CN112088301A - 用于食物加工设备或食物储存设备的营养分析模块 - Google Patents

用于食物加工设备或食物储存设备的营养分析模块 Download PDF

Info

Publication number
CN112088301A
CN112088301A CN201980030759.5A CN201980030759A CN112088301A CN 112088301 A CN112088301 A CN 112088301A CN 201980030759 A CN201980030759 A CN 201980030759A CN 112088301 A CN112088301 A CN 112088301A
Authority
CN
China
Prior art keywords
detector
electromagnetic radiation
food
radiation
food product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980030759.5A
Other languages
English (en)
Inventor
D·J·迈尔
R·莱特纳
J·普尔科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fansongni Holdings Ltd
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of CN112088301A publication Critical patent/CN112088301A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N1/00Machines or apparatus for extracting juice
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3137Determining multicomponents by multiwavelength light with selection of wavelengths after the sample

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种食物加工设备或食物储存设备(70),包括:用于容纳待加工或储存的食品(42)的室(72);和营养/原料分析系统(30),包括:电磁辐射源(32);辐射引导件(34),用于基于全内反射(衰减全反射,ATR)引导电磁辐射,其中辐射引导件包括耦合到电磁辐射源(32)的输入端(36)、输出端(38)和位于输入端和输出端之间的用于放置成抵靠待分析食品的感测表面(40),其中感测表面(40)用于与食品(42)接触;检测器(44),用于检测在辐射引导件的输出端处的被引导的电磁辐射;以及用于对到达检测器的被引导的电磁辐射进行波长滤波的滤波器装置(46),其中该滤波器装置包括多个光学带通滤波器(46a,46b),并且该多个滤波器可选择性地移动到检测器(44)的路径中,或者对于每个光学带通滤波器具有相应的检测器(44a,44b)。

Description

用于食物加工设备或食物储存设备的营养分析模块
技术领域
本发明涉及正在被储存或加工的食物的营养分析。
背景技术
EP2846160A1公开了一种啤酒发酵方法,包括以下步骤:将麦汁和酵母插入(31)容器(2)中以启动发酵过程,麦汁和酵母形成容器内容物(3);用在线测量设备(100)测量(32)代表容器内容物(3)的提取水平(E)的第一提取值(A);根据第一提取值(A)自动控制(35)混合设备(6,7),以从容器(2)中收回容器内容物(3)并将其重新注入容器(2)中,以实现容器内容物(3)的混合。
US20130275052A1公开了测试液体(尤其是饮料)中的二氧化碳含量。液体的三次吸收测量分别在4200和4300纳米之间的第一波长范围内的波长上进行,以测量具有衰减的总反射比的第一吸收值;在3950和4050纳米之间的第二波长范围内的第二波长上进行并测量具有衰减的总反射比的第二吸收值;以及在3300和3900纳米之间的第三波长范围内的第三波长上进行,以测量具有衰减的总反射比的第三吸收值。预定义的模型函数用于基于第一、第二和第三吸收值确定二氧化碳含量。模型函数应用于吸收值,评估结果作为待测试液体的二氧化碳含量保持可获得。
US2015276588A1公开了一种流体分析仪,其包括光源和光学检测器,该光学检测器限定了通过流体流动池的询问区域的光束路径。流量控制设备引导分析物和参考流体通过通道和询问区域,并响应于控制信号操纵流体流动,以跨询问区域地移动将分析物和参考流体分开的流体边界。控制器产生控制信号,以(1)使流体边界相应地被跨询问区域移动,(2)在询问区域包含比参考流体更多的分析物流体的第一间隔和在询问区域包含比分析物流体更多的参考流体的第二间隔对来自光学检测器的输出信号进行采样,以及(3)从输出信号的样本中确定指示分析物流体的光学测量特征的测量值。
JP H0856565A公开了通过在其浓度在微生物发酵过程中变化的成分的特定红外吸收频率处测量发酵液的红外吸收等精确控制发酵状态。构成:测量在成分(糖、酒精等)的特定红外吸收频率处的发酵液的红外吸收或红外吸收变化,该成分的浓度在微生物发酵的过程中变化。红外衰减全反射光谱(IR-ATR)能够容易地将水的吸收与待测材料的吸收分离,并且在不受水影响的情况下定性地测量该材料的量。
JP H07239300A公开了仅通过利用红外衰减全反射方法(红外ATR方法)对水溶液进行测量来同时计算溶解在该水溶液中的多个物质的浓度,对该水溶液的测量是通过利用红外ATR方法初步计算在任意波数中的每个成分处的吸收率。组成:物质特有的吸收波数可通过进行红外吸光分析的吸收光谱分析计算。900-1200cm<-1>的波数区域是糖、酒精或有机酸共有的吸收波,并且不同于作为物质的指纹区的水的吸收波数。通过使用红外ATR方法,水的吸收波数和溶解物质的吸收波数的分离变得容易,并且提取指纹区的吸收成为可能,并且物质的定量确定成为可能。因此,测量溶液中物质的主要公式以及特定波数中吸收度与浓度之间的关系被初步计算以计算波数的吸收率,并且求解多个联立方程来计算溶解在水溶液中的多个物质的浓度。
DE10352924A1公开了一种用于对液体中的物质进行定性和/或定量分析的方法和装置,特别是在过程流体中和/或在酒精和非酒精饮料中的物质,所述过程流体和/或酒精和非酒精饮料位于敞口容器中或封闭或密封的容器或容器中,在所述液体上施加大于、等于或小于大气压力的压力,其中所述容器或多个容器包括至少一个容器壁、顶部或底部区域和/或可被刺穿的封闭物,使用集成在红外光谱仪流动池中的ATR晶体。使用该测量设备,容器中存在的具有增加的内部压力的液体也被在实际情况下分析。此外,该发明涉及流通池。
基于近红外(NIR)和红外(IR)光(包括或不包括边界波段)的不同营养测量技术在实验室和工业应用中广泛使用。
这些技术所需部件的小型化和成本降低使其应用在消费者应用范围内。在其他应用中,确定某些食物原料的类型或组成尤其重要,例如不同的宏量营养物(碳水化合物、脂肪、蛋白质、纤维、水)和微量营养物(维生素、矿物质)的量。
通过新的数学材料模型和通过使用基于云的计算服务,解决了微型IR和NIR光谱技术在光谱分辨率方面的限制(由于尺寸和成本原因)。
因此,市场上可买到的NIR光谱设备能够以期望的准确性检测样品的不同营养成分。这些设备通常使用手持设备,用户将该手持设备瞄准待分析的食品样本。设备发出红外光信号,并且设备内部的检测器接收反射的红外光谱。光谱数据以无线方式(例如通过蓝牙)发送至移动设备,或者通常通过互联网上传至服务器。移动设备通过互联网向服务器系统发送光谱数据,服务器系统对光谱进行分析。分析结果信息被发送回移动设备,移动设备向用户显示结果。
用户随后被告知所扫描的食物中含有何种营养成分。
这种安排适用于固体食品样品,但它需要特殊调整才能适用于液体食物,如混合或榨汁的水果或蔬菜。由于该设备是手持的,因此每次对被调查的食物物品进行扫描的方式不同,使得针对同一食物类型所接收的光谱不同,从而限制了准确性。NIR波长区域中的光谱信息包括IR波长区域中基本振动的第二次至第四次谐波。
分析也非常复杂,需要大量数据处理,使得需要在外部服务器上进行分析。NIR光谱中广泛且重叠的特征需要复杂的数学模式识别算法,通常在服务器上执行并通过互联网访问。利用IR光谱中的基本振动的测量方法使得处理和分析更加容易,而无需进行云计算,并且分析结果更加精确和有选择性。数据必须传输至服务器,并且大量数据必须被传回并解释,以便用户能够读取信息。某些食品也无法可靠地被分析,例如混浊的果汁。
因此,需要一种用于正被储存或加工的食物的分析系统,该分析系统能够实现液体食品的准确结果,并且能够以低成本和低复杂性实施,无需要求云计算的复杂算法即可操作。
发明内容
本发明由权利要求书定义。
根据本发明一方面的示例,提供了一种食物加工设备或食物储存设备,包括:
用于容纳待加工或储存的食品的室;和
营养分析系统,包括:
电磁辐射源;
用于基于全内反射引导电磁辐射的辐射引导件,其中该辐射引导件包括耦合到电磁辐射源的输入端、输出端和位于输入端和输出端之间的用于放置成抵靠待分析食品的感测表面,其中该感测表面用于与食品接触;和
检测器,用于检测辐射引导件输出端的被引导的电磁辐射。
该设备实施的分析方法基于当辐射沿辐射引导件行进时与全内反射同时发生的渐逝吸收度。食品的吸收特性影响由这种渐逝吸收度引起的功率损失,而这又与电磁辐射在被检测器检测到之前的衰减相关。因此,该系统使用衰减总反射比(ATR)运行。检测到的被引导的电磁辐射的水平取决于食品的本质。通过这种方式,分析系统可以仅在食品的一侧实施,而无需在一侧产生辐射并在另一侧进行检测。由于避免了分析系统和食品之间的人工相对定位,因此也产生了更加可重复的结果。由于水的高吸收系数,ATR方法避免了对传统IR感测所需的窄腔的需要。
该室可以以静态方式容纳食品,或者它可以是食品仅暂时存在的在线食物加工系统的一部分。
传感器表面放置成与待分析的食品直接接触。通过这种方式,食品直接影响渐逝场,从而使系统对食品成分具有最佳灵敏度。通过使用感测表面,影响渐逝场的食品的体积的平均值被用于测量。这比点状测量区域提供了更稳定的测量。
检测过程实施了波长选择性。例如,该设备优选地还包括用于对到达检测器的被引导的电磁辐射进行波长滤波的滤波器装置。
各种检测器和滤波器组合是可能的,例如两个或更多个具有分立滤波器的检测器、具有(空间)移动滤波器或可调滤波器的一个检测器、或两个或更多个滤波器和空间移动检测器。
检测基于食品在特定波长(或多个波长或波长范围)上的吸收。食品折射率的虚部描述了依赖于波长的吸收。ATR可能要求感测表面材料的折射率的实部在特定范围内。
滤波器装置例如包括至少一个光学带通滤波器。带通滤波器能够选择对特定营养物目标感兴趣的窄频带。
滤波器装置例如包括多个光学带通滤波器,其中多个滤波器可选择性地移动到检测器的路径中,或者每个光学带通滤波器具有相应的检测器。这使得能够分析多个不同的营养物目标。
更一般地,可以使用具有任何合适的特定特性的滤波器,带通滤波器是其中的一个例子。某些应用可能需要更复杂的滤波器特性,或者出于成本原因,这可能比具有多个带通滤波器更可取。
使用离散的滤波器避免了对全光谱仪的需求。这提供了一种成本效益高的实施方式,其可适合集成到消费品中。
值得注意的是,可以在源处(通过发射期望的波长)或在检测器内(通过对期望的波长具有选择性灵敏度)实施波长选择,而不是提供滤波器装置。
该设备可以是用于保持食物温暖或寒冷的储存容器,例如食物容器、罐、瓶或烧瓶,或者可以是食物加工设备,例如混合器、搅拌机或榨汁机。
感测表面可以被集成到室的壁中。通过将该系统集成到室壁中,提供了低成本且紧凑的感测系统。它可用于为膳食目的识别营养信息,或用于识别食物类型,或用于识别食品是新鲜的还是变质的。
然而,感测表面可以位于与食品接触的任何位置,例如沿着食物加工设备的食物加工路径上的任何位置。
电磁辐射源例如包括波长在0.2至20微米范围(例如8至10微米范围)内的红外或近红外辐射源。近红外和红外波段的波长能够用于识别特定营养物,例如葡萄糖或果糖。
辐射引导件可以包括晶体。其可以具有高折射率,以提供电磁辐射的全内反射。其可以例如包括锗、钻石、KRS-5、硒化锌、硅或(分层)材料的组合。
该设备还可包括位于电磁辐射源输出端的准直透镜或反射器,用于控制提供给辐射引导件的辐射的角展度。
这可用于确保提供给辐射引导件的所有辐射经历全内反射,并因此高效地传播至检测器。
聚焦透镜或反射器也可以或替代地用在检测器的输入端。这可用于确保从引导件发出的所有辐射高效地到达检测器。
还可以提供斩波器(例如在检测器的输入端)。许多具有成本效益的检测器无法检测DC信号,因此可以使用斩波器(机械的或电气的)产生AC信号(或者源可以改为电调制/脉冲的)。频率通常在1至10Hz范围内。一些检测器能够检测DC信号,因此仅部分检测器需要斩波器/调制。
可以提供数据通信系统,用于基于检测器输出向远程设备无线传输数据。这使得营养信息能够以最方便的方式提供给用户,例如通过连接到智能手机上存储的应用程序。当然,有线系统也是可能的,或者该设备可能具有所需的输出设备,以用作用户界面,例如屏幕。
该室可用于容纳液体食品。液体食品的分析以前尤其成问题。本发明通过依赖液体(因为其可以流动)和感测表面之间的完全接触提供了可靠且低成本的解决方案,这给出了完全可重复的感测结果。
该设备可包括搅拌机、榨汁机、制汤机或烹饪器。这些是可能包含分析系统的食物加工设备的示例。例如,一种汁液提取设备包括一个咀嚼器。该设备通常可以是任何厨房器具或食物加工设备。
替换地,该设备可以包括储存罐或瓶。储存罐或瓶可用于长期储存或短期运输(例如烧瓶)。对于长期储存,分析此时可用于确定所含食品何时变质。
检测器可适用于在至少两个波长范围内进行检测,一个为相对较窄的测量范围并且一个为相对较宽的参考范围。
原则上,如果在每次测量前进行校准,则仅具有一个波长的设置是可能的。但是,使用两个范围可以减轻老化和长期漂移的影响。然后可以使用工厂校准。
参考下文描述的实施例,本发明的这些和其他方面将变得显而易见并得到阐明。
附图说明
现在将参考附图详细描述本发明的示例,其中:
图1示出了通过液体的传输如何可被用于营养分析;
图2示出了本发明的示例的营养物分析系统的操作原理;
图3示出了检测器和滤波器组合的第一示例;
图4示出了图3的示例可如何被实施;
图5示出了检测器和滤波器组合的第二示例;
图6示出了图5的示例可如何被实施;和
图7示出了具有室和营养物分析系统的设备的示例。
具体实施方式
将参照附图描述本发明。
应当理解,详细描述和具体示例虽然指示了设备、系统和方法的示例性实施例,但仅用于说明的目的,并不旨在限制本发明的范围。通过以下描述、所附权利要求和附图,将更好地理解本发明的设备、系统和方法的这些和其他特征、方面和优点。应当理解,附图仅仅是示意性的,并未按比例绘制。还应当理解,在所有附图中使用相同的参考数字来表示相同或相似的部分。
本发明提供了一种食物加工设备或食物储存设备,其中通过集成的营养分析系统分析在室内储存或加工的食品,该集成的营养分析系统使用具有营养物/原料选择性的衰减全反射(ATR),例如通过一个或多个离散的滤波器。
图1示出了通过液体的传输如何可被用于营养分析。图1所示的分析系统1包括红外源10、准直透镜12、滤波器14、液体样品16、聚焦透镜18、斩波器20和检测器22。
红外光源10发出具有特定波长范围的红外光。红外光穿透所准备的食品(例如果汁)。特定原料吸收特定波长的红外光。根据待分析或检测的成分种类,使用特定的波长滤波器14。红外检测器22测量滤波器后的特定波长的绝对值。对于某些原料,可能需要测量多于一个的波长。
根据该特定波长(带)内的IR光被吸收的量,或多或少的IR光到达检测器。检测电压或电流水平以记录到达检测器的光。注意,滤波器14也可以位于检测器侧而非源侧。
为了检测更多不同的原料,必须使用更多的滤波器。例如,区分两种原料需要两个不同的滤波器,并且原料吸收不同波段的红外光。
根据机械集成,需要准直透镜12和/或聚焦透镜18来正确引导红外光。可能有多个透镜。一些检测器类型可能需要斩波器元件20以提供AC信号用于检测。频率通常在1至10Hz范围内。可以使用光源处的信号调制,而不是在更下游提供斩波器。
这种测量设置的主要缺点是某些液体样品的浑浊(例如由纤维和其他颗粒引起的)会伪造光学测量结果。从水果和蔬菜中提取的天然液体通常是浑浊的,并且含有悬浮颗粒。此外,这种布置是用于NIR范围,在该范围内,特征较广泛且重叠,因此选择性低于IR范围。
图2示出了本发明的营养物分析系统的操作原理,该系统将被集成到厨房设备中,并基于衰减全反射(ATR)进行操作。
营养分析系统30包括电磁辐射源32、用于基于全内反射引导电磁辐射的辐射引导件34,其中辐射引导件包括耦合到电磁辐射源32的输入端36、输出端38和位于输入端和输出端之间的用于放置成抵靠待分析食品的感测表面40。感测表面40用于接触待分析的食品42。
电磁辐射源32包括红外或近红外辐射源,其波长在1至20微米的范围内,例如在8至10微米的范围内。近红外和红外波段的波长能够用于识别特定的营养物,例如葡萄糖。
辐射引导件34包括晶体。其具有高折射率,以提供电磁辐射的全内反射。其可以例如包括锗、钻石、KRS-5、硒化锌、硅或(分层)材料的组合。
适用于ATR光谱学的材料为本领域技术人员所知。
检测器44用于检测辐射引导件34的输出端的被引导的电磁辐射。滤波器装置46用于对到达检测器的被引导的电磁辐射进行波长滤波。它可以位于引导件34的输入侧或输出侧。
