CN112083427B - 一种冰下无人潜航器测距方法 - Google Patents

一种冰下无人潜航器测距方法 Download PDF

Info

Publication number
CN112083427B
CN112083427B CN202010959785.0A CN202010959785A CN112083427B CN 112083427 B CN112083427 B CN 112083427B CN 202010959785 A CN202010959785 A CN 202010959785A CN 112083427 B CN112083427 B CN 112083427B
Authority
CN
China
Prior art keywords
underwater
path
receiving hydrophone
hydrophone
underwater unmanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010959785.0A
Other languages
English (en)
Other versions
CN112083427A (zh
Inventor
陈文剑
刘钰
生雪莉
张宇翔
殷敬伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202010959785.0A priority Critical patent/CN112083427B/zh
Publication of CN112083427A publication Critical patent/CN112083427A/zh
Application granted granted Critical
Publication of CN112083427B publication Critical patent/CN112083427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明提供一种冰下无人潜航器测距方法,基于几何原理和声信号处理,当水下无人潜航器2发射信号至接收水听器3时,通过匹配滤波处理得到直达波和最短途径平面冰层1的下表面反射波的时延差,结合冰层下的水中声速,估计得到水下无人潜航器2与接收水听器3之间的水平距离;本发明在利用水下无人潜航器进行冰下航行作业时,由于冰层的存在,不易确定水下无人潜航器与接收水听器之间的距离,通过此方法可以估计出水下无人潜航器与接收水听器之间的距离,对水声研究具有一定的帮助。

Description

一种冰下无人潜航器测距方法
技术领域
本发明涉及一种测距方法,尤其涉及一种冰下无人潜航器测距方法,属于水声学技术领域。
背景技术
水声测距是水声学领域的重要研究内容之一,水声测距是实现水下导航、探测等能力的基础,水声测距技术对海洋探索和开发具有重要的意义。水声测距技术体制按照工作方式可分为两种:主动测距和被动测距。主动测距从发射端发射信号到接收端,接收端接收到信号后会返回一个信号回到发射端,在发射端估计出发送和接收的时延,结合声速可以计算出收发两端的距离。被动测距一端发射信号,另一端被动接收信号,根据接收端接收信号的方位、时延差等信息,结合声速来估计发射端到接收端的距离。
极地蕴含着大量资源,但受地理、水文和气候条件限制,冰下环境探测任务困难重重。无人潜航器不需通过人们驾驶,可以靠遥控和自动控制在冰层覆盖下的水中航行,无人潜航器在执行冰下水声通信、探测、导航等航行作业时,需要实时监测无人潜航器与接收水听器的距离。本发明设计了一种估计在冰下航行作业的无人潜航器与接收水听器之间距离的测距方法。
发明内容
本发明的目的是为了克服水下无人潜航器在冰下航行作业测距的困难而提供一种冰下无人潜航器测距方法。
本发明的目的是这样实现的:
一种冰下无人潜航器测距方法,利用“虚源法”建立冰下声场模型,由以下步骤得出:
步骤一:设置冰下环境,水下无人潜航器2布放深度为d1,接收水听器3布放深度为d2,水下无人潜航器2与接收水听器3之间的水平距离R;
步骤二:利用勾股定理分别表示出水下无人潜航器2与接收水听器3之间的水平距离R与直达波所经途径R1和经点O'反射传播到接收水听器端的反射波所经途径R2的关系式,可计算得到途径R1和R2为:
步骤三:通过匹配滤波处理分析接收水听器3接收的信号可得到,经途径R1到达接收水听器3的直达波和经途径R2到达接收水听器3的反射波之间的时延差为Δτ;
冰层下的水中声速为c,可计算得到途径R1和R2的路程差为:
R2-R1=cΔτ
通过计算上式,可得到水下无人潜航器2与接收水听器3之间的水平距离R为:
本发明还包括这样一些特征:
以平面冰层1的下表面为中心线,作水下无人潜航器的对称点,称作虚源4,与平面冰层1的下表面的距离为d1,水下无人潜航器2与虚源4的连线与平面冰层1的下表面交至于点O,由虚源4发射的信号传播到接收水听器3的直达波所经途径为R2=R21'+R22,与平面冰层1的下表面交至于点O',由水下无人潜航器2发射的信号经点O'反射传播到接收水听器3所经途径为R2=R21+R22,该途径是发射信号经平面冰层1的下表面反射传播到接收水听器3的反射波中所经的最短途径,根据几何关系,R21=R21',即R2=R2',由虚源4发射的信号传播到接收水听器3的直达波所经途径R2'可分别表示为:又R2=R2',因此由水下无人潜航器2发射的信号经点O'反射传播到接收水听器4所经途径R2可表示为:
与现有技术相比,本发明的有益效果是:
在利用水下无人潜航器进行冰下航行作业时,由于冰层的存在,不易确定水下无人潜航器与接收水听器之间的距离,通过此方法可以估计出水下无人潜航器与接收水听器之间的距离,对水声研究具有一定的帮助。
附图说明
图1是测距方法几何原理图;
图2是线性调频发射信号仿真图;
图3是接收信号仿真图;
图4是接收信号局部放大图;
图5是匹配滤波处理结果图;
图6是匹配滤波处理结果局部放大图
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
本发明的目的是这样实现的:
如图1所示,本发明所述的环境包括,厚度为d的平面冰层1、布放于冰下水深d1处可在水平方向自主航行的水下无人潜航器2,固定布放于水深d2处的接收水听器端3。
利用”虚源法”建立冰下声场模型:
以平面冰层1的下表面为中心线,作水下无人潜航器的对称点,称作虚源4,与平面冰层1的下表面的距离为d1,水下无人潜航器2与虚源4的连线与平面冰层1的下表面交至于点O。
直达波是指在均匀介质中由声源直接传播到接收点的声波。由水下无人潜航器2发射的信号传播到接收水听器3的直达波所经途径为R1,由虚源4发射的信号传播到接收水听器3的直达波所经途径为R2=R21'+R22,与平面冰层1的下表面交至于点O'。由水下无人潜航器2发射的信号经点O'反射传播到接收水听器3所经途径为R2=R21+R22,该途径是发射信号经平面冰层1的下表面反射传播到接收水听器3的反射波中所经的最短途径。根据几何关系,R21=R21',即R2=R2'。
水下无人潜航器2与接收水听器3之间的水平距离表示为R,根据勾股定理,由水下无人潜航器2发射的信号传播到接收水听器3的直达波所经途径R1和由虚源4发射的信号传播到接收水听器3的直达波所经途径R2'可分别表示为:
又R2=R2',因此由水下无人潜航器2发射的信号经点O'反射传播到接收水听器4所经途径R2可表示为:
通过匹配滤波处理分析接收水听器3接收的信号可得到,经途径R1到达接收水听器3的直达波和经途径R2到达接收水听器3的反射波之间的时延差为Δτ。
冰层下的水中声速为c,可计算得到途径R1和R2的路程差为:
R2-R1=cΔτ
通过计算上式,可得到水下无人潜航器2与接收水听器3之间的水平距离R为:
本发明基于几何原理和声信号处理,当水下无人潜航器2发射信号至接收水听器3时,通过匹配滤波处理得到直达波和最短途径平面冰层1的下表面反射波的时延差,结合冰层下的水中声速,估计得到水下无人潜航器2与接收水听器3之间的水平距离。
本发明属于水声学技术领域,主要是利用直达波和反射波的时延差等信息估计出水下无人潜航器在冰下航行作业时与接收水听器之间的距离。本发明主要内容:利用“虚源法”建立冰下声场模型,水下无人潜航器发射的信号传播到接收水听器端的直达波,和虚源发射的信号传播到接收水听器的直达波,即水下无人潜航器发射的信号经冰层下表面反射传播到接收水听器的所经的最短途径反射波,对接收信号进行匹配滤波处理,得到直达波和反射波的时延差,结合冰层下的水中声速,通过几何计算,进而估计冰下水下无人潜航器与接收水听器之间的水平距离。
1、如图1所示,本发明所述的环境包括,厚度为d的平面冰层1、布放于冰下水深d1处可在水平方向自主航行的水下无人潜航器2,固定布放于水深d2处的接收水听器端3。
2、利用“虚源法”建立冰下声场模型:
直达波是指在均匀介质中由声源直接传播到接收点的声波。由水下无人潜航器2发射的信号传播到接收水听器3的直达波所经途径为R1,由虚源4发射的信号传播到接收水听器3的直达波所经途径为R2=R21'+R22,与平面冰层1的下表面交至于点O'。由水下无人潜航器2发射的信号经点O'反射传播到接收水听器3所经途径为R2=R21+R22,该途径是发射信号经平面冰层1的下表面反射传播到接收水听器3的反射波中所经的最短途径。其中,根据几何关系,R21=R21',即R2=R2'。水下无人潜航器2与接收水听器3之间的水平距离可表示为R,根据勾股定理知,由水下无人潜航器2发射的信号传播到接收水听器3的直达波所经途径R1和由虚源4发射的信号传播到接收水听器端的直达波所经途径R2'可分别表示为:
又R2=R2',因此由水下无人潜航器2发射的信号经点O'反射传播到接收水听器3的反射波所经途径R2可表示为:
3、通过匹配滤波处理分析接收水听器3接收的信号可得到经途径R1到达接收水听器3的直达波和经途径R2到达接收水听器3的反射波之间的时延差为Δτ:
Δτ=t2-t1
冰层下水中声速为c,可计算得到途径R1和R2的路程差可表示为:
R2-R1=cΔτ
通过计算上式,可得到水下无人潜航器2与接收水听器3之间的水平距离R为:
实施例:
第一步,设置冰下环境,水下无人潜航器2布放深度为d1=30m,接收水听器3布放深度为d2=50m,水下无人潜航器2与接收水听器3之间的水平距离R=500m。
第二步,利用勾股定理分别表示出水下无人潜航器2与接收水听器3之间的水平距离R与直达波所经途径R1和经点O'反射传播到接收水听器端的反射波所经途径R2的关系式,可计算得到途径R1和R2为:
冰层下的水中声速c=1450m/s,途径R1和R2的路程差可表示为:
R2-R1=cΔτ
通过上式可计算得到直达波和反射波的时延差为:
第三步,水下无人潜航器2发射线性调频信号,设置发射脉宽为5ms,调频带宽为100kHz,如图2所示。由计算所得的时延差Δτ=0.00411s仿真得到接收水听器3接收的信号,由直达波、反射波和高斯白噪声组成,如图3所示,图4为接收信号局部放大图。对接收信号进行匹配滤波并归一化处理,如图5所示,图6为匹配滤波处理结果局部放大图,由图6可得到直达波和反射波的时延差Δτ=1.005-1.0009=0.0041s,冰层下的水中声速c=1450m/s,计算途径R1和R2的路程差为:
R2-R1=cΔτ=1450×0.0041=5.945m
即:
计算该式,可得到水下无人潜航器2与接收水听器3之间的水平距离R为:
通过对接收信号进行匹配滤波,得到直达波和反射波的时延差,进而计算得到的水下无人潜航器与接收水听器之间的水平距离R=501.2544m,与第一步中设置的水平距离500m近似,因此该方法可有效估计冰下水下无人潜航器与接收水听器之间的水平距离。

Claims (1)

1.一种冰下无人潜航器测距方法,其特征是,利用“虚源法”建立冰下声场模型,由以下步骤得出:
步骤一:设置冰下环境,水下无人潜航器(2)布放深度为d1,接收水听器(3)布放深度为d2,水下无人潜航器(2)与接收水听器(3)之间的水平距离R;
步骤二:利用勾股定理分别表示出水下无人潜航器(2)与接收水听器(3)之间的水平距离R与直达波所经途径R1和经点O'反射传播到接收水听器端的反射波所经途径R2的关系式,得到途径R1和R2为:
步骤三:通过匹配滤波处理分析接收水听器(3)接收的信号得到,经途径R1到达接收水听器(3)的直达波和经途径R2到达接收水听器(3)的反射波之间的时延差为Δτ;
冰层下的水中声速为c,得到途径R1和R2的路程差为:
R2-R1=cΔτ
得到水下无人潜航器(2)与接收水听器(3)之间的水平距离R为:
利用“虚源法”建立冰下声场模型具体为:
以平面冰层(1)的下表面为中心线,作水下无人潜航器的对称点,称作虚源(4),与平面冰层(1)的下表面的距离为d1,水下无人潜航器(2)与虚源(4)的连线与平面冰层(1)的下表面交至于点O,由虚源(4)发射的信号传播到接收水听器(3)的直达波所经途径为R2=R21'+R22,与平面冰层(1)的下表面交至于点O',由水下无人潜航器(2)发射的信号经点O'反射传播到接收水听器(3)所经途径为R2=R21+R22,该途径是发射信号经平面冰层(1)的下表面反射传播到接收水听器(3)的反射波中所经的最短途径,根据几何关系,R21=R21',即R2=R2',由虚源(4)发射的信号传播到接收水听器(3)的直达波所经途径R2'可分别表示为:又R2=R2',因此由水下无人潜航器(2)发射的信号经点O'反射传播到接收水听器(3)所经途径R2可表示为:/>
CN202010959785.0A 2020-09-14 2020-09-14 一种冰下无人潜航器测距方法 Active CN112083427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010959785.0A CN112083427B (zh) 2020-09-14 2020-09-14 一种冰下无人潜航器测距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010959785.0A CN112083427B (zh) 2020-09-14 2020-09-14 一种冰下无人潜航器测距方法

Publications (2)

Publication Number Publication Date
CN112083427A CN112083427A (zh) 2020-12-15
CN112083427B true CN112083427B (zh) 2023-09-19

Family

ID=73737653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010959785.0A Active CN112083427B (zh) 2020-09-14 2020-09-14 一种冰下无人潜航器测距方法

Country Status (1)

Country Link
CN (1) CN112083427B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731408A (zh) * 2020-12-31 2021-04-30 青岛海纳水下信息技术有限公司 矢量吊放声纳目标探测方法、反潜系统以及反潜方法
CN112986902B (zh) * 2021-02-23 2022-07-19 自然资源部第三海洋研究所 单检波器跨冰层对水中宽带声源分频段方位估计方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264948A (ja) * 1996-03-27 1997-10-07 Nec Corp 水中航走体検出装置
CN104535989A (zh) * 2015-01-09 2015-04-22 哈尔滨工程大学 浅海多途声信号分解方法
JP2015081831A (ja) * 2013-10-22 2015-04-27 株式会社国際電気通信基礎技術研究所 音源位置推定装置、移動体および移動体の制御方法
KR101627821B1 (ko) * 2015-12-03 2016-06-07 알피니언메디칼시스템 주식회사 가상음원 기반 초음파 집속방법 및 이를 이용한 초음파 장치
CN107678032A (zh) * 2017-07-21 2018-02-09 哈尔滨工程大学 一种基于虚拟收发信标的单信标测距定位方法
DE102016116821A1 (de) * 2016-09-08 2018-03-08 Atlas Elektronik Gmbh Verfahren zum Übertragen von Sonardaten an eine Auswerteeinheit einer Sonaranlage eines Unterwasserfahrzeugs sowie Sonaranlage dafür
CN110865359A (zh) * 2019-11-06 2020-03-06 天津大学 一种基于接收信号强度的水声测距方法
CN111427009A (zh) * 2020-04-19 2020-07-17 中国电子科技集团公司电子科学研究院 一种遥控无人潜航器水下定位方法及系统
CN111458008A (zh) * 2020-04-16 2020-07-28 浙江大学 基于单固定水听器和单移动声源的海洋地声参数反演方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT109485A (pt) * 2016-06-23 2017-12-26 Inst Politécnico De Leiria Método e aparelho de criação de um cenário tridimensional

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264948A (ja) * 1996-03-27 1997-10-07 Nec Corp 水中航走体検出装置
JP2015081831A (ja) * 2013-10-22 2015-04-27 株式会社国際電気通信基礎技術研究所 音源位置推定装置、移動体および移動体の制御方法
CN104535989A (zh) * 2015-01-09 2015-04-22 哈尔滨工程大学 浅海多途声信号分解方法
KR101627821B1 (ko) * 2015-12-03 2016-06-07 알피니언메디칼시스템 주식회사 가상음원 기반 초음파 집속방법 및 이를 이용한 초음파 장치
DE102016116821A1 (de) * 2016-09-08 2018-03-08 Atlas Elektronik Gmbh Verfahren zum Übertragen von Sonardaten an eine Auswerteeinheit einer Sonaranlage eines Unterwasserfahrzeugs sowie Sonaranlage dafür
CN107678032A (zh) * 2017-07-21 2018-02-09 哈尔滨工程大学 一种基于虚拟收发信标的单信标测距定位方法
CN110865359A (zh) * 2019-11-06 2020-03-06 天津大学 一种基于接收信号强度的水声测距方法
CN111458008A (zh) * 2020-04-16 2020-07-28 浙江大学 基于单固定水听器和单移动声源的海洋地声参数反演方法
CN111427009A (zh) * 2020-04-19 2020-07-17 中国电子科技集团公司电子科学研究院 一种遥控无人潜航器水下定位方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
一种基于大深度矢量水听器的深海直达波区近水面声源定位方法;孙梅;周士弘;李整林;;中国科学:物理学 力学 天文学(第09期);全文 *
多途环境中的动目标距离深度联合估计;生雪莉,陈晓忠,惠俊英,梁国龙;哈尔滨工程大学学报(第05期);全文 *
虚源法辅助的高效波导不变量被动测距技术;刘凇佐,周佳琼,乔钢;信号处理;第35卷(第9期);第1572-1578页 *

Also Published As

Publication number Publication date
CN112083427A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN112083427B (zh) 一种冰下无人潜航器测距方法
CN112083404B (zh) 一种基于多途特征匹配的单矢量水听器声源深度估计方法
CN101769778B (zh) 港口航道水深实时监测方法及系统
CN104808208A (zh) 一种基于激光声源探测水下目标方位及尺寸的测量系统及其测量方法
CN104407340A (zh) 拖曳线列阵阵形标定装置及方法
CN110703202B (zh) 基于多声学波浪滑翔机和水面无人艇的水下脉冲声定位系统
CN109861762B (zh) 一种基于声-光的跨介质隐蔽通信系统和方法
CN103323815A (zh) 一种基于等效声速的水下声学定位方法
CN102508247B (zh) 基于射线声学的三维倾斜海底参数快速测量方法
CN108680234A (zh) 一种跨冰层介质的水深测量方法
CN104133217A (zh) 一种水下运动目标与水流的三维速度联合测定方法及装置
WO2022233169A1 (zh) 非规则轨迹水中运动目标前向声散射多普勒频移计算方法
KR20150068237A (ko) 수중위치 추정 시스템 및 방법
CN105116371A (zh) 一种基于连续发射调频信号的目标定位方法与装置
Bezotvetnykh et al. Experimental studies of pulsed signal propagation from the shelf to deep sea
CN110907937B (zh) 一种基于“t”型阵的掩埋物合成孔径三维成像方法
CN113126029B (zh) 适用于深海可靠声路径环境的多传感器脉冲声源定位方法
Rui et al. Application of Sub-Bottom Profiler to Study Riverbed Structure and Sediment Density
Gao et al. Underwater acoustic positioning system based on propagation loss and sensor network
Stanway Biangunilateration using azimuth, elevation, and depth difference to localize submerged assets
CN116953616B (zh) 一种对空中目标的跨冰层三维声学定位方法和装置
CN217483477U (zh) 用于测量河道淤泥厚度的无人船系统
CN109901174B (zh) 高速运动目标入水时刻的估计方法
Gao et al. New acoustic positioning system for an underwater robot using multiple frequencies
Fu et al. Development of a new underwater positioning system based on sensor network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant