CN112098798A - 一种基于神经网络的碳化硅mos器件结温在线测量方法 - Google Patents

一种基于神经网络的碳化硅mos器件结温在线测量方法 Download PDF

Info

Publication number
CN112098798A
CN112098798A CN202010985179.6A CN202010985179A CN112098798A CN 112098798 A CN112098798 A CN 112098798A CN 202010985179 A CN202010985179 A CN 202010985179A CN 112098798 A CN112098798 A CN 112098798A
Authority
CN
China
Prior art keywords
neural network
junction temperature
model
network model
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010985179.6A
Other languages
English (en)
Inventor
高成
王长鑫
黄姣英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202010985179.6A priority Critical patent/CN112098798A/zh
Publication of CN112098798A publication Critical patent/CN112098798A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2637Circuits therefor for testing other individual devices
    • G01R31/2639Circuits therefor for testing other individual devices for testing field-effect devices, e.g. of MOS-capacitors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3308Design verification, e.g. functional simulation or model checking using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种基于神经网络的碳化硅MOS结温在线测量方法,具体步骤包括:一,建立器件的热模型;二,通过仿真获得神经网络训练集数据;三,依据获得的训练集数据,建立神经网络模型并进行训练;四,通过实时测量获取器件工作状态下的电参数值;五,在上位机软件中调用神经网络,输入电路状态信息,进行结温预测。本发明的目的是满足结温在线测量需求,将测试电流与工作电流合二为一,直接以工作电流作为测试电流,在器件工作状态下实时在线测量结温,更适用于实际工程应用,测量结果较传统电学法更加准确。采用优化的神经网络模型拟合数据关系,给出工程上容易实现的算法。遗传算法对BP网络的权值和阈值进行优化,提高了模型的准确性及稳定性。

Description

一种基于神经网络的碳化硅MOS器件结温在线测量方法
技术领域
本发明属于电力电子器件测试领域,具体涉及一种碳化硅MOS(metal-oxide-semiconductor,金属氧化物半导体)器件结温的测量方法。
背景技术
据报道,功率变换器系统的故障中约三分之一是功率器件引起的。电力电子系统失效中约55%主要由温度因素诱发。在电力电子设备工作期间,需要对结温进行监测,以便有效评估器件的当前状态,及时对可能引发失效的情况采取有效措施进行处理,避免引起故障和事故。大功率器件在工作过程中,准确测量及控制器件结温,不仅可以监测元器件工作状态、保证使用可靠性,同时可以避免烧毁或爆炸等突发事故,保证整机运行可靠性。
然而,在工作状态下,芯片被封装在器件内部,芯片温度难以直接测量。现有的非接触法测温和物理接触测试法需要暴露芯片表面,测温准确性易受环境和模块的发射率的影响,不适用于实时在线测量。电学法是通过测量器件在工作过程中的电学参数的变化来检测结温的方法。开关式电参数法需要从电路工作状态切换为测试状态,改变了器件的工作模式,影响器件的正常工作状态,也不适用于器件芯片温度的实时在线测量。
非开关式电学法是将测试电流与工作电流合二为一,直接以工作电流作为测试电流,在器件工作状态下实时在线测量器件结温,更适用于实际工程应用。其次由于非开关式电学法测量的实时性,其测量结果相较传统电学法更加准确。非开关式电学法能实时监测器件的工作状态,防止结温过高将器件烧毁的同时也避免了开关切换可能造成的结温误差。
近年来,碳化硅材料在物理特性上的优势,如宽禁带、高热导率、高临界击穿场强和高载流子饱和漂移速度等,使其更适合应用在高温、高频以及大功率器件和抗辐射器件的场合。在同等耐压条件下,碳化硅器件相较硅器件,具有更快的开关速度和更小的导通电阻,从而大幅度降低了功率器件的开关损耗和传导损耗。在功率等级一定时,应用电路集成度提高,多种参数均能大幅减小,例如散热器与滤波元件的体积。由于碳化硅器件可以在更极端的条件下工作,适用于硅器件的一些传统结温测量方法将会失效。因此,需要找到适用于碳化硅器件的结温在线测量方法。
本发明提出一种基于神经网络的碳化硅MOS结温在线测量方法。该方法采用优化的神经网络模型建立器件电参数与结温的对应关系,可应用于器件工作状态下结温的实时测量。
发明内容
1.目的
本发明的目的是为了解决现有技术中存在的上述问题或不足,提供一种基于神经网络的碳化硅MOS结温在线测量方法,满足功率器件结温的在线测量需求。
2.技术方案
本发明的一种基于神经网络的碳化硅MOS结温在线测量方法具体步骤如下:
步骤一,建立器件的热模型。
建立器件的SPICE热模型,将暂态热阻特性通过电路进行仿真计算,也就是将暂态热阻转换成等价的电路进行仿真的模型。
参考SPICE语言的器件热模型网络列表,确定器件模型各电路符号与器件各引脚的对应关系,建立热模型。
步骤二,通过仿真获得神经网络训练集数据。
参考器件手册和器件网络模型列表,在仿真软件中设计仿真电路。仿真器件在不同条件下的工作状态,获得神经网络训练集数据。
结合数据手册,选取栅极驱动电压VGS漏极电流和结温的参数范围,在选定范围内,进行参数直流扫描分析,测定漏极通态电压VDS_ON,得到神经网络的训练集数据。训练集中每组数据都包括栅极驱动电压VGS、漏极电流ID、漏极通态电压VDS_ON、结温Tj四个工作状态下的参数。
步骤三,依据获得的训练集数据,建立神经网络模型并进行训练。
初始化神经网络模型,将遗传算法和BP神经网络相结合,形成优化的神经网络模型,并将其应用到碳化硅MOS器件的结温监测。使用MATLAB软件实现神经网络模型的建立和训练。
步骤四,通过实时测量获取器件工作状态下的电参数值。
根据实际应用需求,确定器件工作条件和工作环境的散热条件。在器件实际工作状态下,实时测量获取电路状态信息,即工作状态下的三个电参数值,即栅极驱动电压VGS、漏极电流ID和漏极通态电压VDS_ON
步骤五,在上位机软件中调用神经网络,通过输入电路状态信息,进行结温预测。
使用LabVIEW和MATLAB联合编程,设计上位机软件,通过MATLAB Script节点实现神经网络代码的调用。
软件实现的功能为:输入实时测得的栅极驱动电压VGS、漏极电流ID和漏极通态电压VDS_ON,调用优化后的神经网络模型进行结温预测,输出结温数值,并进行高温或低温的判断。
其中,步骤三中所述的遗传算法优化BP神经网络算法流程的具体步骤如下:
S1、首先确定遗传算法的适应度函数Fitness,在神经网络模型中,适应度函数为测试样本的误差精度的倒数。
S2、初始化神经网络的拓扑结构,对网络权值wi和阈值bi进行实数编码。
S3、确定群体大小和最大迭代次数。对群体进行交叉,选择和变异操作。达到设定的迭代次数后,解码得到最佳权值wi与阈值bi
S4、将解码所得的最佳权值与阈值应用于BP神经网络,进行网络训练和测试,得到优化的神经网络模型。
3.优点
本发明的一种基于神经网络的碳化硅MOS结温在线测量方法的优点是:
1)将测试电流与工作电流合二为一,直接以工作电流作为测试电流,在器件工作状态下实时在线测量器件结温,更适用于实际工程应用。由于参数测量的实时性,其测量结果相较传统电学法更加准确。同时能实时监测器件的工作状态,防止结温过高将器件烧毁。
2)使用神经网络模型方法进行关系拟合,避免了烦琐的常规建模过程,而且神经网络模型有良好的自适应和自学习能力、较强的抗干扰能力,易于给出工程上容易实现的算法。
3)为了提高模型的准确性及稳定性,又引入遗传算法对BP网络的权值和阈值进行优化,进而避免了应用传统神经网络方法的结果的不稳定性。
附图说明
图1为本发明所涉及碳化硅MOS器件结温在线测量方法的流程图;
图2为本发明的实施例的器件热模型电路符号与引脚示意图;
图3为本发明的实施例的器件spice仿真电路;
图4为本发明的实施例的遗传算法优化BP神经网络方法流程图;
图5为本发明的实施例的器件工作状态仿真;
图6为本发明的实施例的上位机软件前面板交互界面;
图7为本发明的实施例的上位机软件程序框图。
图中符号代号说明如下:
Tj是结温温度;
Tc是壳温温度;
Ta是周围环境温度;
Id(或Ids)是漏极电流;
Vds是漏极电压;
Vg(或Vgs)是栅极电压;
SCT3040KR是碳化硅MOS器件型号。
具体实施方式
下面结合附图及具体实施例,对本发明的技术方案进行进一步详细说明。可以理解的是,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限定。
本发明提出了一种基于神经网络的碳化硅MOS结温在线测量方法,包含具体步骤如下:
步骤一,建立器件的热模型。
建立器件的SPICE热模型,将暂态热阻特性通过电路进行仿真计算,也就是将暂态热阻转换成等价的电路进行仿真的模型。
参考SPICE语言的器件热模型网络列表,确定器件模型各电路符号与器件各引脚的对应关系,建立热模型。
本实施例中选取罗姆半导体(ROHM)公司的碳化硅功率MOSFET器件作为研究对象,型号为SCT3040KR。参考基于ROHM官网提供的SPICE语言的器件热模型网络列表,建立热模型。
图2为器件热模型电路符号与引脚示意图。图中,1端子为漏极,2端子为栅极,3端子为电源源极,4端子为驱动器源极。Tj端子是结温温度、Tc端子是壳温温度、Ta端子是周围环境温度。
步骤二,通过仿真获得神经网络训练集数据。
参考器件手册和器件网络模型列表,在仿真软件中设计仿真电路。仿真器件在不同条件下的工作状态,获得神经网络训练集数据。
本实施例中,根据ROHM官网给定的器件手册和器件网络模型列表,在仿真软件中设计仿真电路如图3。
结合数据手册,选取栅极驱动电压参数范围VGS=16~20V,在结温为25℃至150℃范围内,进行参数直流扫描分析。设定漏极电流ID=5~50A,步长为5,测定通态电压降VDS_ON。得到神经网络的训练集数据。共1720组数据,每组数据都包括栅极驱动电压VGS、漏极电流ID、漏极通态电压VDS_ON、结温Tj四个工作状态下的参数。VGS=16V时的仿真数据如表。
表1 VGS=16V仿真数据
Figure BDA0002688981000000041
Figure BDA0002688981000000051
Figure BDA0002688981000000061
步骤三,依据获得的训练集数据,建立神经网络模型并进行训练。
将遗传算法和BP神经网络相结合,形成优化的神经网络模型,并将其应用到碳化硅MOSFET器件的结温监测。使用MATLAB软件实现神经网络模型的建立和训练。
本实施例中,BP神经网络模型的输入节点数为3,输出节点数为1。遗传算法优化BP神经网络算法流程如图4所示。具体步骤如下:
S1、首先确定遗传算法的适应度函数Fitness,在神经网络模型中,适应度函数为测试样本的误差精度的倒数。
S2、初始化神经网络的拓扑结构,对网络权值wi和阈值bi进行实数编码。
S3、确定群体大小和最大迭代次数,本实施例中初始群体大小为50,迭代100代。对群体进行交叉,选择和变异操作。达到设定的迭代次数后,解码得到最佳权值与阈值。
S4、将解码所得的最佳权值wi与阈值bi应用于BP神经网络,进行网络训练和测试,得到优化的神经网络模型。
步骤四,通过实时测量获取器件工作状态下的电参数值。
根据实际应用需求,确定器件工作条件和工作环境的散热条件。在器件实际工作状态下,实时测量获取工作状态下的三个电参数值,即栅极驱动电压VGS、漏极电流ID和漏极通态电压VDS_ON
本实施例中,在Multisim软件平台下仿真器件实际工作状态。
器件工作状态仿真如图5所示。连接到Tc端子的电阻是R2在外壳和散热器之间的热阻RthCF,R3在散热器和周围环境温度之间的热阻RthFA。另外,RthCF还含有热界面材料(TIM:Thermal Interface Material)的热阻和接触热阻。C1是散热器的热容量,R3和C1构成散热器。
步骤五,在上位机软件中调用神经网络,通过输入电路状态信息,进行结温预测。
本实施例中,在Multisim软件平台下仿真器件实际工作状态,使用LabVIEW实现神经网络的调用和试验系统的搭建。
使用LabVIEW和MATLAB联合编程,设计上位机软件,通过MATLAB Script节点实现神经网络代码的调用。上位机软件前面板与程序框图如图6、7所示,软件实现的功能为:输入实时测得的栅极驱动电压VGS、漏极电流ID和漏极通态电压VDS_ON,调用优化后的神经网络模型进行结温预测,输出结温数值,并进行高温或低温的判断。

Claims (2)

1.一种基于神经网络的碳化硅MOS结温在线测量方法,其特征在于:该方法具体步骤如下:
步骤一,建立器件的热模型。
建立器件的SPICE热模型,将暂态热阻特性通过电路进行仿真计算,也就是将暂态热阻转换成等价的电路进行仿真的模型。
参考SPICE语言的器件热模型网络列表,确定器件模型各电路符号与器件各引脚的对应关系,建立热模型。
步骤二,通过仿真获得神经网络训练集数据。
参考器件手册和器件网络模型列表,在仿真软件中设计仿真电路。仿真器件在不同条件下的工作状态,获得神经网络训练集数据。
结合数据手册,选取栅极驱动电压VGS漏极电流和结温的参数范围,在选定范围内,进行参数直流扫描分析,测定漏极通态电压VDS_ON,得到神经网络的训练集数据。训练集中每组数据都包括栅极驱动电压VGS、漏极电流ID、漏极通态电压VDS_ON、结温Tj四个工作状态下的参数。
步骤三,依据获得的训练集数据,建立神经网络模型并进行训练。
初始化神经网络模型,将遗传算法和BP神经网络相结合,形成优化的神经网络模型,并将其应用到碳化硅MOS器件的结温监测。使用MATLAB软件实现神经网络模型的建立和训练。
步骤四,通过实时测量获取器件工作状态下的电参数值。
根据实际应用需求,确定器件工作条件和工作环境的散热条件。在器件实际工作状态下,实时测量获取电路状态信息,即工作状态下的三个电参数值,即栅极驱动电压VGS、漏极电流ID和漏极通态电压VDS_ON
步骤五,在上位机软件中调用神经网络,通过输入电路状态信息,进行结温预测。
使用LabVIEW和MATLAB联合编程,设计上位机软件,通过MATLAB Script节点实现神经网络代码的调用。
软件实现的功能为:输入实时测得的栅极驱动电压VGS、漏极电流ID和漏极通态电压VDS_ON,调用优化后的神经网络模型进行结温预测,输出结温数值,并进行高温或低温的判断。
2.根据权利要求1所述的一种基于神经网络的碳化硅MOS结温在线测量方法,其特征在于:
步骤三中所述的遗传算法优化BP神经网络算法流程的具体步骤如下:
S1、首先确定遗传算法的适应度函数Fitness,在神经网络模型中,适应度函数为测试样本的误差精度的倒数。
S2、初始化神经网络的拓扑结构,对网络权值wi和阈值bi进行实数编码。
S3、确定群体大小和最大迭代次数。对群体进行交叉,选择和变异操作。达到设定的迭代次数后,解码得到最佳权值wi与阈值bi
S4、将解码所得的最佳权值与阈值应用于BP神经网络,进行网络训练和测试,得到优化的神经网络模型。
CN202010985179.6A 2020-09-18 2020-09-18 一种基于神经网络的碳化硅mos器件结温在线测量方法 Pending CN112098798A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010985179.6A CN112098798A (zh) 2020-09-18 2020-09-18 一种基于神经网络的碳化硅mos器件结温在线测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010985179.6A CN112098798A (zh) 2020-09-18 2020-09-18 一种基于神经网络的碳化硅mos器件结温在线测量方法

Publications (1)

Publication Number Publication Date
CN112098798A true CN112098798A (zh) 2020-12-18

Family

ID=73760296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010985179.6A Pending CN112098798A (zh) 2020-09-18 2020-09-18 一种基于神经网络的碳化硅mos器件结温在线测量方法

Country Status (1)

Country Link
CN (1) CN112098798A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690015A (zh) * 2022-05-31 2022-07-01 江苏东海半导体股份有限公司 Mos器件的测试方法、装置、系统、设备和存储介质
CN114970431A (zh) * 2022-06-29 2022-08-30 上海集成电路装备材料产业创新中心有限公司 Mos管参数估计模型的训练方法和装置
CN115392140A (zh) * 2022-10-28 2022-11-25 北京航空航天大学 功率变换器中功率器件结温预测模型建立方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060792A (en) * 1997-05-20 2000-05-09 International Rectifier Corp. Instantaneous junction temperature detection
CN102253327A (zh) * 2011-06-16 2011-11-23 长沙河野电气科技有限公司 开关电流电路故障诊断方法
DE102014100122B3 (de) * 2014-01-08 2015-04-16 Zf Lenksysteme Gmbh Ermittlung der Sperrschichttemperatur eines Fet durch die Bodydiode
CN109828193A (zh) * 2019-01-28 2019-05-31 山西大学 一种偏流动态不变的结温标定及散热组件性能评估的装置
CN110376500A (zh) * 2019-07-26 2019-10-25 北京工业大学 一种功率mos器件开启过程中瞬态温升在线测量方法
CN110795894A (zh) * 2019-11-25 2020-02-14 上海金脉电子科技有限公司 基于bp神经网络计算igbt模块温度的方法
CN110807516A (zh) * 2019-10-31 2020-02-18 西安工程大学 一种驱动器用igbt模块的结温预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060792A (en) * 1997-05-20 2000-05-09 International Rectifier Corp. Instantaneous junction temperature detection
CN102253327A (zh) * 2011-06-16 2011-11-23 长沙河野电气科技有限公司 开关电流电路故障诊断方法
DE102014100122B3 (de) * 2014-01-08 2015-04-16 Zf Lenksysteme Gmbh Ermittlung der Sperrschichttemperatur eines Fet durch die Bodydiode
CN109828193A (zh) * 2019-01-28 2019-05-31 山西大学 一种偏流动态不变的结温标定及散热组件性能评估的装置
CN110376500A (zh) * 2019-07-26 2019-10-25 北京工业大学 一种功率mos器件开启过程中瞬态温升在线测量方法
CN110807516A (zh) * 2019-10-31 2020-02-18 西安工程大学 一种驱动器用igbt模块的结温预测方法
CN110795894A (zh) * 2019-11-25 2020-02-14 上海金脉电子科技有限公司 基于bp神经网络计算igbt模块温度的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHANG J等: "ANN Model-Based Simulation of the Runoff Variation in Response to Climate Change on the Qinghai-Tibet Plateau, China", 《ADVANCES IN METEOROLOGY》 *
GAO X 等: "Prediction of Cable Junction Temperature in Power Transmission System based on BP Neural Network optimized by Genetic Algorithm", 《2018 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING》 *
严伟: "IGBT 非开关式结温监控方法及系统研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
任磊 等: "电力电子电路中功率晶体管结温在线测量技术研究现状", 《电工技术学报》 *
徐国林: "基于碳化硅MOSFET变温度参数模型的器件建模与仿真验证", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
李浩然等: "水分特征曲线Gardner模型参数的预测模型对比分析", 《节水灌溉》 *
禹健 等: "基于GA-BP算法的IGBT结温预测模型", 《自动化与仪表》 *
金南国等: "基于人工神经网络研究混凝土孔结构与强度关系", 《稀有金属材料与工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690015A (zh) * 2022-05-31 2022-07-01 江苏东海半导体股份有限公司 Mos器件的测试方法、装置、系统、设备和存储介质
CN114970431A (zh) * 2022-06-29 2022-08-30 上海集成电路装备材料产业创新中心有限公司 Mos管参数估计模型的训练方法和装置
CN114970431B (zh) * 2022-06-29 2024-04-02 上海集成电路装备材料产业创新中心有限公司 Mos管参数估计模型的训练方法和装置
CN115392140A (zh) * 2022-10-28 2022-11-25 北京航空航天大学 功率变换器中功率器件结温预测模型建立方法及装置

Similar Documents

Publication Publication Date Title
CN112098798A (zh) 一种基于神经网络的碳化硅mos器件结温在线测量方法
Ni et al. Overview of real-time lifetime prediction and extension for SiC power converters
Ali et al. Lifetime estimation of discrete IGBT devices based on Gaussian process
Chen et al. Real-time temperature estimation for power MOSFETs considering thermal aging effects
Xu et al. Modeling and correlation of two thermal paths in frequency-domain thermal impedance model of power module
CN115015723A (zh) GaN功率器件的状态监测方法、装置、计算机设备和介质
CN111260113A (zh) SiC MOSFET模块全生命周期结温在线预测方法
Yuan et al. Online junction temperature estimation system for IGBT based on BP neural network
CN108233356B (zh) 一种光伏逆变器控制器一致性评估方法及其评估平台
Batunlu et al. Real-time system for monitoring the electro-thermal behaviour of power electronic devices used in boost converters
CN116879702B (zh) SiC MOSFET功率循环退化机理的在线诊断方法、系统、装置
CN107622167B (zh) 一种用于栅控器件的集电极电流软测量方法
Li et al. Sustainable energy saving: A junction temperature numerical calculation method for power insulated gate bipolar transistor module
Alhalabi et al. Modelling of sic power mosfet in matlab, simulink, and ltspice
Tian et al. A thermal network model for thermal analysis in automotive IGBT modules
CN112906334A (zh) 一种基于物理结构的沟槽型mosfet电路模型及其建立方法
Jia et al. Mechanism analysis of bond wire degradation leading to the increase of IGBT collector-emitter voltage
CN113435151B (zh) 一种运行过程中igbt结温的预测系统及方法
Li et al. Junction Temperature Measurement of IGBT in Accelerated Degradation Test
CN103499782A (zh) 垂直双扩散金属氧化物半导体场效应晶体管的测试方法
CN117330951B (zh) 一种mos开关器件的soa测试系统及测试方法
Yao et al. Modelling and analysis on short‐circuit failure for press‐pack IGBT devices used in VSC‐HVDC converter
Singh et al. Reliability forecasting and Accelerated Lifetime Testing in advanced CMOS technologies
Chao et al. Research on Life Prediction of IGBT Devices Based on Elman Neural Network Model
CN115392140B (zh) 功率变换器中功率器件结温预测模型建立方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218

RJ01 Rejection of invention patent application after publication