CN112086756A - Multi-state mutual coupling suppression method for H-plane phased patch antenna array realized by integrated electric/magnetic alternating absorption - Google Patents
Multi-state mutual coupling suppression method for H-plane phased patch antenna array realized by integrated electric/magnetic alternating absorption Download PDFInfo
- Publication number
- CN112086756A CN112086756A CN202010922226.2A CN202010922226A CN112086756A CN 112086756 A CN112086756 A CN 112086756A CN 202010922226 A CN202010922226 A CN 202010922226A CN 112086756 A CN112086756 A CN 112086756A
- Authority
- CN
- China
- Prior art keywords
- array
- mutual coupling
- magnetic
- absorption
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 70
- 238000010168 coupling process Methods 0.000 title claims abstract description 70
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 70
- 230000001629 suppression Effects 0.000 title claims abstract description 54
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000005855 radiation Effects 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 230000005684 electric field Effects 0.000 claims abstract description 7
- 238000011068 loading method Methods 0.000 claims description 24
- 230000006698 induction Effects 0.000 claims description 13
- 238000003466 welding Methods 0.000 claims description 4
- 230000005389 magnetism Effects 0.000 claims description 2
- 230000003071 parasitic effect Effects 0.000 claims description 2
- 230000005764 inhibitory process Effects 0.000 claims 4
- 238000006880 cross-coupling reaction Methods 0.000 claims 2
- 230000005611 electricity Effects 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 16
- 238000002955 isolation Methods 0.000 abstract description 2
- 238000012423 maintenance Methods 0.000 abstract 1
- 230000006872 improvement Effects 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/007—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种利用一体式电/磁交替吸收实现H面相控贴片天线阵的多状态互耦抑制方法。该方法通过吸波结构的工作模式和结构参数设计达到H面相控阵在非扫描/一波波束扫描/差波束等多工作状态下的互耦显著抑制。相比于频率选择器件的电磁隔离方法,该抑制方法对天线阵的工作频率、驻波及方向图干扰很小;相比于传统材料型吸波加载,该吸波结构易于安装、成本低,对天线辐射效率和增益性能影响小;相比于常规吸波设计只能对特定天线工作状态进行耦合抑制,利用电/磁交替吸收设计可以有效降低天线在多种工作状态下的耦合。本发明所采用的电阻加载的椭圆形金属环结构,通过设计其与天线电场/电流极值的位置关系,同时实现了阵列互耦抑制和阵列辐射性能的保持。吸波结构利用电/磁交替吸收设计,使得天线阵在任意波束扫描的复杂工作状态下都能得到有效地互耦抑制。
The invention discloses a multi-state mutual coupling suppression method for realizing an H-plane phased patch antenna array by utilizing an integrated electric/magnetic alternate absorption. The method achieves significant suppression of mutual coupling of the H-plane phased array in multiple working states such as non-scanning/one-beam scanning/differential beam through the design of the working mode and structural parameters of the absorbing structure. Compared with the electromagnetic isolation method of the frequency selective device, the suppression method has little interference to the operating frequency, standing wave and pattern of the antenna array; The radiation efficiency and gain performance of the antenna have little influence; compared with the conventional absorbing design, which can only suppress the coupling of a specific antenna working state, the electromagnetic/magnetic alternating absorption design can effectively reduce the coupling of the antenna in various working states. The resistance-loaded elliptical metal ring structure adopted in the present invention realizes the mutual coupling suppression of the array and the maintenance of the radiation performance of the array at the same time by designing its positional relationship with the antenna electric field/current extreme value. The wave absorbing structure utilizes the electric/magnetic alternate absorption design, so that the antenna array can effectively suppress the mutual coupling under the complex working state of arbitrary beam scanning.
Description
技术领域technical field
本发明涉及天线(H05B6/72)领域,具体是一体式电/磁交替吸收实现H面相控贴片天线阵的多状态互耦抑制方法。The invention relates to the field of antennas (H05B6/72), in particular to a multi-state mutual coupling suppression method for realizing an H-plane phased patch antenna array by integrated electric/magnetic alternating absorption.
背景技术Background technique
天线互耦抑制技术是天线阵列的重要研究内容,它通过滤波、吸波或金属隔离等手段降低阵列天线单元之间的互耦。在诸多天线形式中,贴片天线因其诸多优势,被广泛应用于通信系统的电磁波收发模块中,特别是在5G等高速通信系统中,贴片阵列已成为天线功能的主要实现形式。随着相关技术的发展,贴片天线阵列的互耦问题已逐渐成为天线系统的关键问题,阵列互耦引发的辐射性能的降低会极大影响通信整体功能。当阵列在相控波束扫描工作时,扫描状态下的互耦问题较之传统阵列更为复杂,给互耦抑制带来了更大的挑战。在现有互耦抑制技术中,利用材料型吸波加载的方法,其存在安装复杂、成本高,对天线增益性能影响大等问题;而利用滤波结构则会影响天线的驻波性能,且不能适应相控阵波束扫描状态;利用传统的结构吸波加载方法,其工作状态单一,仅能实现某些特定波束扫描时的互耦抑制。这些问题直接限制了相控天线阵技术的发展,长远来看更制约着高速通信系统,特别是面向未来大规模通信功能的研发与实现。Antenna mutual coupling suppression technology is an important research content of antenna arrays. It reduces the mutual coupling between array antenna elements by means of filtering, absorbing waves or metal isolation. Among many antenna forms, patch antennas are widely used in electromagnetic wave transceiver modules of communication systems due to their many advantages. Especially in high-speed communication systems such as 5G, patch arrays have become the main form of antenna function. With the development of related technologies, the mutual coupling problem of the patch antenna array has gradually become a key problem of the antenna system, and the reduction of the radiation performance caused by the mutual coupling of the array will greatly affect the overall communication function. When the array works in phased beam scanning, the mutual coupling problem in the scanning state is more complicated than that of the traditional array, which brings greater challenges to mutual coupling suppression. In the existing mutual coupling suppression technology, the method of using material-type absorbing wave loading has the problems of complicated installation, high cost, and great influence on the antenna gain performance; while the use of filter structure will affect the standing wave performance of the antenna, and cannot Adapt to the phased array beam scanning state; using the traditional structural absorbing loading method, its working state is single, and it can only achieve mutual coupling suppression during certain specific beam scanning. These problems directly limit the development of phased antenna array technology, and in the long run, restrict the development of high-speed communication systems, especially the research and development and implementation of large-scale communication functions in the future.
发明内容SUMMARY OF THE INVENTION
本发明为了解决现有技术的问题,提供了一种一体式电/磁交替吸收实现H面相控贴片天线阵的多状态互耦抑制方法,克服了传统吸波和滤波等互耦抑制手段的诸多劣势,利用吸波结构的不同工作模式来适应天线的不同工作状态,从而实现相控阵天线系统在多状态工作时的有效互耦抑制。In order to solve the problems of the prior art, the present invention provides a multi-state mutual coupling suppression method for realizing the H-plane phased patch antenna array by integrated electric/magnetic alternating absorption, which overcomes the traditional mutual coupling suppression methods such as wave absorption and filtering. Due to many disadvantages, the different working modes of the absorbing structure are used to adapt to the different working states of the antenna, so as to realize the effective mutual coupling suppression of the phased array antenna system in the multi-state operation.
本发明提供了一种一体式电/磁交替吸波结构,包括椭圆环形金属微带结构及加载电阻,其中椭圆环形金属微带结构处于阵列辐射贴片之间,接收贴片间的互耦能量并于其上激励电/磁感应电流;所述加载电阻为贴片型电阻,其与椭圆环相连接而形成闭合环路,并对环上的感应电流进行吸收,进而实现互耦电磁能量的耗散。The invention provides an integrated electric/magnetic alternating wave absorbing structure, comprising an elliptical annular metal microstrip structure and a loading resistor, wherein the elliptical annular metal microstrip structure is located between the array radiation patches and receives the mutual coupling energy between the patches And excite the electric/magnetic induction current on it; the loading resistor is a chip type resistor, which is connected with the elliptical ring to form a closed loop, and absorbs the induced current on the ring, thereby realizing the consumption of mutual coupling electromagnetic energy scattered.
进一步改进,所述的椭圆环形金属微带结构印刷在介质板上,与H面阵列的辐射贴片处于相同覆铜层,介质板下层印刷覆铜背板,如是,抑制结构不增加天线剖面高度。Further improvement, the elliptical annular metal microstrip structure is printed on the dielectric board, which is in the same copper clad layer as the radiation patch of the H-plane array, and the copper clad backplane is printed on the lower layer of the dielectric board. If so, the suppression structure does not increase the height of the antenna section. .
进一步改进,所述的椭圆环形金属微带结构呈椭圆环形,其中心与阵列中心重合,且椭圆结构不与辐射贴片直接连接,如是,椭圆环结构与贴片E面中心位置距离最近,用以增强非扫描状态下的电吸收强度;同时,与贴片E面两端位置最远,用以降低对阵列辐射性能的影响。Further improvement, the elliptical annular metal microstrip structure is in the shape of an elliptical ring, the center of which coincides with the center of the array, and the elliptical structure is not directly connected to the radiation patch. In order to enhance the electro-absorption intensity in the non-scanning state; at the same time, it is farthest from the two ends of the E surface of the patch to reduce the influence on the radiation performance of the array.
进一步改进,所述椭圆环形金属微带结构在其E面中线处开设两个对称缝隙用于焊接加载电阻,如是,可以增强电阻在非扫描状态下的电吸收强度,缝隙尺寸根据所选电阻封装尺寸而定。Further improvement, the elliptical annular metal microstrip structure has two symmetrical slits at the midline of its E surface for welding the loading resistor. If so, the electro-absorption strength of the resistor in the non-scanning state can be enhanced. The size of the slit is based on the selected resistor package. size.
进一步改进,所述椭圆环形金属微带结构的E面尺寸应等于或大于辐射贴片在E面方向的长度,如是,可以增强差波束工作状态下的磁吸收强度。In a further improvement, the size of the E-plane of the elliptical annular metal microstrip structure should be equal to or greater than the length of the radiation patch in the E-plane direction. If so, the magnetic absorption intensity in the differential beam working state can be enhanced.
进一步改进,所述加载电阻焊接于椭圆微带结构的缝隙处,连接椭圆微带环,用以耗散感应于椭圆环形金属微带结构的电磁能量。In a further improvement, the loading resistance is welded at the gap of the elliptical microstrip structure to connect the elliptical microstrip ring, so as to dissipate the electromagnetic energy induced in the elliptical annular metal microstrip structure.
进一步改进,所述加载电阻在椭圆环形金属微带结构的H面中线两侧,如是,可以对一般波束扫描状态下的感应电流进行非平衡吸收,实现阵列多状态的互耦抑制。Further improvement, the loading resistors are located on both sides of the H-plane centerline of the elliptical annular metal microstrip structure. If so, the induced current in the general beam scanning state can be absorbed unbalanced, and the mutual coupling suppression of the array multi-state can be realized.
本发明还提供了一体式电/磁交替吸收实现H面相控贴片天线阵的多状态互耦抑制方法,包括以下步骤:The present invention also provides a multi-state mutual coupling suppression method for realizing the H-plane phased patch antenna array by integrated electric/magnetic alternating absorption, comprising the following steps:
1)在阵列非扫描工作状态下,利用贴片单元同相位的特点,通过辐射电流对吸波结构进行电感应,于其上激励寄生电流并借助加载电阻对该能量进行吸收,从而实现非扫描状态下电吸收的阵列互耦抑制;1) In the non-scanning working state of the array, using the characteristics of the same phase of the patch unit, the absorbing structure is induced by the radiation current, the parasitic current is excited on it, and the energy is absorbed by the loading resistance, so as to realize the non-scanning Array mutual coupling suppression of electroabsorption in state;
2)在阵列差波束工作状态下,利用贴片单元反相位的特点,通过辐射的交变磁场在环形金属结构上激励磁感应电流,并借助加载电阻对该能量进行吸收,达到差波束状态下磁吸收的阵列互耦抑制;2) In the working state of the array difference beam, the magnetically induced current is excited on the annular metal structure by the radiated alternating magnetic field, and the energy is absorbed by the loading resistance by using the anti-phase feature of the patch unit to achieve the difference beam state. Array mutual coupling suppression of magnetic absorption;
3)在阵列一般波束扫描工作状态下,将感应电流分解为电流和磁场两种分量形式,通过两侧加载电阻的非平衡吸收,耗散阵列互耦电磁能量,实现阵列在任意扫描状态下的互耦抑制。3) In the general beam scanning working state of the array, the induced current is decomposed into two component forms of current and magnetic field, and the mutual-coupled electromagnetic energy of the array is dissipated through the unbalanced absorption of the loaded resistors on both sides to realize the array in any scanning state. Mutual coupling suppression.
进一步改进,所述一体式电/磁交替吸收利用同一结构的不同吸收模式实现H面天线阵在非扫描/差波束/一般波束扫描等多状态工作下的有效互耦抑制。Further improvement, the integrated electric/magnetic alternating absorption utilizes different absorption modes of the same structure to achieve effective mutual coupling suppression of the H-plane antenna array under multi-state operation such as non-scanning/differential beam/general beam scanning.
进一步改进,所述一体式电/磁交替吸收采用椭圆形金属微带结构,通过调整该结构与阵列的相对位置,使该结构与贴片电流极值点位置最近,以增强其电感应电流强度,同时使该结构与贴片电场极值点位置最远,以减小对阵列辐射性能的影响。Further improvement, the integrated electric/magnetic alternating absorption adopts an elliptical metal microstrip structure, and by adjusting the relative position of the structure and the array, the structure is closest to the position of the extreme point of the patch current, so as to enhance the intensity of its inductive current , and at the same time make the structure farthest from the extreme point of the electric field of the patch to reduce the influence on the radiation performance of the array.
进一步改进,所述一体式电/磁交替吸收采用闭合环形金属微带结构,通过调整其口径大小,使阵列差波束工作状态下的磁场充分通过该闭合环路,从而实现阵列互耦能量的磁吸收,达到差波束状态下的互耦抑制。Further improvement, the integrated electric/magnetic alternating absorption adopts a closed annular metal microstrip structure, and by adjusting its aperture size, the magnetic field in the working state of the array differential beam can fully pass through the closed loop, so as to realize the magnetic field of mutual coupling energy of the array. Absorption to achieve mutual coupling suppression in the differential beam state.
进一步改进,所述一体式电/磁交替吸收将一般波束扫描状态下的感应电流分解成电/磁感应两种分量形式,如是,两侧电阻可对感应电流进行非平衡吸收,达到任意工作状态下的阵列耦合抑制。Further improvement, the integrated electric/magnetic alternate absorption decomposes the induced current in the general beam scanning state into two component forms of electric/magnetic induction. If so, the resistances on both sides can perform unbalanced absorption of the induced current to achieve any working state. Array coupling suppression.
本发明有益效果在于:The beneficial effects of the present invention are:
1、通过同一结构的不同吸波模式,实现阵列多工作状态下的互耦抑制。1. Through the different absorbing modes of the same structure, the mutual coupling suppression in the multi-working state of the array is realized.
2、抑制结构可与天线同时印刷,不需增加工序,从而降低结构加设复杂度,缩减加设成本,减小抑制结构的安装空间。2. The suppression structure can be printed at the same time as the antenna, without the need to increase the process, thereby reducing the complexity of adding the structure, reducing the cost of adding, and reducing the installation space of the suppression structure.
3、抑制结构与辐射贴片印刷于同一层覆铜层,故不增加天线的剖面高度。3. The suppression structure and the radiation patch are printed on the same copper clad layer, so the section height of the antenna is not increased.
4、引入椭圆环形金属微带结构,设计它与阵列的相对位置关系,在增强非扫描工作状态下的互耦抑制效果的同时,降低抑制结构对天线辐射性能的影响。4. The elliptical annular metal microstrip structure is introduced, and the relative position relationship between it and the array is designed to enhance the mutual coupling suppression effect in the non-scanning working state, and at the same time reduce the influence of the suppression structure on the antenna radiation performance.
5、通过引入闭合环形金属结构,实现差波束工作状态下的磁吸收,达到差波束状态的互耦抑制。5. By introducing a closed annular metal structure, the magnetic absorption in the working state of the differential beam is realized, and the mutual coupling suppression in the differential beam state is achieved.
6、抑制结构可以实现一般波束扫描状态时的双电阻交替吸收,达到对阵列任意工作状态下的互耦抑制。6. The suppression structure can realize the alternate absorption of double resistors in the general beam scanning state, and achieve mutual coupling suppression under any working state of the array.
7、一体式电/磁交替吸收装置的结构简单,简化相关设计的计算复杂度,从机理层面降低阵列抑制的设计难度。7. The integrated electric/magnetic alternating absorption device has a simple structure, which simplifies the computational complexity of related designs and reduces the design difficulty of array suppression from the mechanism level.
附图说明Description of drawings
图1是未加设互耦抑制装置的H面相控贴片天线阵。Figure 1 is an H-plane phased patch antenna array without a mutual coupling suppression device.
图2是加设一体式电/磁交替吸收装置的H面相控贴片天线阵。Figure 2 is an H-plane phased patch antenna array with an integrated electric/magnetic alternating absorption device.
图3是阵列非扫描工作状态时的互耦/反射/辐射方向图性能对比。Figure 3 is a comparison of mutual coupling/reflection/radiation pattern performance when the array is in a non-scanning working state.
图4是阵列差波束工作状态时的互耦/反射/辐射方向图性能对比。Fig. 4 is the performance comparison of mutual coupling/reflection/radiation pattern when the array difference beam is working.
图5是阵列一般波束扫描状态时的互耦/反射/辐射方向图性能对比。Figure 5 is a comparison of mutual coupling/reflection/radiation pattern performance when the array is in a general beam scanning state.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步说明。本发明一种具体实施方式如图1所示,在本发明一体式电/磁交替吸收实现H面相控贴片天线阵的多状态互耦抑制方法的实施例中,天线阵沿x方向(H面)排列,由相同辐射单元1和2组成。辐射单元为背馈式贴片天线形式,其辐射贴片印刷于介质基板3的上层覆铜面,金属背板印刷于介质基板3的下层覆铜面。天线为y方向极化。阵列工作于非扫描、差波束和一般波束扫描三种工作状态,分别利用馈入馈源的传输线长度来调控馈入相位,使1和2天线相位差值为0°,90°和180°。互耦抑制结构的作用为在保持天线阵辐射性能的同时,降低辐射贴片单元1和2之间的传输系数。在本实施例中,抑制结构用于抑制贴片天线形式的阵列互耦,在其它应用中,也可以实现其它天线形式的耦合抑制。其具体方法为,考察天线不同状态下的电流和磁场状态,利用电流耦合实现结构的电感应,利用磁场耦合实现结构的磁感应,通过对感应电流的电阻吸收实现天线阵的互耦抑制。此类方法是基于本发明的常规设计思路,故亦应属于本发明的保护范围。在本实施例中,吸波结构对H面阵列的互耦进行抑制,在其它应用中,也可以实现对E面或其他方向阵列的互耦抑制。其具体方法有:(1)利用对偶原理建立相应的对偶结构,实现E面阵列的互耦抑制;(2)开展阵列电/磁/电流分析,利用分析结果与结构的电磁感应关系,获得相应的互耦抑制结构。此类方法是基于基本电磁学原理,利用本发明提出的方法很容易得出此设计,故亦应属于本发明的保护范围。在本实施例中,利用同一结构的不同吸收模式,相应地对阵列不同辐射特性进行一体化设计,在其它应用中,也可以对其它电磁特性的多状态工作进行一体化多模式设计。其具体方法为,分析电磁特性的电/磁/电流特征表征,进而构建与结构模式特性的对应关系,进一步确立模式与电磁特性的协同工作方案。此类方法直接利用本发明所提方法的设计思路,故亦应属于本发明的保护范围。The present invention will be further described below with reference to the accompanying drawings and specific embodiments. A specific embodiment of the present invention is shown in FIG. 1 , in the embodiment of the present invention in which the integrated electric/magnetic alternating absorption realizes the multi-state mutual coupling suppression method of the H-plane phased patch antenna array, the antenna array is along the x direction (H plane) arrangement, consisting of the
本实施例所涉及的一体式电/磁交替吸收装置,如图2所示,由椭圆环形金属微带结构4和加载电阻5两部分组成。椭圆环形金属微带结构4印刷于与辐射贴片1和2同层的金属覆铜层,其中心与阵列中心重合。椭圆环形的H面轴线两侧对称缝隙,用于焊接加载电阻5。两个相同电阻5分别焊接于椭圆环4的两侧缝隙处,并与椭圆环4形成闭合环路。如是,辐射贴片1和2的互耦电磁能量通过电流/磁形式感应于椭圆环形金属微带结构4,并在其上形成感应电流。感应电流由加载电阻5进行耗散,形成一体式电/磁吸收,实现阵列互耦抑制。在本实施例中,采用电阻作为感应电流的耗散器件,在其它应用中,利用有耗涂层、吸波材料等有耗器件也可以用于感应电流的衰减。其具体方法为,将有耗材料涂覆或者通过金属结构与椭圆环形金属微带结构4连接,从而对其上电流进行衰减,达到阵列互耦抑制的效果。此类方法是较为常规的设计思路,基于本发明提出的方法很容易得出此设计,故亦应属于本发明的保护范围。The integrated electric/magnetic alternating absorption device involved in this embodiment, as shown in FIG. 2 , is composed of two parts, an elliptical annular
在阵列非扫描工作状态下,辐射贴片1和2的电流同相,电流沿E面方向的极值点位于其中点处,椭圆环形金属微带结构4与该位置的距离最近,如是,可得到最优的电吸收效果;同时,辐射贴片1和2的电场极值位于贴片沿E面方向的两侧,椭圆环形金属微带结构4与该位置距离最远,如是,则可降低抑制结构对天线辐射性能的影响。在本实施例中,选用中心位置印刷的椭圆环形吸波结构作为接收辐射贴片1和2电感应能量的装置,在其它应用中,根据不同的电流/电场环境进行吸波结构的外形和位置调整,也可实现阵列互耦的有效抑制。其具体方法为,分析辐射单元的电流/电场极值,调整吸波结构与此两者的位置关系,确定相应的结构外形和位置,达到最优的工作效果。此类设计完全基于本发明提出的方法,故亦应属于本发明的保护范围。In the non-scanning working state of the array, the currents of the
在阵列差波束工作状态下,辐射贴片1和2具有180°相位差,如是,两个贴片所激励的磁场在阵列沿H面方向的中线处同相叠加,为磁场极值点。该磁场为交变磁场,故会在椭圆环形金属微带结构4上激励磁感应电流,并通过加载电阻5进行能量耗散。椭圆环形金属微带结构4沿E面方向的长度应等于或大于辐射贴片1和2在E面方向的长度,以得到足够磁感应能量。值得一提的是,在本实施例中选用中心位置印刷的椭圆环形微带结构作为接收辐射贴片1和2磁感应能量的装置,在其它应用中,也可根据差波束状态时的磁场特征选用其它适当闭合结构。In the working state of the array difference beam, the
在阵列一般波束扫描工作状态下,辐射贴片1和2具有90°相位差,如是,椭圆环形金属微带结构4上感应电流具有电/磁两种感应分量,该感应电流会被两侧加载电阻5非平衡耗散,实现任意工作状态下的阵列互耦抑制。值得一提的是,在本实施例中选用90°相位差时的辐射效果作为一般波束扫描状态例,在其它应用中,结构对任意相位差实现的任意辐射状态都有优良的抑制效果。In the normal beam scanning working state of the array, the
一体式电/磁交替吸收结构的设计步骤分为磁感应和电感应两个过程,其具体办法为:首先,分析差波束工作状态下磁场的分布,构建环形金属微带结构,使该磁场尽可能穿过环形结构;其次,分析非扫描工作状态下辐射装置的电流/电场情况,使得环形结构与电流极值点距离最近,与辐射场激励区的距离最远;最后,根据感应电流的强弱设置加载电阻位置和阻值。The design steps of the integrated electric/magnetic alternating absorption structure are divided into two processes: magnetic induction and electric induction. The specific methods are: first, analyze the distribution of the magnetic field under the working state of the differential beam, and construct a ring-shaped metal microstrip structure to make the magnetic field as far as possible. Pass through the ring structure; secondly, analyze the current/electric field of the radiation device under the non-scanning working state, so that the ring structure is the closest to the current extreme point, and the farthest distance to the excitation area of the radiation field; finally, according to the strength of the induced current Set the load resistor location and resistance value.
其设计效果如图3、4、5所示,在阵列的三种工作状态下,辐射贴片1和2之间的互耦都得到了很好地抑制,互耦辐值降低了10dB。同时,阵列的辐射性能,包括辐射贴片的反射和阵列辐射方向图都未受到影响。实现了一体式电磁交替吸收的H面天线阵多工作状态的互耦抑制。The design effect is shown in Figures 3, 4, and 5. In the three working states of the array, the mutual coupling between the radiating
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。There are many specific application ways of the present invention, and the above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements can be made. These Improvements should also be considered as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010922226.2A CN112086756B (en) | 2020-09-04 | 2020-09-04 | Integrated electric/magnetic alternative wave absorbing device and antenna array multi-state mutual coupling suppression method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010922226.2A CN112086756B (en) | 2020-09-04 | 2020-09-04 | Integrated electric/magnetic alternative wave absorbing device and antenna array multi-state mutual coupling suppression method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112086756A true CN112086756A (en) | 2020-12-15 |
CN112086756B CN112086756B (en) | 2022-07-05 |
Family
ID=73732025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010922226.2A Active CN112086756B (en) | 2020-09-04 | 2020-09-04 | Integrated electric/magnetic alternative wave absorbing device and antenna array multi-state mutual coupling suppression method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112086756B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113270719A (en) * | 2021-04-01 | 2021-08-17 | 武汉虹信科技发展有限责任公司 | Antenna isolation device, array antenna and base station antenna |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1784892A2 (en) * | 2004-08-30 | 2007-05-16 | Hewlett-Packard Development Company, L.P. | Composite material with powered resonant cells |
CN102227040A (en) * | 2011-03-04 | 2011-10-26 | 西安电子科技大学 | Array Antennas for Radar Cross Section Reduction |
CN103078185A (en) * | 2013-01-25 | 2013-05-01 | 中国科学院光电技术研究所 | High-gain low-radar cross section panel antenna based on artificial electromagnetic structural material |
CN104393407A (en) * | 2014-11-18 | 2015-03-04 | 浙江大学 | Metamaterial-based small dual-frequency MIMO antennas |
CN105514619A (en) * | 2016-01-13 | 2016-04-20 | 武汉科技大学 | Ultra wideband material microwave absorber loaded with chip resistor |
CN107069234A (en) * | 2017-04-18 | 2017-08-18 | 中国电子科技集团公司第三十八研究所 | A kind of ultra wide band inhales ripple narrow band transmission electromagnetic bandgap structure and its application |
CN107257034A (en) * | 2017-07-18 | 2017-10-17 | 东南大学 | Low-frequency metamaterial absorber based on high magnetic permeability |
CN107611575A (en) * | 2017-08-29 | 2018-01-19 | 电子科技大学 | A kind of end-on-fire antenna based on surface wave guide Yu super surface absorber composite construction |
CN108682952A (en) * | 2018-03-15 | 2018-10-19 | 杭州电子科技大学 | Cascaded Double-layer dual polarization broadband band suction type frequency-selective surfaces |
CN108879079A (en) * | 2018-06-22 | 2018-11-23 | 西安交通大学 | A kind of high-isolation array antenna based on electromagnetic wave absorption body |
CN109888488A (en) * | 2019-04-04 | 2019-06-14 | 电子科技大学 | Low-profile and low-scattering ultra-broadband phased array based on polarization selective absorber loading |
CN110165421A (en) * | 2019-06-06 | 2019-08-23 | 南京航空航天大学 | A kind of broadband suction wave frequency rate selection surface |
CN110707436A (en) * | 2019-10-22 | 2020-01-17 | 海宁利伊电子科技有限公司 | Novel planar electromagnetic wave absorber structure based on metamaterial |
CN110768009A (en) * | 2018-07-27 | 2020-02-07 | 深圳光启尖端技术有限责任公司 | Wave-absorbing and wave-transmitting integrated device and antenna housing |
CN110768010A (en) * | 2018-07-27 | 2020-02-07 | 深圳光启尖端技术有限责任公司 | Wave-absorbing metamaterial |
-
2020
- 2020-09-04 CN CN202010922226.2A patent/CN112086756B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1784892A2 (en) * | 2004-08-30 | 2007-05-16 | Hewlett-Packard Development Company, L.P. | Composite material with powered resonant cells |
CN102227040A (en) * | 2011-03-04 | 2011-10-26 | 西安电子科技大学 | Array Antennas for Radar Cross Section Reduction |
CN103078185A (en) * | 2013-01-25 | 2013-05-01 | 中国科学院光电技术研究所 | High-gain low-radar cross section panel antenna based on artificial electromagnetic structural material |
CN104393407A (en) * | 2014-11-18 | 2015-03-04 | 浙江大学 | Metamaterial-based small dual-frequency MIMO antennas |
CN105514619A (en) * | 2016-01-13 | 2016-04-20 | 武汉科技大学 | Ultra wideband material microwave absorber loaded with chip resistor |
CN107069234A (en) * | 2017-04-18 | 2017-08-18 | 中国电子科技集团公司第三十八研究所 | A kind of ultra wide band inhales ripple narrow band transmission electromagnetic bandgap structure and its application |
CN107257034A (en) * | 2017-07-18 | 2017-10-17 | 东南大学 | Low-frequency metamaterial absorber based on high magnetic permeability |
CN107611575A (en) * | 2017-08-29 | 2018-01-19 | 电子科技大学 | A kind of end-on-fire antenna based on surface wave guide Yu super surface absorber composite construction |
CN108682952A (en) * | 2018-03-15 | 2018-10-19 | 杭州电子科技大学 | Cascaded Double-layer dual polarization broadband band suction type frequency-selective surfaces |
CN108879079A (en) * | 2018-06-22 | 2018-11-23 | 西安交通大学 | A kind of high-isolation array antenna based on electromagnetic wave absorption body |
CN110768009A (en) * | 2018-07-27 | 2020-02-07 | 深圳光启尖端技术有限责任公司 | Wave-absorbing and wave-transmitting integrated device and antenna housing |
CN110768010A (en) * | 2018-07-27 | 2020-02-07 | 深圳光启尖端技术有限责任公司 | Wave-absorbing metamaterial |
CN109888488A (en) * | 2019-04-04 | 2019-06-14 | 电子科技大学 | Low-profile and low-scattering ultra-broadband phased array based on polarization selective absorber loading |
CN110165421A (en) * | 2019-06-06 | 2019-08-23 | 南京航空航天大学 | A kind of broadband suction wave frequency rate selection surface |
CN110707436A (en) * | 2019-10-22 | 2020-01-17 | 海宁利伊电子科技有限公司 | Novel planar electromagnetic wave absorber structure based on metamaterial |
Non-Patent Citations (2)
Title |
---|
ZHIWEI SUN: "Selective Wave-transmitting Absorber through Combined Metasurfaces", 《2016 PROGRESS IN EELECTROMAGNETIC RESEARCH SYMPOSIUM》 * |
周卓辉: "超材料在宽频微波衰减吸收材料中的应用研究进展", 《材料工程》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113270719A (en) * | 2021-04-01 | 2021-08-17 | 武汉虹信科技发展有限责任公司 | Antenna isolation device, array antenna and base station antenna |
CN113270719B (en) * | 2021-04-01 | 2023-04-11 | 中信科移动通信技术股份有限公司 | Antenna isolation device, array antenna and base station antenna |
Also Published As
Publication number | Publication date |
---|---|
CN112086756B (en) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140118206A1 (en) | Antenna and filter structures | |
CN109149108A (en) | A kind of isolator and mimo antenna | |
WO2017157218A1 (en) | Antenna | |
CN110911845B (en) | A broadband zero-cross-polarization space-time coding digital metasurface unit and control method | |
CN110247186A (en) | A kind of broad beam medium resonator antenna | |
Ramachandran et al. | Diversity‐based four‐port multiple input multiple output antenna loaded with interdigital structure for high isolation | |
Sahu et al. | Dual-port compact MIMO-DRAs: Exploiting metallic sheets to increase inter-port isolation at 28-GHz 5G-band | |
CN112086756B (en) | Integrated electric/magnetic alternative wave absorbing device and antenna array multi-state mutual coupling suppression method | |
Guo et al. | A new dual‐band microstrip antenna array with high isolation by waveguided metamaterial structure | |
CN111817010B (en) | Reflective Band Switchable Three-dimensional Broadband Absorptive Frequency Selective Structure | |
Li et al. | Analysis and design of waveguide slot antenna array integrated with electromagnetic band-gap structures | |
WO2011103841A2 (en) | Microstrip antenna | |
CN111987428B (en) | A Planar Endfire Circularly Polarized Antenna Without Delay Line Structure | |
CN117525906A (en) | Multifunctional electromagnetic super-surface integrating wave absorption, transmission, polarization torsion and diffuse scattering | |
Qiu et al. | Highly efficient unidirectional twin arc-slot antennas on electrically thin substrates | |
US20220225494A1 (en) | Metamaterial electromagnetic absorber | |
Du et al. | Intercoupling suppression of very closely spaced MIMO antenna based on current cancellation method | |
CN113471670B (en) | 5G multi-frequency broadband dual-polarized base station antenna loaded with antenna decoupling surface | |
WO2023221651A1 (en) | Dual-polarized radiation unit, antenna, and antenna system | |
JPH09205290A (en) | Circuit substrate with low emi structure | |
Li et al. | Dual-band antenna with OAM mode radiated by ground plane | |
Zeng et al. | Eight‐element fifth‐generation multiple‐input multiple‐output antenna designed by modal currents cancelation | |
KR102049926B1 (en) | Circular Polarization Slot Antenna | |
Wu et al. | Design of a Ka-band high-gain antenna with the quasi-annular SIW corrugated technique | |
Dey et al. | Broadband millimeter wave MIMO antennas at 28 GHz with low mutual coupling using frequency selective surface wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |