CN112083278A - 一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法 - Google Patents

一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法 Download PDF

Info

Publication number
CN112083278A
CN112083278A CN202010853477.XA CN202010853477A CN112083278A CN 112083278 A CN112083278 A CN 112083278A CN 202010853477 A CN202010853477 A CN 202010853477A CN 112083278 A CN112083278 A CN 112083278A
Authority
CN
China
Prior art keywords
lightning
energy
fault
fault current
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010853477.XA
Other languages
English (en)
Inventor
束洪春
于永波
董俊
王芮
宋健
常勇
朱亮
刘俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010853477.XA priority Critical patent/CN112083278A/zh
Publication of CN112083278A publication Critical patent/CN112083278A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Abstract

本发明涉及一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法,属于电力系统继电保护技术领域。本发明通过MATLAB和PSCAD联合仿真在配电网的一条馈线上设置直击雷、感应雷过电压引起的单相接地故障作为故障馈线,提取该馈线单相接地故障电流,运用小波包分解,得到不同频段上的小波能量占比分布,根据故障电流小波能量在频段上分布的明显差异,进而来判断直接雷和感应雷。本发明可利用故障线路的单相接地电流在频段上分布的差异,辨识直击雷和感应雷故障,简化了判断过程,且判断结果真实可靠。

Description

一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨 识方法
技术领域
本发明涉及一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法,属于电力系统继电保护技术领域。
背景技术
目前的中低压配电网络通常采用以中性点不接地、中性点经消弧线圈接地为主的小电流接地运行方式。单相接地故障是小电流接地系统中出现频率最高的故障类型,由于配电线路的绝缘水平较低,线路易受到雷击影响产生雷电过电压,随着电缆的投入,雷击建弧率也进一步提高,进而形成单相接地故障。运行经验表明,雷电过电压导致的故障是配电线路故障的主要原因之一。雷电过电压又可以分为直击雷过电压和感应雷过电压,配电网大部分受到感应雷过电压的影响。直击雷一般指雷击导线,然后在导线中产生过电压。感应雷一般指雷击大地或周围建筑物,由于静电感应和电磁感应,在导线中产生过电压。因此,辨识感应雷和直击雷对配电网防雷和雷害风险评估具有重要的意义。
运行经验表明,大部分直击雷过电压会导致线路短路,但是雷击导线的雷电流并不可控,一些小的雷电流只会引起单相接地故障,这时和感应雷过电压如何区分就有很大意义。仿真表明直击雷、感应雷过电压随着雷电流的增大,过电压只是幅值上的增大,并不会引起相位变化,因此可以通过检测故障电流在频段上表现的差异来辨识直击雷和感应雷。
发明内容
本发明要解决的技术问题是提供一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法,用以辨识直击雷和感应雷过电压引起的单相接地故障,对配电网防雷和雷害风险评估有着积极的意义。
本发明的技术方案是:一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法,当配电网直击雷、感应雷过电压引起的单相接地故障时,对故障电流使用小波包分解,根据故障电流小波暂态能量在频段上分布的明显差异,可以有效辨识直接雷和感应雷。包括如下步骤:
Step1:通过MATLAB和PSCAD联合仿真在配电网的一条馈线上设置直击雷、感应雷过电压引起的单相接地故障,并于测量点提取出该故障馈线单相接地故障电流。
Step2:截取故障发生前2ms,故障发生后5ms,总共7ms的故障电流数据。
Step3:运用小波包程序对总共7ms的故障电流数据进行7层分解,小波基选择“db10”,将原信号分解为128个频段,求取这128个频段所对应的小波系数能量,各频段能量为:
Figure BDA0002645607060000021
式中,E(j,k)为小波包分解后第(j,k)子频段下的系数,总共有n个系数。
各个子频段的能量因子定义为该频段能量占总能量的比例:
Figure BDA0002645607060000022
式中,E表示信号各个子频段能量和,p(j,k)为小波包分解后第(j,k)子频段能量占总能量的比例。
Step4:根据雷击和非雷击引起的单相接地故障电流在频段上能量分布的差异,选取前64个频段,判定高频能量占比高的为雷击故障,高频能量占比低的为非雷击故障。
本发明的有益效果是:
1、通过理论分析及仿真表明,可利用故障线路的单相接地电流在频段上分布的差异,辨识直击雷和感应雷故障,简化了判断过程,且判断结果真实可靠。
2、根据故障成因的辨识结果,对配电网防雷具有重要意义。
3、本发明具有一定的抗过渡电阻能力,随着过渡电阻的升高,区分效果更明显。
附图说明
图1是本发明配电网系统结构图;
图2是本发明实施例1、2、3中直击雷过电压图;
图3是本发明实施例1、2、3中感应雷过电压图;
图4是本发明实施例1中感应雷故障电流图;
图5是本发明实施例1中直击雷故障电流图;
图6是本发明实施例1中感应雷故障前2ms,故障后5ms电流图;
图7是本发明实施例1中直击雷故障前2ms,故障后5ms电流图;
图8是本发明实施例1中感应雷故障电流小波能量分布图;
图9是本发明实施例1中直击雷故障电流小波能量分布图;
图10是本发明实施例2中感应雷故障电流图;
图11是本发明实施例2中直击雷故障电流图;
图12是本发明实施例2中感应雷故障前2ms,故障后5ms电流图;
图13是本发明实施例2中直击雷故障前2ms,故障后5ms电流图;
图14是本发明实施例2中感应雷故障电流小波能量分布图;
图15是本发明实施例2中直击雷故障电流小波能量分布图;
图16是本发明实施例3中感应雷故障电流图;
图17是本发明实施例3中直击雷故障电流图;
图18是本发明实施例3中感应雷故障前2ms,故障后5ms电流图;
图19是本发明实施例3中直击雷故障前2ms,故障后5ms电流图;
图20是本发明实施例3中感应雷故障电流小波能量分布图;
图21是本发明实施例3中直击雷故障电流小波能量分布图。
具体实施方式
首先利用PSCAD/EMTDC建立如图1所示的配电网仿真模型,110kV/10kV的变电所共有6回出线,馈线L1、L2、L4、L6为架空线路,馈线L3和L5是纯电缆线路。其中,架空馈线的正序阻抗为:R1=0.45Ω/km,L1=1.172mH/km,C1=6.1nF/km,零序阻抗为:R0=0.7Ω/km,L0=3.91mH/km,C0=3.8nF/km;电缆馈线的正序阻抗为:R1=0.075Ω/km,L1=0.254mH/km,C1=318nF/km,零序阻抗为:R0=0.102Ω/km,L0=0.892mH/km,C0=212nF/km。直击雷与感应雷电流都取5kA,感应雷雷击点与线路水平距离为50m。该配电系统的中性点从母线的Z字型接地变压器引出,经消弧线圈并联小电阻接地,当开关K1闭合时,消弧线圈投入,由不接地方式变为经消弧线圈接地的模式;当开关K2闭合时,变为经小电阻接地。消弧线圈的补偿方式为过补偿,系统采样频率为50kHz。
实施例1:
(1)假设在距离母线4公里处的线路L1上发生直击雷、感应雷过电压,过电压波形如图2、图3所示,引起的电弧接地故障电流如图4、图5所示。
(2)截取故障发生前2ms,故障发生后5ms,总共7ms的故障电流数据如图6、图7所示。
(3)运用MTALAB小波包程序对总共7ms的故障电流数据进行7层分解,只取前64个频段得到故障电流在每一个频段上的能量占比,如图8、图9所示。
(4)感应雷故障电流小波暂态能量主要分布在频段(7,0),其余频段占比仅为41%。而直击雷故障电流小波暂态能量在频段(7,0)占比低,其余频段占比为70%。所以,根据直击雷故障电流高频能量占比高,可以准确判断直击雷和感应雷引发的故障。
实施例2:
(1)假设在距离母线4公里处的线路L1上发生直击雷、感应雷过电压,过电压波形如图2、图3所示,引起的电弧经50Ω过渡电阻接地故障电流如图10、图11所示。
(2)截取故障发生前2ms,故障发生后5ms,总共7ms的故障电流数据如图12、图13所示。
(3)运用MTALAB小波包程序对总共7ms的故障电流数据进行7层分解,只取前64个频段得到故障电流在每一个频段上的能量占比,如图14、图15所示。
(4)感应雷故障电流小波暂态能量主要分布在频段(7,0),其余频段占比为59.76%。而直击雷故障电流小波暂态能量在频段(7,0)占比较低,其余频段占比为96.88%。所以,根据直击雷故障电流高频能量占比高,可以准确判断直击雷和感应雷引发的故障。
实施例3:
(1)假设在距离母线4公里处的线路L1上发生直击雷、感应雷过电压,过电压波形如图2、图3所示,引起的电弧经100Ω过渡电阻接地故障电流如图16、图17所示。
(2)截取故障发生前2ms,故障发生后5ms,总共7ms的故障电流数据如图18、图19所示。
(3)运用MTALAB小波包程序对总共7ms的故障电流数据进行7层分解,只取前64个频段得到故障电流在每一个频段上的能量占比,如图20、图21所示。
(4)感应雷故障电流小波暂态能量主要分布在频段(7,0),其余频段占比仅为59.89%。而直击雷故障电流小波暂态能量在频段(7,0)占比较低,其余频段占比为98.31%。所以,根据直击雷故障电流高频能量占比高,可以准确判断直击雷和感应雷引发的故障。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (1)

1.一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法,其特征在于:
Step1:通过MATLAB和PSCAD联合仿真在配电网的一条馈线上设置直击雷、感应雷过电压引起的单相接地故障,并于测量点提取出该故障馈线单相接地故障电流;
Step2:截取故障发生前2ms,故障发生后5ms,总共7ms的故障电流数据;
Step3:运用小波包程序对总共7ms的故障电流数据进行7层分解,小波基选择“db10”,将原信号分解为128个频段,求取这128个频段所对应的小波系数能量,各频段能量为:
Figure FDA0002645607050000011
式中,E(j,k)为小波包分解后第(j,k)子频段下的系数,总共有n个系数;
各个子频段的能量因子定义为该频段能量占总能量的比例:
Figure FDA0002645607050000012
式中,E表示信号各个子频段能量和,p(j,k)为小波包分解后第(j,k)子频段能量占总能量的比例;
Step4:根据雷击和非雷击引起的单相接地故障电流在频段上能量分布的差异,选取前64个频段,判定高频能量占比高的为雷击故障,高频能量占比低的为非雷击故障。
CN202010853477.XA 2020-08-23 2020-08-23 一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法 Pending CN112083278A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010853477.XA CN112083278A (zh) 2020-08-23 2020-08-23 一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010853477.XA CN112083278A (zh) 2020-08-23 2020-08-23 一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法

Publications (1)

Publication Number Publication Date
CN112083278A true CN112083278A (zh) 2020-12-15

Family

ID=73728971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010853477.XA Pending CN112083278A (zh) 2020-08-23 2020-08-23 一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法

Country Status (1)

Country Link
CN (1) CN112083278A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881789A (zh) * 2021-04-08 2021-06-01 中车青岛四方机车车辆股份有限公司 一种过电压信号识别方法、装置、介质及车辆
CN113671293A (zh) * 2021-08-25 2021-11-19 昆明同弘瑞能电力科技有限公司 一种配电线路雷击故障性质判别方法、系统、设备及终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290336A (zh) * 2008-06-18 2008-10-22 昆明理工大学 一种交流输电线路雷电绕击与反击的识别方法
CN101592691A (zh) * 2008-05-30 2009-12-02 王巨丰 输电线路雷电绕击、反击判别器
CN104181376A (zh) * 2014-08-20 2014-12-03 国家电网公司 基于输电线路雷电压波形的雷击种类识别方法
CN106443335A (zh) * 2016-09-20 2017-02-22 广西电网有限责任公司钦州供电局 雷击故障识别方法及系统
CN107015109A (zh) * 2017-03-22 2017-08-04 贵州电网有限责任公司输电运行检修分公司 一种基于opgw的输电线路感应雷与直击雷的识别方法
CN107255743A (zh) * 2017-05-03 2017-10-17 昆明理工大学 一种基于能谱相似度的特高压直流输电线路雷击故障识别方法
CN108205662A (zh) * 2017-12-29 2018-06-26 国网上海市电力公司 基于皮尔逊算法的输电线路雷电反击识别方法
CN108845177A (zh) * 2018-07-18 2018-11-20 广东电网有限责任公司 一种用于配电网的雷击监测与识别方法、装置和设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592691A (zh) * 2008-05-30 2009-12-02 王巨丰 输电线路雷电绕击、反击判别器
CN101290336A (zh) * 2008-06-18 2008-10-22 昆明理工大学 一种交流输电线路雷电绕击与反击的识别方法
CN104181376A (zh) * 2014-08-20 2014-12-03 国家电网公司 基于输电线路雷电压波形的雷击种类识别方法
CN106443335A (zh) * 2016-09-20 2017-02-22 广西电网有限责任公司钦州供电局 雷击故障识别方法及系统
CN107015109A (zh) * 2017-03-22 2017-08-04 贵州电网有限责任公司输电运行检修分公司 一种基于opgw的输电线路感应雷与直击雷的识别方法
CN107255743A (zh) * 2017-05-03 2017-10-17 昆明理工大学 一种基于能谱相似度的特高压直流输电线路雷击故障识别方法
CN108205662A (zh) * 2017-12-29 2018-06-26 国网上海市电力公司 基于皮尔逊算法的输电线路雷电反击识别方法
CN108845177A (zh) * 2018-07-18 2018-11-20 广东电网有限责任公司 一种用于配电网的雷击监测与识别方法、装置和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
代杰杰等: "基于雷电行波时域特征的输电线路雷击类型辨识方法", 《电工技术学报》 *
孙伟忠等: "基于雷电流测量的线路雷击类型判断方法", 《南方电网技术》 *
黄然等: "基于能量分布的特高压直流输电线路雷电暂态识别方法", 《电气自动化》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881789A (zh) * 2021-04-08 2021-06-01 中车青岛四方机车车辆股份有限公司 一种过电压信号识别方法、装置、介质及车辆
CN113671293A (zh) * 2021-08-25 2021-11-19 昆明同弘瑞能电力科技有限公司 一种配电线路雷击故障性质判别方法、系统、设备及终端
CN113671293B (zh) * 2021-08-25 2024-03-15 昆明同弘瑞能电力科技有限公司 一种配电线路雷击故障性质判别方法、系统、设备及终端

Similar Documents

Publication Publication Date Title
Zhang et al. A novel traveling wave protection method for DC transmission lines using current fitting
CN104319733A (zh) 变压器中性点接阻抗装置及其多用途直流偏磁防护方法
Luo et al. Non-unit transient based boundary protection for UHV transmission lines
CN109188193B (zh) 一种基于特征频带收敛性闵氏距离的配电网故障选线方法
CN112083278A (zh) 一种基于站端故障电流宽频检测的配电网直击雷与感应雷辨识方法
CN112069691A (zh) 一种基于避雷器动作电流频带分析的配电网直击雷与感应雷辨识方法
CN112162173A (zh) 一种基于故障电流频带分布差异的配电网雷击与非雷击故障辨识方法
CN112904233A (zh) 基于地线电流无功分量的接地故障定位方法和装置
CN112083269A (zh) 一种基于电压相关性分析的10kV配电网雷击过电压辨识方法
Jin-feng et al. Identification of lightning disturbance in ultra-high-speed transmission line protection
Cui et al. Experimental Research on Typical Single-Phase High Resistance Grounding Fault Detection Methods in Resonant Grounding Distribution System
Novizon et al. Effect of surge arrester lead length on 20kV distribution transformer protection
Pang Adopting Differential Lightning Protection Measures to Reduce Simultaneous Trip Probability of 220 kV Double-Circuit Transmission Line on the Same Tower
Xie et al. Lightning Overvoltage Simulation Research of Typical 35kV Overhead Lines
Jiang et al. Backflashover rate of quadruple-circuit transmission lines due to first and subsequent return strokes
You et al. Lightning model for HVDC transmission lines
CN108414843B (zh) 基于光学集成电场传感器的直击雷和感应雷的判别方法
Li et al. Distinguish between lightning strikes and faults using wavelet-multi resolution signal decomposition
Zhang et al. The Investigation of the Lightning Overvoltage of Secondary Cable of Substation
CN201174587Y (zh) 电力、电子(通信)设备及网络大接地电阻接地分配装置
Zhang et al. Analysis and identification method of transient overvoltage coupling characteristics of secondary equipment in substation caused by induced lightning
Saran et al. Performance analysis of medium voltage overhead distribution line against lightning
Zhai et al. Study on Calculation of Lightning Intrusive Wave Overvoltage in 750kV AIS Distribution Swtichgear
Yin et al. Research on Anti-interfering Capability of Ultra-highspeed Transient-based Protection for Transmission Line
Hosseini et al. Reliability Analysis of Surge Arrester Location Effect in High voltage substations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201215