滤波器装置46包括至少一个光学带通滤波器。带通滤波器能够选择针对特定营养物目标感兴趣的窄频带。使用一个或多个离散的带通滤波器避免了对全谱仪的需求。这提供了一种成本效益高的实施方式,可能适合集成到消费品中。
该分析基于当辐射沿辐射引导件行进时与全内反射同时发生的渐逝吸收。食品的吸收特性影响由这种渐逝吸收引起的功率损失,而这又与电磁辐射在被检测器检测到之前的衰减相关。因此,该系统使用衰减总反射比(ATR)操作。
分析系统30仅位于食品42的一侧,因此不依赖于通过食品的传输。由于与食品的直接接触避免了人工定位的差异,因此它还提供了更加可重复的结果。
图2还示出了图1的准直透镜或反射器装置12、图1的聚焦透镜或反射器装置18和图1的斩波器20的可选使用。
各种检测器44和滤波器46的组合是可能的,从而可以检测多个波长。
图3示出了基于两个检测器44a、44b的第一示例,每个检测器具有其各自相应的滤波器46a、46b。检测器信号被提供给处理器50,处理器50驱动用户界面52并通过无线连接模块54提供数据传输。可能有两个或更多个检测器。每个检测器的输出电压或电流代表不同的原料。
图4示出了图3的示例可如何被实施。两个滤波器和检测器共享引导件34的输出端38。
图5示出了基于单个检测器44和两个滤波器46a、46b的可移动滤波器布置的第二示例。检测器信号再次被提供给处理器50,处理器50驱动用户界面52并通过无线连接模块54提供数据传输。仅测量一个检测器输出。例如,滤波器46a可以在检测器前面被机械切换,使得检测器的输出电压或电流代表一种特定原料。当滤波器46b在检测器前面被切换时,此时检测器的输出电压或电流代表另一特定原料。
图6示出了图5的示例可如何被实施。两个滤波器46a、46b是旋转滤波器装置60的一部分。可变滤波器功能可以以不同方式建立,例如可以使用线性往复式滤波器。另一种选择是用于将光学路径从一个检测器反射到另一个检测器的反射镜或透镜装置。滤波器也可以是传感器模块的一部分,并且一个或多个传感器以及一个或多个滤波器可以被封装到该传感器模块中。
本发明基于将上述营养分析系统集成到厨房设备中,尤其是食物加工设备或食物储存设备形式的厨房设备,包括用于容纳待加工或储存的食品的室。
图7示出了具有如上所述的室72和营养物分析系统30的设备70的示例。室72可以静态方式容纳食品,例如储存盒、罐、瓶或其他容器就是这种情况,或者其可以是食品仅暂时存在其中的在线食物加工系统的一部分。因此,该室可以是榨汁机、搅拌机、制汤机、烹饪器等的一部分。
传感器表面40被放置成与待分析的食品直接接触。例如,室的壁74的暴露内部可由辐射引导件34的感测表面40限定。这使得食品42和分析系统的辐射引导件之间能够实现所需的直接接触。通过这种方式,食品直接影响渐逝场,从而使系统对食品成分具有最佳灵敏度。通过使用感测表面,影响渐逝场的食品体积的平均值被用于测量。这比点状测量区域提供了更稳定的测量。
然而,感测表面40可以位于与食品接触的任何位置,例如沿着食物加工设备的食物加工路径的任何位置。晶体的几何形状可被优化,以优选地在选择性/信号强度方面与选定的检测器/源组合一起工作。
设备70还包括承载处理器50的电路板76、无线连接模块54和用于控制外部用户界面52(例如触摸屏、控制按钮等)的用户界面电路78。分析模块通常由电池供电。
本发明可用于为加工食物(例如榨汁食物)提供即时营养信息,或随着时间推移为储存罐或瓶提供营养信息。该信息随后可用于确定食品何时变质。
除了对于不同的食物营养物在不同的波长下操作以外,可以使用一个波长范围作为校准参考。广泛的参考频率范围可用于补偿老化和长期漂移效应。然后可以使用工厂校准。
可检测的营养物及其相关波长的示例是糖:葡萄糖9.67微米,果糖9.39微米。
其他候选物质为蔗糖、乳糖、脂肪/类脂、淀粉等。任何具有合理不同IR光谱的营养相关分子(并因此可在可承受的滤波器下被选择)均可被测量。可能需要确定与食品中其他成分的潜在重叠。
例如,感测表面的面积为几十至几千平方毫米,厚度为1毫米数量级。检测器、晶体和源的微型集成组合(例如在一个封装中)可以具有相当小的机械尺寸(例如形成晶片级封装)。
如上所述,图2的布置(在用于图7的设备时)可包括图1的准直透镜或反射器装置12和/或图1的聚焦透镜或反射器装置18和/或图1的斩波器20。图3至图7中未显示这些部件,以保持图的简洁。
通过研究附图、公开内容和所附权利要求,本领域技术人员在实践所要求保护的发明时可以理解和实现所公开实施例的其他变化。在权利要求中,“包括”一词不排除其他元素或步骤,不定冠词“一”或“一个”不排除复数。在相互不同的从属权利要求中列举某些措施这一事实本身并不表示这些措施的组合不能被有利地使用。权利要求中的任何参考标记不应被解释为限制范围。

Claims (12)

1.一种食物加工设备或食物储存设备(70),包括:
用于容纳待加工或储存的食品(42)的室(72);和
营养分析系统(30),包括:
电磁辐射源(32);
用于基于全内反射引导所述电磁辐射的辐射引导件(34),其中所述辐射引导件包括耦合到所述电磁辐射源(32)的输入端(36)、输出端(38)和位于所述输入端和所述输出端之间用于放置成抵靠待分析食品的感测表面(40),其中所述感测表面(40)用于与所述食品(42)接触;
检测器(44),用于检测在所述辐射引导件的所述输出端处的被引导的电磁辐射;和
用于对到达所述检测器的所述被引导的电磁辐射进行波长滤波的滤波器装置(46),其中所述滤波器装置包括多个光学带通滤波器(46a,46b),并且所述多个滤波器可选择性地移动到所述检测器(44)的路径中,或者对于每个光学带通滤波器,具有相应的检测器(44a,44b)。
2.根据权利要求1所述的设备,其中所述感测表面(40)被集成到所述室的壁(74)中。
3.根据权利要求1至2中任一项所述的设备,其中所述电磁辐射源(32)包括波长在0.2至20微米范围内,例如在8至10微米范围内的红外或近红外辐射源。
4.根据权利要求1至3中任一项所述的设备,其中所述辐射引导件(34)包括:
晶体;或者
层结构。
5.根据权利要求1至4中任一项所述的设备,还包括位于所述电磁辐射源的所述输出端处的准直透镜(12)或准直反射器,用于控制提供给所述辐射引导件的辐射的角展度。
6.根据权利要求1至5中任一项所述的设备,还包括位于所述辐射引导件的所述输出端处的聚焦透镜(18)或聚焦反射器,用于将辐射聚焦到所述检测器。
7.根据权利要求1至6中任一项所述的设备,还包括斩波器(20)。
8.根据权利要求1至7中任一项所述的设备,还包括数据通信系统(54),用于基于所述检测器的输出将数据无线传输至远程设备。
9.根据权利要求1至8中任一项所述的设备,其中所述室(72)用于容纳液体食品。
10.根据权利要求1至9中任一项所述的设备,包括搅拌机、榨汁机、制汤机或烹饪器。
11.根据权利要求1至9中任一项所述的设备,包括储存罐或瓶。
12.根据权利要求1至11中任一项所述的设备,其中所述检测器(44)适于在至少两个波长范围内检测,一个为相对窄的测量范围并且一个为相对宽的参考范围。
CN201980030759.5A 2018-05-08 2019-05-05 用于食物加工设备或食物储存设备的营养分析模块 Pending CN112088301A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18171242.3A EP3567366A1 (en) 2018-05-08 2018-05-08 A nutrition analysis module for a food processing device or food storage device
EP18171242.3 2018-05-08
PCT/EP2019/061473 WO2019215057A1 (en) 2018-05-08 2019-05-05 A nutrition analysis module for a food processing device or food storage device

Publications (1)

Publication Number Publication Date
CN112088301A true CN112088301A (zh) 2020-12-15

Family

ID=62143000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980030759.5A Pending CN112088301A (zh) 2018-05-08 2019-05-05 用于食物加工设备或食物储存设备的营养分析模块

Country Status (4)

Country Link
US (1) US11940434B2 (zh)
EP (2) EP3567366A1 (zh)
CN (1) CN112088301A (zh)
WO (1) WO2019215057A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3964820A1 (en) * 2020-09-07 2022-03-09 Koninklijke Philips N.V. Nutrient content determination in a liquid food product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239300A (ja) * 1994-02-28 1995-09-12 Snow Brand Milk Prod Co Ltd 多成分同時測定法
JPH0856565A (ja) * 1994-08-17 1996-03-05 Snow Brand Milk Prod Co Ltd 赤外atr法利用による発酵制御法及び乳酸酸度測定法
US20040036022A1 (en) * 2002-07-18 2004-02-26 Gore Jay P. Method for measuring the amount of an organic substance in a food product with infrared electromagnetic radiation
DE10352924A1 (de) * 2003-11-11 2005-07-14 Johann Wolfgang Goethe-Universität Frankfurt am Main Vorrichtung und Verfahren zur qualitativen und/oder quantitativen Analyse von Inhaltsstoffen in Flüssigkeiten, insbesondere in Getränke- und Prozessflüssigkeiten
DE102005017893A1 (de) * 2005-04-19 2006-10-26 Bayer Materialscience Ag Verfahren zur Herstellung von Polycarbonat mittels Raman-Spektroskopie
US20080030712A1 (en) * 2006-06-01 2008-02-07 Ecolab Inc. UV fluorometric sensor and method for using the same
US20110002677A1 (en) * 2004-12-03 2011-01-06 Cochran Don W Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
US20130275052A1 (en) * 2012-02-20 2013-10-17 Anton Paar Gmbh Method and device of determining a co2 content in a liquid
US20150276588A1 (en) * 2014-03-31 2015-10-01 Redshift Systems Corporation Fluid analyzer with modulation for liquids and gases
US20150290795A1 (en) * 2014-02-20 2015-10-15 Mark Oleynik Methods and systems for food preparation in a robotic cooking kitchen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902807A (en) 1973-10-25 1975-09-02 Du Pont Method for operating an attenuated total reflection infrared system
US4286327A (en) * 1979-09-10 1981-08-25 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis
JPS58151542A (ja) 1982-03-05 1983-09-08 Jeol Ltd 赤外分析装置
FR2737571B1 (fr) 1995-08-04 1997-09-12 Telecommunications Sa Sonde optique pour spectroscopie par reflexion totale attenuee
US7075645B2 (en) 2002-05-09 2006-07-11 Euro-Celtique S.A. Spectroscopic analyzer for blender
US7840360B1 (en) * 2006-10-26 2010-11-23 Micheels Ronald H Optical system and method for inspection and characterization of liquids in vessels
WO2010042455A1 (en) 2008-10-08 2010-04-15 George Howell Coffee Company, Llc Method and apparatus for brewing coffee via universal coffee brewing chart generation
GB2510777A (en) 2011-11-03 2014-08-13 Verifood Ltd Low - cost spectrometry system for end - user analysis
JP2016528496A (ja) 2013-08-02 2016-09-15 ベリフード, リミテッドVerifood, Ltd. 分光器システムおよび方法、分光分析デバイスおよび方法
PL2846160T3 (pl) * 2013-09-09 2016-05-31 Alfa Laval Corp Ab Sposób i aparat do fermentacji piwa
EP3118508B1 (en) 2014-03-14 2020-04-08 SZ DJI Osmo Technology Co., Ltd. Control method for pan tilt and control system of pan tilt
ES2662981T3 (es) 2014-04-11 2018-04-10 Specshell Aps Método para la supervisión en línea de procesos de maceración usando espectroscopía infrarroja
EP3102923A4 (en) * 2014-05-08 2017-09-13 Halliburton Energy Services, Inc. Optical computing devices with multiple bandpass filters
WO2016070094A1 (en) * 2014-10-31 2016-05-06 Muldoon Cecilia Non-invasive wine taint detector
WO2016132222A2 (en) 2015-02-19 2016-08-25 Premium Genetics (Uk) Ltd. Scanning infrared measurement system
WO2017051424A1 (en) 2015-09-25 2017-03-30 Verifood Ltd. Spectral blender
DE102016008885B4 (de) 2016-07-20 2020-09-17 Spectrolytic GmbH Schmuckstück mit ATR-Spektrometer und Kit mit dem Schmuckstück
EP3635372A4 (en) * 2017-06-09 2021-05-26 Verivin Ltd. CHARACTERIZATION OF LIQUIDS IN SEALED CONTAINERS

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239300A (ja) * 1994-02-28 1995-09-12 Snow Brand Milk Prod Co Ltd 多成分同時測定法
JPH0856565A (ja) * 1994-08-17 1996-03-05 Snow Brand Milk Prod Co Ltd 赤外atr法利用による発酵制御法及び乳酸酸度測定法
US20040036022A1 (en) * 2002-07-18 2004-02-26 Gore Jay P. Method for measuring the amount of an organic substance in a food product with infrared electromagnetic radiation
DE10352924A1 (de) * 2003-11-11 2005-07-14 Johann Wolfgang Goethe-Universität Frankfurt am Main Vorrichtung und Verfahren zur qualitativen und/oder quantitativen Analyse von Inhaltsstoffen in Flüssigkeiten, insbesondere in Getränke- und Prozessflüssigkeiten
US20110002677A1 (en) * 2004-12-03 2011-01-06 Cochran Don W Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
DE102005017893A1 (de) * 2005-04-19 2006-10-26 Bayer Materialscience Ag Verfahren zur Herstellung von Polycarbonat mittels Raman-Spektroskopie
US20080030712A1 (en) * 2006-06-01 2008-02-07 Ecolab Inc. UV fluorometric sensor and method for using the same
US20130275052A1 (en) * 2012-02-20 2013-10-17 Anton Paar Gmbh Method and device of determining a co2 content in a liquid
US20150290795A1 (en) * 2014-02-20 2015-10-15 Mark Oleynik Methods and systems for food preparation in a robotic cooking kitchen
US20150276588A1 (en) * 2014-03-31 2015-10-01 Redshift Systems Corporation Fluid analyzer with modulation for liquids and gases

Also Published As

Publication number Publication date
US11940434B2 (en) 2024-03-26
EP3791163A1 (en) 2021-03-17
US20210364488A1 (en) 2021-11-25
EP3567366A1 (en) 2019-11-13
WO2019215057A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US9540701B2 (en) Apparatus and method for automated process monitoring and control with near infrared spectroscopy
Nielsen et al. Moisture and total solids analysis
WO2017051424A1 (en) Spectral blender
Wehling Infrared spectroscopy
Cozzolino Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry
CN104316489B (zh) 一种近红外光谱检测灵芝提取物掺假的方法
CN103983606B (zh) 便携式近红外食用油品质快速检测仪
Rodriguez-Saona et al. Infrared and raman spectroscopy
US20200042817A1 (en) System, method and computer program
CN101532953A (zh) 一种食用油光学参数的精确测定方法
US20020106716A1 (en) Device and method for the spectrophotometric analysis of fluids
JP2014126559A (ja) カロリー算出装置
US11940434B2 (en) Nutrition analysis module for a food processing device or food storage device
JP2015057591A (ja) 懸濁液中の懸濁物濃度の分析方法および分析装置
CN202886274U (zh) 基于微机电技术的农产品品质近红外光谱分析仪
CN109115682B (zh) 一种兼顾液体及固体成份探测的光谱仪及其探测方法
US20190250099A1 (en) Determination of a constituent related property of a multi-constituent sample
Ravindran et al. A study on the use of spectroscopic techniques to identify food adulteration
Mantim et al. Reagent-free analytical flow methods for the soft drink industry: Efforts for environmentally friendly chemical analysis
Klein et al. The good vibrations of beer. The use of infrared and UV/Vis spectroscopy and chemometry for the quantitative analysis of beverages
CN103454238A (zh) 液体饮料生产过程中现场测定其核心组分精确含量的方法和装置
WO2020026114A1 (en) System for the rapid analysis of samples and corresponding reader, cartridge and method
Bello et al. Micro-opto-fluidic platform for spectroscopic identification of water-based fluids
EP2940452B1 (en) Foodstuff analysis device
Eriksson et al. Two measurement modes for mobile phone optical sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20231206

Address after: Holland Ian Deho Finn

Applicant after: Fansongni Holdings Ltd.

Address before: The city of Eindhoven in Holland

Applicant before: KONINKLIJKE PHILIPS N.V.

TA01 Transfer of patent application right