计算每个组合在谐振波长λq处上半腔最底层的介质层的负载阻抗,也就是步骤2中的ZL1的品质因数,记为品质因数指标s2,如式(10)所示;
最后,选取这个指标最小时所对应的组合作为最终的宽带设计结果,完成设计。
为了验证上述步骤的正确性,这里设计了如下两个算例,目标为实现如图2所示的简化探测器模型在1310nm波长处的宽带设计。该简化模型的上半腔由厚度为d1的Si和厚度为d2的SiO2组成,纳米线层厚度为6nm,背景媒质为SiO2,下半腔由厚度为d3的SiO2和金反射镜组成,入射光由上半腔一侧垂直入射到器件表面上。上述材料的折射率均可在相关文献中直接获得,这里不再一一赘述。
实施例1:
d1,d2和d3的遍历范围分别设为0-200nm,0-450nm和0-3000nm,中间变量X采用变间隔取值,不同区间的间隔ΔX为
再经过以上步骤,即可得到最终的宽带设计结果。
具体来说,图3给出带宽、电长度指标、品质因数指标的归一化对比图,图4给出了最优的10个结果中具有代表性的光吸收曲线对比图。从图3中可以看出,在最优的10个点匹配结果中,第五个结果,记为Top5,具有最小的s1,则可以直接选取该结果作为最终的设计结果,图4中给出的光吸收特性曲线也支撑了这一选择,Top5在1310处具有最宽的吸收带宽。
实施例2:
d3的遍历范围分别设为0-300nm,d1,d2和中间变量X的取值和算例1相同,所得结果,如图5所示,从图5中可以看出,根据指标s1,最优的10个点匹配结果可以分为两组,Top5,9,10为一组,其余为一组。显然,第一组的s1指标要小于第二组的s1指标,所以最终结果应在第一组中选择。此时,由于Top5,9,10三个结果的s1指标极为相近,因此需要进一步对比s2指标。表1中给出了Top1,2,5,9,10的吸收带宽(吸收率大于0.8)数据,可以发现,Top5具有最小的s2指标,故选择该结果作为最终的宽带设计结果。
表1 吸收带宽(吸收率大于0.8)数据

Claims (1)

1.一种实现超导纳米线单光子探测器宽带光吸收的方法,其特征在于,具体实施过程包括以下步骤:
步骤1,将单光子探测器的结构为三部分:上半腔、纳米线层和下半腔;上半腔、下半腔均为多层介质结构,总的介质层数为N;下半腔采用金反射镜作为负载;
步骤2,设单光子探测器期望的谐振波长为λq,将上半腔的多层介质结构从上到下依次递增编号,最顶层记为第1层,最底层记为第N1层,遍历上半腔的厚度参数,在对应厚度下,得到上半腔每一层介质的输入阻抗Zp
步骤2中,第N1层的负载阻抗ZL1的计算公式如式(2)所示;
式(2)中,j是虚数单位,dwire为纳米线层厚度;ηwire为纳米线层的特性阻抗,其计算公式如式(3)所示;kwire为纳米线层的波数,其计算公式如式(4)所示;
其中,g表示NbN纳米线的占空比,纳米线和背景媒质的折射率分别为nNbN和nb
Zp的迭代表达式,如式(1)所示;
式(1)中,Zp+1为第p层介质的负载阻抗,dp为上半腔第p层介质的厚度,np为第p层介质的折射率,ηp为第p层介质的特性阻抗,ηp=377/np,kp为第p层介质中的波数,kp=2πnpq
步骤3,在期望的谐振波长λq处,将上半腔最顶层的输入阻抗Z1与自由空间阻抗值之差的绝对值作为上半腔的阻抗匹配指标,选取这一指标最小的若干个结果作为候选;每一个结果由上半腔介质层厚度d1,…,dN1和代表下半腔输入阻抗的jX两部分组成;
步骤4,将下半腔的多层介质结构从上到下依次递增编号,最顶层记为第N1+1层,最底层记为第N层,在期望的谐振波长λq处,遍历下半腔的厚度参数,在对应厚度下,得到下半腔每一层介质的输入阻抗Zp′
Zp′的迭代公式,如式(6)所示;
式(6)中,Zp′+1为第p′层介质的负载阻抗,dp′为下半腔第p′层介质的厚度,np′为第p′层介质的折射率,ηp′为第p′层介质的特性阻抗,ηp′=377/np′,kp′为第p′层介质中的波数,kp′=2πnp′q
将下半腔最底层的介质层记为第N层,其负载为金反射镜,则第N层介质的负载阻抗ZL2的计算公式如式(7)所示;
ZL2=377/nAu (7);
其中,nAu表示金的折射率;
步骤5,在期望的谐振波长λq处,对于步骤3所得到的最佳的若干个组合中的每一个都遍历下半腔介质层的厚度dN1+1,…,dN,将下半腔最顶层的输入阻抗的虚部与jX之差的绝对值作为下半腔的阻抗匹配指标,选取这一指标最小的一个结果作为每一个d1,…,dN1和jX组合所对应的最优下半腔结构参数;
步骤6,计算电长度指标,完成设计;具体为:
在通过上述步骤得到了若干个最佳的上半腔介质层厚度d1,…,dN1中间变量jX和下半腔介质层厚度dN1+1,…,dN的组合后,计算每个组合中所有介质层厚度其相对于谐振波长λq的电长度并进行求和,记为电长度指标s1,如式(9)所示;
如果仅有一个组合具有最小的电长度指标,则选取该组合作为最终的宽带设计结果,完成设计;
如果有若干个组合都具有最小的电长度指标,或者极为接近最小值的电长度指标,则继续计算品质因数指标,具体为:
对于若干个都具有最小的电长度指标,或者极为接近最小值的电长度指标的组合,分别计算每个组合在谐振波长λq处上半腔最底层的介质层的负载阻抗,记为品质因数指标s2,如式(10)所示;
最后,选取这个指标最小时所对应的组合作为最终的宽带设计结果,完成设计。
CN202010813477.7A 2020-08-13 2020-08-13 一种实现超导纳米线单光子探测器宽带光吸收的方法 Active CN112100812B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010813477.7A CN112100812B (zh) 2020-08-13 2020-08-13 一种实现超导纳米线单光子探测器宽带光吸收的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010813477.7A CN112100812B (zh) 2020-08-13 2020-08-13 一种实现超导纳米线单光子探测器宽带光吸收的方法

Publications (2)

Publication Number Publication Date
CN112100812A CN112100812A (zh) 2020-12-18
CN112100812B true CN112100812B (zh) 2024-01-09

Family

ID=73753531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010813477.7A Active CN112100812B (zh) 2020-08-13 2020-08-13 一种实现超导纳米线单光子探测器宽带光吸收的方法

Country Status (1)

Country Link
CN (1) CN112100812B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362389A (zh) * 2018-02-02 2018-08-03 中国科学院上海微系统与信息技术研究所 提高超导纳米线单光子探测器计数率的方法及系统
CN110793630A (zh) * 2019-11-08 2020-02-14 中国科学院上海微系统与信息技术研究所 具有阻抗匹配传输线的超导纳米线单光子探测系统
CN110931573A (zh) * 2019-10-31 2020-03-27 山东大学 一种无偏振选择的高效率超导纳米线单光子探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10665634B2 (en) * 2016-02-02 2020-05-26 Massachusetts Institute Of Technology Distributed nanowire sensor for single photon imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362389A (zh) * 2018-02-02 2018-08-03 中国科学院上海微系统与信息技术研究所 提高超导纳米线单光子探测器计数率的方法及系统
CN110931573A (zh) * 2019-10-31 2020-03-27 山东大学 一种无偏振选择的高效率超导纳米线单光子探测器及其制备方法
CN110793630A (zh) * 2019-11-08 2020-02-14 中国科学院上海微系统与信息技术研究所 具有阻抗匹配传输线的超导纳米线单光子探测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
空间目标单光子探测光纤接收方式的研究;许中园;孙胜利;陆卫;;科学通报(17);2467-2471 *
超导纳米线单光子探测器件的单光子响应;尤立星;申小芳;杨晓燕;;科学通报(16);2416-2420 *

Also Published As

Publication number Publication date
CN112100812A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Qiu et al. Nanosphere lithography: A versatile approach to develop transparent conductive films for optoelectronic applications
Kennedy et al. Porous broadband antireflection coating by glancing angle deposition
Zhang et al. Machine learning and evolutionary algorithm studies of graphene metamaterials for optimized plasmon-induced transparency
Roberts et al. A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color
CN108227243B (zh) 硅基全介质型电控太赫兹波调控器件及其制备方法
CN111767678A (zh) 基于深度学习神经网络的超材料电磁感应透明器件的结构按需设计方法
CN112100812B (zh) 一种实现超导纳米线单光子探测器宽带光吸收的方法
Zhao et al. Optimal design of light trapping in thin-film solar cells enhanced with graded SiN x and SiO x N y structure
CN109813349B (zh) 一种探测光、电和化学信号的复合光纤器件及制备与应用
Zhang et al. Inverse design of an optical film filter by a recurrent neural adjoint method: an example for a solar simulator
Wang et al. Artificial optoelectronic synapse based on epitaxial Ba0. 6Sr0. 4TiO3 thin films memristor for neuromorphic computing and image recognition
CN102540308A (zh) 一种温度敏感窄带通滤光片
Romashkina et al. Collective lattice and plasmonic resonances in the enhancement of circular dichroism in disk–rod metasurface
Bennet et al. Analysis and fabrication of antireflective coating for photovoltaics based on a photonic-crystal concept and generated by evolutionary optimization
Zhao et al. Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings?
Liang et al. Fabrication and optical performance research of VO 2/SiO 2/VO 2 composite spherical structure films
Yousefi et al. High performance plasmonically enhanced graphene photodetector for near-infrared wavelengths
CN108038505B (zh) 一种基于点阵收缩的产区天气数据融合方法
Bikbaev et al. Nanostructured photosensitive layer for Tamm-plasmon-polariton-based organic solar cells
Liao et al. Intelligent design of the chiral metasurfaces for flexible targets: combining a deep neural network with a policy proximal optimization algorithm
Ding et al. Deep learning based inverse design of metasurface absorber for maximizing solar spectral absorption
CN103049463A (zh) 一种基于粗集理论的地震属性优选方法
Sharma et al. Photonics for AI and AI for photonics: material and characteristics integration
CN114530509B (zh) 具有中红外高光吸收特性的超导纳米线单光子探测器
Ghobadi Strong light-matter interaction in lithography-free perfect absorbers for photoconversion, photodetection, light emission, sensing, and filtering applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant