CN112098221B - 一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法 - Google Patents

一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法 Download PDF

Info

Publication number
CN112098221B
CN112098221B CN202010392636.0A CN202010392636A CN112098221B CN 112098221 B CN112098221 B CN 112098221B CN 202010392636 A CN202010392636 A CN 202010392636A CN 112098221 B CN112098221 B CN 112098221B
Authority
CN
China
Prior art keywords
coal pillar
water
coal
mine
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010392636.0A
Other languages
English (en)
Other versions
CN112098221A (zh
Inventor
张村
刘金保
任赵鹏
陈彦宏
赵毅新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology Beijing CUMTB
Original Assignee
China University of Mining and Technology Beijing CUMTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN202010392636.0A priority Critical patent/CN112098221B/zh
Publication of CN112098221A publication Critical patent/CN112098221A/zh
Application granted granted Critical
Publication of CN112098221B publication Critical patent/CN112098221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • G01N3/567Investigating resistance to wear or abrasion by submitting the specimen to the action of a fluid or of a fluidised material, e.g. cavitation, jet abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种矿井地下水库残留煤柱稳定性的相似模拟装置及实验方法,属于煤矿采空区建设地下水库过程中煤柱稳定性的实验室测试装置及方法。相似模拟装置主要包括加载系统、声发射系统、注水系统、流量采集系统以及应变测试系统。测试方法的主要步骤包括:运用无线应力传感器实测整个采区开采过程中煤柱的采动应力,根据实测应力设计煤柱试样应力路径;根据相似比建立煤矿采空区残留煤柱模型;在煤柱顶部施加现场采动应力至稳定状态;向腔体注水至要求水位,加入示踪剂,判断煤柱是否贯通;根据实验目的设置相应的净水时间、水流冲蚀速度等参数。在实验过程中记录煤柱声发射信号、煤柱变形量等参数,实验结束后CT扫描煤柱,观测内部裂隙发育情况。

Description

一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法
技术领域
本发明涉及一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法,具体是一种利用煤矿采空区建设矿井地下水库过程中残留煤柱稳定性的试验装置及相应的实验方法。
背景技术
根据中国工程院研究,中国西部地区煤炭产量约占全国煤炭产量的80%。然而,中国西部地区生态环境脆弱,水资源严重短缺,仅占全国水资源的3.9%,高强度开采破坏了岩层结构,地表水和地下水渗入采空区,导致地表植被死亡、荒漠化加剧,脆弱的生态环境已经严重制约和影响了该区域经济和社会发展。因此,如何实现煤炭安全高效开采与地下水资源保护相协调,是当前中国西部矿区煤炭开采所面临的重大挑战。针对西部生态脆弱矿区煤炭开采与水资源保护的矛盾,利用煤矿采空区建立地下水库的保水开采理念,不仅可以实现对矿井水的储存与调用,还可以利用采空区冒落的矸石对矿井水进行过滤、沉淀、吸附、离子交换等自净化处理,解决了传统保水开采技术(充填开采、条带开采、限高开采等)存在的效率低、效益差、资源采出率低等问题。但在矿井地下水库建设过程中,工作面残留煤柱受到多次采动应力的影响,残留煤柱处于破断顶板侧向支承压力、上覆岩层压力及矿震冲击(由周边房式采空区大范围陷落或矿内采动厚硬顶板大面积垮落等引起)等动静载叠加的复杂应力环境中。此外,水的侵入也会对残留煤柱有很强的弱化作用,水岩作用一直是岩石力学研究的重点,水的侵入会降低煤岩的力学特性和改变裂纹扩展的形态。
综上可见,应力与水是作用于残留煤柱的两个关键物理场,两者相互影响,产生动静载与水浸耦合作用残留煤柱“损伤—渗流—累积损伤”渐进破坏效应,残留煤柱失稳将会引起垮落带储水空间和承载结构发生变化。但目前针对煤柱采动与水浸作用下的稳定性分析大多以实验室小尺寸煤样单轴加载为主,很难再现矿井地下水库残留煤柱真实情况下的采动水浸环境。因此,本发明针对上述问题建立了一套矿井地下水库残留煤柱模拟装置并给出了相应的模拟方法,对实现煤矿地下水库系统建设与长期安全运行具有重要意义。
发明内容
本发明的目的是要提供一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法。
本发明的目的是这样实现的:具体步骤如下:
a、建设矿井地下水库残留煤柱稳定性相似模拟装置,包含加载系统、声发射系统、注水系统、流量采集系统以及应变测试系统。
b、加载系统采用伺服控制系统进行加载控制,分三个液压千斤顶,应力范围为0-100MPa,用于实现煤柱应力的加载;
c、声发射系统通过固定在煤柱试样的表面的声发射探头监测煤柱裂隙发育情况,声发射探头根据监测要求布置,并从声发射数据接口与声发射采集系统相连;
d、注水系统用来向腔体内注入矿井水以及含示踪剂矿井水,同时可以控制腔体内矿井水压,具体由液压泵通过注入接口向密封腔体内注水;
e、流量采集系统则采用流量计通过放水接口监测密封腔体内矿井水的流速,同时用储水槽来收集试验过后的矿井水,监测水质变化。;
f、应变监测系统用于监测煤柱试样的变形,根据具体监测要求,在煤柱试样模型表面布置相应的应变片,通过应变采集接口与应变采集系统相连;
g、相似模型装置还包括密封胶套、金属垫片、承压框架、密封腔体等装备。构建相似模拟装置后,进行煤柱稳定性相似模拟试验;
h、选择矿井地下水库建设采区,运用无线应力传感器实测整个采区开采过程中残留煤柱的采动应力,并根据实测应力设计煤柱试样应力加载路径;
i、根据相似比建立煤矿采空区残留煤柱模型,即根据残留煤柱的实际宽和高计算相应煤柱模型的宽和高;
j、根据煤柱模型具体尺寸在顶部及上部加设金属垫块,使得煤柱试样位于模拟装置中部;
k、对煤柱及金属垫块黏贴密封胶套,使得煤柱试样左右两个密封腔体仅能通过煤柱试样进行渗流;
l、布置相应的应变片和声发射探头,并利用声发射采集系统和应变采集系统进行应变和裂隙发育实测;
m、根据现场实测应力数据采用伺服控制系统进行煤柱加载直至稳定;
n、应力加载完毕后,向煤柱两侧密封腔体分别进行注水直至注到要求水压或者水位,水样直接选取至矿井水并在其中一测腔体加入示踪剂,用以判断煤柱试样是否贯通;当示踪剂从一侧渗入另一侧时,表明煤柱已经贯通;
o、根据实验目的设置净水时间以及矿井水渗流冲蚀速度,渗流速度则由液压泵调节由流量计监测;
p、在整个实验过程中记录煤柱试样声发射信号、变形量等数据;
q、实验结束后对煤柱试样进行CT扫描,观测内部裂隙发育情况。
附图说明
图1为现场采空区矿井水库示意图;图2是矿井地下水库残留煤柱稳定性的相似模拟装置示意图;图3是相似模拟装置正面示意图;图4是相似模拟装置侧面示意图;图5是现场实测煤柱应力演化规律。图中,1-残留煤柱;2-垮落带破碎岩体;3-无线应力传感器;4-矿井水;5-示踪剂矿井水;6-煤柱试样;7-金属垫块;8-密封胶套;9-声发射探头;10-声发射接口;11-声发射采集系统;12-应变片;13-应变采集接口;14-应变采集系统;15-注水接口;16-液压泵;17-放水接口;18-流量计;19-储水槽;20-液压千斤顶;21-伺服控制系统;22-加载压盘;23-承载框架;24-密封腔体
具体实施方式
下面结合附图对本发明的一个实施作进一步的描述:
a、建设矿井地下水库残留煤柱1稳定性相似模拟装置,包含加载系统、声发射系统、注水系统、流量采集系统以及应变测试系统。
b、加载系统采用伺服控制系统21进行加载控制,分三个液压千斤顶20,应力范围为0-100MPa,用于实现煤柱试样6应力的加载;
c、声发射系统通过固定在煤柱试样6的表面的声发射探头9监测煤柱试样6裂隙发育情况,声发射探头9根据监测要求布置,并从声发射数据接口10与声发射采集系统11相连;
d、注水系统用来向密封腔体24内注入矿井水4以及含示踪剂矿井水5,同时可以控制密封腔体24内矿井水压,具体由液压泵16通过注入接口15向密封腔体24内注水;
e、流量采集系统则采用流量计18通过放水接口17监测密封腔体24内矿井水4的流速,同时用储水槽19来收集试验过后的矿井水4,监测水质变化。;
f、应变监测系统用于监测煤柱试样6的变形,根据具体监测要求,在煤柱试样6模型表面布置相应的应变片12,通过应变采集接口13与应变采集系统14相连;
g、相似模型装置还包括密封胶套8、金属垫快7、承压框架23、密封腔体24等装备。构建相似模拟装置后,进行残留煤柱1稳定性相似模拟试验;
h、选择矿井地下水库建设采区,运用无线应力传感器3实测整个采区开采过程中残留煤柱1的采动应力(图5),并根据实测应力(图5)设计煤柱试样6应力加载路径;
i、根据相似比建立煤矿采空区残留煤柱1模型,即根据残留煤柱1的实际宽和高计算相应煤柱试样6的宽和高;
j、根据煤柱试样6具体尺寸在顶部及上部加设金属垫块7,使得煤柱试样6位于模拟装置中部;
k、对煤柱试样6及金属垫块7黏贴密封胶套8,使得煤柱试样6左右两个密封腔体24仅能通过煤柱试样6进行渗流;
l、布置相应的应变片12和声发射探头9,并利用声发射采集系统11和应变采集系统14进行应变和裂隙发育实测;
m、根据现场实测应力数据(图5)采用伺服控制系统21进行煤柱试样6加载直至稳定;
n、应力加载完毕后,向煤柱试样6两侧密封腔体24分别进行注水直至注到要求水压或者水位,水样直接选取至矿井水4并在其中一测腔体加入示踪剂5,用以判断煤柱试样6是否贯通;当示踪剂5从一侧渗入另一侧时,表明煤柱试样6裂隙已经贯通;
o、根据实验目的设置净水时间以及矿井水4渗流冲蚀速度,渗流速度则由液压泵16调节由流量计18监测;
p、在整个实验过程中记录煤柱试样6声发射信号、变形量等数据;
q、实验结束后对煤柱试样6进行CT扫描,观测内部裂隙发育情况。

Claims (1)

1.一种矿井地下水库残留煤柱稳定性的模拟实验方法,其特征是:
a、建设矿井地下水库残留煤柱稳定性相似模拟装置,包含加载系统、声发射系统、注水系统、流量采集系统以及应变测试系统;
b、加载系统采用伺服控制系统进行加载控制,分三个液压千斤顶,应力范围为0-100MPa,用于实现煤柱应力的加载;
c、声发射系统通过固定在煤柱试样的表面的声发射探头监测煤柱裂隙发育情况,声发射探头根据监测要求布置,并从声发射数据接口与声发射采集系统相连;
d、注水系统用来向腔体内注入矿井水以及含示踪剂矿井水,同时可以控制腔体内矿井水压,具体由液压泵通过注入接口向密封腔体内注水;
e、流量采集系统则采用流量计通过放水接口监测密封腔体内矿井水的流速,同时用储水槽来收集试验过后的矿井水,监测水质变化;
f、应变监测系统用于监测煤柱试样的变形,根据具体监测要求,在煤柱试样模型表面布置相应的应变片,通过应变采集接口与应变采集系统相连;
g、模型装置还包括密封胶套、金属垫片、承压框架、密封腔体装备;构建相似模拟装置后,进行煤柱稳定性相似模拟试验;
h、选择矿井地下水库建设采区,运用无线应力传感器实测整个采区开采过程中残留煤柱的采动应力,并根据实测应力设计煤柱试样应力加载路径;
i、根据相似比建立煤矿采空区残留煤柱模型,即根据残留煤柱的实际宽和高计算相应煤柱模型的宽和高;
j、根据煤柱模型具体尺寸在顶部及上部加设金属垫块,使得煤柱试样位于模拟装置中部;
k、对煤柱及金属垫块黏贴密封胶套,使得煤柱试样左右两个密封腔体仅能通过煤柱试样进行渗流;
l、布置相应的应变片和声发射探头,并利用声发射采集系统和应变采集系统进行应变和裂隙发育实测;
m、根据现场实测应力数据采用伺服控制系统进行煤柱加载直至稳定;
n、应力加载完毕后,向煤柱两侧密封腔体分别进行注水直至注到要求水压或者水位,水样直接选取至矿井水并在其中一测腔体加入示踪剂,用以判断煤柱试样是否贯通;当示踪剂从一侧渗入另一侧时,表明煤柱已经贯通;
o、根据实验目的设置净水时间以及矿井水渗流冲蚀速度,渗流速度则由液压泵调节由流量计监测;
p、在整个实验过程中记录煤柱试样声发射信号、变形量数据;
q、实验结束后对煤柱试样进行CT扫描,观测内部裂隙发育情况。
CN202010392636.0A 2020-05-11 2020-05-11 一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法 Active CN112098221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010392636.0A CN112098221B (zh) 2020-05-11 2020-05-11 一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010392636.0A CN112098221B (zh) 2020-05-11 2020-05-11 一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法

Publications (2)

Publication Number Publication Date
CN112098221A CN112098221A (zh) 2020-12-18
CN112098221B true CN112098221B (zh) 2022-05-17

Family

ID=73750423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010392636.0A Active CN112098221B (zh) 2020-05-11 2020-05-11 一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法

Country Status (1)

Country Link
CN (1) CN112098221B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903462A (zh) * 2021-02-04 2021-06-04 太原理工大学 双轴加载下水平采空区单排群柱承载力的测试装置与方法
CN112903464B (zh) * 2021-02-04 2023-03-31 太原理工大学 扰动影响下采空区单排群柱双轴承载力的测试装置与方法
CN112903454B (zh) * 2021-02-04 2022-11-25 太原理工大学 一种水平采空区多排群柱抗拉能力测试装置与方法
CN115497266B (zh) * 2022-08-11 2024-04-05 神华新街能源有限责任公司 矿区地下水库坝体的安全预警方法、其装置及安全预警系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024347A (ja) * 2003-06-30 2005-01-27 Ibaraki Univ ベントナイト系材料の浸潤体積と膨潤体積の簡易測定器具、その測定方法及びその器具を使用した該ベントナイト系材料の浸潤速度と膨潤率の簡易算出方法
CN101576458A (zh) * 2009-06-08 2009-11-11 中国矿业大学(北京) 矿井突水规律地质力学试验平台
CN104596862A (zh) * 2015-01-30 2015-05-06 辽宁工程技术大学 岩石蠕变-渗流耦合试验系统
CN104655495A (zh) * 2015-02-13 2015-05-27 太原理工大学 一种煤岩高温高压真三轴压裂渗流试验装置与试验方法
CN107576774A (zh) * 2017-10-18 2018-01-12 西安科技大学 单轴压缩下含瓦斯煤岩力学特性模拟实验装置及方法
CN107870144A (zh) * 2017-11-07 2018-04-03 中国矿业大学 一种煤岩体应变‑裂隙‑渗透率的测试装置及方法
CN107907180A (zh) * 2017-12-18 2018-04-13 信阳师范学院 封闭式煤矿地下水库相似模拟试验装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024347A (ja) * 2003-06-30 2005-01-27 Ibaraki Univ ベントナイト系材料の浸潤体積と膨潤体積の簡易測定器具、その測定方法及びその器具を使用した該ベントナイト系材料の浸潤速度と膨潤率の簡易算出方法
CN101576458A (zh) * 2009-06-08 2009-11-11 中国矿业大学(北京) 矿井突水规律地质力学试验平台
CN104596862A (zh) * 2015-01-30 2015-05-06 辽宁工程技术大学 岩石蠕变-渗流耦合试验系统
CN104655495A (zh) * 2015-02-13 2015-05-27 太原理工大学 一种煤岩高温高压真三轴压裂渗流试验装置与试验方法
CN107576774A (zh) * 2017-10-18 2018-01-12 西安科技大学 单轴压缩下含瓦斯煤岩力学特性模拟实验装置及方法
CN107870144A (zh) * 2017-11-07 2018-04-03 中国矿业大学 一种煤岩体应变‑裂隙‑渗透率的测试装置及方法
CN107907180A (zh) * 2017-12-18 2018-04-13 信阳师范学院 封闭式煤矿地下水库相似模拟试验装置及方法

Also Published As

Publication number Publication date
CN112098221A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN112098221B (zh) 一种矿井地下水库煤柱稳定性的相似模拟装置及实验方法
CN108732024B (zh) 模拟不同地应力条件下底板突水的试验系统及试验方法
CN100390357C (zh) 隧道结构、围岩及地下水相互作用的模拟试验台
CN101514926B (zh) 煤岩体地应力连续测试装置及方法
CN107807051A (zh) 模拟三维加载条件下爆破开挖卸荷的试验装置及试验方法
CN106053755B (zh) 一种煤与瓦斯共采三维物理模拟综合实验系统
CN107907180B (zh) 封闭式煤矿地下水库相似模拟试验装置及方法
CN104833775B (zh) 模拟突水突泥地质灾害的三维模型试验装置
CN110514806B (zh) 一种相似模拟试验装置及方法
CN111081110A (zh) 不同埋深、不同构造应力下跨断层隧巷道的力学行为特征模拟测试装置及测试方法
CN115758671B (zh) 围岩巷道加强锚注支护全生命周期管理方法、系统及应用
CN105043891A (zh) 一种用于盾构隧道的泥水劈裂压力测试装置及方法
CN210720389U (zh) 一种隧道开挖过程模拟试验装置
CN106546710A (zh) 测定工程屏障系统自封闭及愈合特性的试验装置
CN207488086U (zh) 模拟三维加载条件下爆破开挖卸荷的试验装置
CN110658332A (zh) 一种混凝土衬砌预压力测定试验装置及其试验方法
CN206158717U (zh) 煤层气井水力压裂过程地应力变化模拟装置
Wang et al. Experimental study on slurry-induced fracturing during shield tunneling
CN103940967A (zh) 可加载地应力、孔隙水压力的注浆模型试验装置及其方法
CN106840996B (zh) 一种受采动影响煤体渗透率测定装置及其使用方法
CN112459840A (zh) 基于劣化特征隧道富水及枯水交替突涌试验装置与方法
CN111680896A (zh) 一种煤矿地下水库安全距离确定方法
CN107917841A (zh) 一种模拟高应力区地下工程开挖岩爆试验装置及方法
CN203881739U (zh) 一种可加载地应力、孔隙水压力的注浆模型试验装置
CN110528602A (zh) 地下连续墙不同地下水位工况下土的侧压力试验模拟装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant