CN112082499A - 形变测量系统、测量形变的方法及测量头 - Google Patents

形变测量系统、测量形变的方法及测量头 Download PDF

Info

Publication number
CN112082499A
CN112082499A CN202010961354.8A CN202010961354A CN112082499A CN 112082499 A CN112082499 A CN 112082499A CN 202010961354 A CN202010961354 A CN 202010961354A CN 112082499 A CN112082499 A CN 112082499A
Authority
CN
China
Prior art keywords
light
optical
measuring
signal light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010961354.8A
Other languages
English (en)
Other versions
CN112082499B (zh
Inventor
吴冠豪
周镭
陈芳
张瑞雪
周思宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Beijing Institute of Space Research Mechanical and Electricity
Original Assignee
Tsinghua University
Beijing Institute of Space Research Mechanical and Electricity
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Beijing Institute of Space Research Mechanical and Electricity filed Critical Tsinghua University
Priority to CN202010961354.8A priority Critical patent/CN112082499B/zh
Publication of CN112082499A publication Critical patent/CN112082499A/zh
Application granted granted Critical
Publication of CN112082499B publication Critical patent/CN112082499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • G01B9/02028Two or more reference or object arms in one interferometer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供了一种形变测量系统,包括双光梳光源、测距模块、测量光路固定部分、光电探测器,其中所述双光梳光源包括两个具有微小重频差的光频梳,其中第一光频梳发射出信号光用于测距,第二光频梳发射出本振光用于采样;所述测距模块接收所述双光梳光源发出的光束,并将所述信号光输出到所述测量光路固定部分,接收所述信号光从测量光路固定部分反射的回波,将所述本振光与所述反射回波耦合,输出到所述光电探测器上;所述测量光路固定部分固定在待测目标上,将所述信号光分为两路以测量测量臂和参考臂的光程差;所述光电探测器配置成接收所述测距模块输出的耦合光。

Description

形变测量系统、测量形变的方法及测量头
技术领域
本发明大致涉及光学精密计量技术领域,尤其涉及一种使用双光梳光源的形变测量系统、测量形变的方法及测量头结构。
背景技术
在航空航天和高端制造领域,许多大型零件需要进行稳定性测试,即测量经历特殊环境条件后零件的形变,以评价零件稳定性。这些形变测量需要可重复、高精度的测量设备,例如航空领域空间相机次镜组件和前镜筒组件的稳定性测试,需要实现亚微米级精度的测量。
而传统的激光干涉仪进行高精度测量时,由于受到相位模糊的影响,无法实现断光续接,只能通过增量式测量以实现相位的连续累积从而实现长距离观测。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于现有技术的至少一个缺陷,发明人提出了一种将迈克尔逊干涉仪的测量臂、参考臂结构与双光梳光源相结合的技术方案,本发明提供一种形变测量系统,包括双光梳光源、测距模块、测量光路固定部分、光电探测器,其中
所述双光梳光源包括两个具有微小重频差的光频梳,其中第一光频梳发射出信号光用于测距,第二光频梳发射出本振光用于采样;
所述测距模块接收所述双光梳光源发出的光束,并将所述信号光输出到所述测量光路固定部分,接收所述信号光从测量光路固定部分反射的回波,将所述本振光与所述反射回波耦合,输出到所述光电探测器上;
所述测量光路固定部分固定在待测目标上,将所述信号光分为两路以测量测量臂和参考臂的光程差;
所述光电探测器配置成接收所述测距模块输出的耦合光。
根据本发明的一个方面,其中所述测量光路固定部分包括测量头模块和目标角锥,
其中所述测量头模块包括:
光纤准直镜,配置成与所述测距模块通过光纤连接,接收所述信号光准直后出射;
分束镜,配置成接收所述光纤准直镜出射的信号光,部分透射所述信号光成为测量光,部分反射所述信号光为参考光;
参考臂角锥,配置成接收所述分束镜反射的参考光,并将所述参考光沿原光路返回;
所述目标角锥配置成接收所述分束镜透射的测量光,并将所述测量光反射。
根据本发明的一个方面,其中所述光纤准直镜、所述分束镜、所述参考臂角锥通过顶丝固定,并可通过调节顶丝来调节角度。
根据本发明的一个方面,其中所述测距模块由全保偏光纤结构组成,包括:
第一起偏器,配置成接收所述第一光频梳发出的信号光并将其过滤为偏振的信号光;
第二起偏器,配置成接收所述第二光频梳发出的本振光并将其过滤为偏振的本振光;
环形器,配置成接收所述偏振的信号光,并将所述偏振的信号光输出到所述测量光路固定部分,接收所述偏振的信号光从测量光路固定部分反射的回波,并将所述反射回波输出;
耦合器,配置成接收所述偏振的本振光和所述环形器输出的反射回波,并将所述偏折的本振光与所述反射回波耦合;
带通滤波器,配置成接收所述耦合光,进行带通滤波后输出到所述光电探测器上。
根据本发明的一个方面,其中所述带通滤波器的带通范围小于fr1*fr2/2(Δfr),其中所述第一光频梳的重频为fr1,所述第二光频梳的重频为fr2,其重频之差为Δfr
根据本发明的一个方面,还包括能量放大模块,所述能量放大模块接收所述第一光频梳发出的信号光,放大后输入到所述测距模块。
根据本发明的一个方面,其中所述能量放大模块包括偏振控制器和掺铒光纤放大器。
根据本发明的一个方面,还包括处理单元,所述处理单元接收所述光电探测器的输出信号并配置成根据以下方式测量绝对距离值L:
Figure BDA0002680657600000031
其中υg为光脉冲的群速度,Δt为测量干涉信号和参考干涉信号之间的时间延迟,fr1为所述信号光的重频,Δfr为所述信号光与所述本振光的重频差。
本发明还提供一种使用如上所述的形变测量系统测量形变的方法,包括:
通过所述双光梳光源发射两个具有微小重频差的光频梳脉冲,其中所述第一光频梳发射出信号光用于测距,所述第二光频梳发射出本振光用于采样;
通过所述测距模块接收所述双光梳光源发出的光束,并将所述信号光输出到所述测量光路固定部分,接收所述信号光从测量光路固定部分反射的回波,将所述本振光与所述反射回波耦合,输出到所述光电探测器上;
通过将所述测量光路固定部分固定在待测目标上,通过所述测量光路固定部分将所述信号光分为两路,以测量测量臂光程在所述待测目标上的变化;
通过所述光电探测器接收所述测距模块输出的耦合光。
根据本发明的另一个方面,其中所述测量光路固定部分包括测量头模块和目标角锥,所述测量头模块包括光纤准直镜、分束镜和参考臂角锥,所述方法还包括:
通过所述光纤准直镜接收所述测距模块输出的信号光,准直后出射;
通过所述分束镜接收所述光纤准直镜出射的信号光,部分透射所述信号光成为测量光,部分反射所述信号光为参考光;
通过所述参考臂角锥接收所述分束镜反射的参考光,并将所述参考光沿原光路返回;
通过所述目标角锥接收所述分束镜透射的测量光,并将所述测量光反射。
本发明还提供一种测量头,包括:
主体;
准直镜,设置在所述主体内,配置成接收所述入射光,准直后出射准直光;
分束镜,设置在所述主体内并位于所述准直镜的光路下游,配置成接收所述准直镜出射的准直光,将所述准直光部分透射,部分反射;
参考臂角锥,设置在所述主体内并位于所述分束镜的光路下游,配置成接收所述分束镜反射的准直光,并将所述准直光沿原光路返回。
本发明的优选实施例提供了一种将迈克尔逊干涉仪的测量臂、参考臂结构与双光梳光源相结合的形变测量系统,可以实现非模糊范围数米内的绝对距离测量,精度可达到亚微米量级。相比传统的迈克尔逊干涉仪增量式的测量模式,使用双光梳光源的绝对距离测量可以做到在断光后重新测量,这在形变测量的应用中是至关重要的。本发明的优选实施例还提供一种可用于形变测量系统的测量头结构,该测量头结构将迈克尔逊干涉光路的参考臂耦合在测量头的主体内,使测量头结构紧凑,便于安装,可以直接安装在待测目标上。上述形变测量系统及测量头结构,在航空航天、高端制造等众多领域均有良好的应用前景。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1示意性地示出了根据本发明的一个优选实施例的形变测量系统;
图2示意性地示出了根据本发明的一个优选实施例使用双光梳光源结合迈克尔逊干涉光路结构进行绝对距离测量的原理;
图3示出了根据本发明的一个优选实施例的测量光路固定部分;
图4示出了根据本发明的一个优选实施例的测量头的内部结构;
图5示出了根据本发明的一个优选实施例的测量头的前视图、后视图、侧视图和一定倾角的俯视图;
图6示意性地示出了根据本发明的一个优选实施例的形变测量系统;
图7示意性地示出了根据本发明的一个优选实施例的形变测量系统;
图8示出了根据本发明的一个优选实施例的测量形变的方法。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的实施例进行说明,应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
根据本发明的一个优选实施例,如图1所示,本发明提供一种形变测量系统10,包括双光梳光源11、测距模块12、测量光路固定部分13和光电探测器14。其中双光梳光源11为系统光源,包括两台具有微小重频差的光频梳11-1、11-2,第一光频梳11-1发射出信号光L1用于测距,第二光频梳11-2发射出本振光L2用于采样。测距模块12接收双光梳光源11发出的光束,将信号光L1输出到测量光路固定部分13,并接收信号光L1从测量光路固定部分13反射的回波L1',将本振光L2与该反射回波L1'耦合,输出到光电探测器14上。测距模块12和光电探测器14共同构成测量光路可动部分。测量光路固定部分13固定在待测目标上,将信号光L1分为两路以测量测量臂和参考臂的光程差。光电探测器14配置成接收测距模块12输出的耦合光L3。
双光梳光源11采用两个具有微小重频差的光频梳11-1、11-2构建干涉测距系统(形变测量系统10),光频梳11-1的重频为fr1,光频梳11-2的重频为fr2,其重频之差为Δfr。光梳11-1发出的光为信号光L1,通过迈克尔逊干涉光路分为参考脉冲L1-1和测量脉冲L1-2,光梳11-2发出的光为本振光L2,用于采样。
使用双光梳光源进行绝对距离测量的原理如图2所示,由于信号光的脉冲时间周期(Tr1=1/fr1)和本振光的脉冲周期(Tr2=1/fr2)具有微小差别,从而每经过一个本振光脉冲时间周期会产生ΔT=Δfr/(fr1·fr2)的时间滑移,即由本振光对信号光进行线性光采样。随着脉冲相对位置的周期性变化,假定Tupdate时间内恰好有m个本振光脉冲与m+1个信号光脉冲,则Tupdate=m/(fr1+Δfr)=(m+1)/fr1,即上述采样过程以时间Tupdate=1/Δfr周期性出现。在每个采样周期内,出现一对参考干涉信号(IR)和测量干涉信号(IM)。光电探测器将光信号转换为电信号,该电信号经一个低通滤波器滤出大小在0-fr2/2的频率分量,再由大于或等于fr2的采样频率fclock进行采样。通过后续计算处理得到参考干涉信号与测量干涉信号之间的时间延时Δt。由于原先以Tr1=1/fr1为重复时间的脉冲信号,放大成了Tupdate=1/Δfr的周期信号,放大比例因子为fr1/Δfr,故最终距离值L为:
Figure BDA0002680657600000071
其中υg代表光脉冲的群速度。
根据本发明的一个优选实施例,如图3所示,形变测量系统10的测量光路固定部分13包括测量头模块131和目标角锥132。测量头模块131和目标角锥132始终固定安装在待测目标上,保证测量光程的稳定,通过测量测量臂对应的距离变化量即可测量出待测目标的形变,这种测量可以达到数米范围内的绝对距离测量,误差控制在亚微米数量级以下。图4示出了测量头模块131的内部结构,其中测量头模块131包括:光纤准直镜1311、分束镜1312和参考臂角锥1313。光纤准直镜1311配置成与图1中所示的测距模块12通过光纤连接,接收信号光L1准直后出射。分束镜1312配置成接收光纤准直镜1311出射的信号光L1,部分透射信号光L1成为测量光L1-2,部分反射信号光为参考光L1-1。参考臂角锥1313配置成接收分束镜1312反射的参考光L1-1,并将参考光L1-1沿原光路返回。参考臂角锥1313优选地采用角锥棱镜,通过三个相互正交的反射镜构成,入射光束以任意角度入射都可以实现定向反射,角锥棱镜的特点使反射光平行于入射光,即使角锥移动、晃动,也不影响光束的平行。如图3所示,目标角锥132配置成接收分束镜1312透射的测量光L1-2,并将测量光L1-2反射。测量头模块131内的分束镜1312将信号光L1分为参考光L1-1和测量光L1-2,测量光L1-2入射到目标角锥132上,即形成测量臂。待测目标在该方向的形变量即可通过测量臂光程的变化来测量。被反射后的测量光L1-2以及被反射后的参考光L1-1通过所述分束镜1312,合成为反射回波L1',经过光纤准直镜1311后入射到测距模块12。
根据本发明的一个优选实施例,如图4所示的光纤准直镜1311、分束镜1312和参考臂角锥1313通过顶丝固定,并可通过调节顶丝来调节角度。
图5示出了测量头模块131的正视图、后视图、侧视图和有一定倾斜角度的俯视图。根据本发明的一个优选实施例,本发明提供的测量头131将迈克尔逊干涉光路的参考臂耦合在测量头内,结构紧凑,便于安装,可以直接安装在待测目标上,与双光梳光源的使用相结合,进行干涉测量,可以得到高精度的测量结果。
根据本发明的一个优选实施例,如图6所示,形变测量系统10的测距模块12采用全光纤结构,为了消除光纤形态对偏振态的影响,使用全保偏光纤器件构成测距模块12,其中包括:第一起偏器121、第二起偏器122、环形器123、耦合器124和带通滤波器125。第一起偏器121配置成接收第一光频梳11-1发出的信号光L1并将其过滤为偏振的信号光L1〞。第二起偏器122配置成接收所述第二光频梳11-2发出的本振光L2并将其过滤为偏振的本振光L2〞。环形器123配置成接收偏振的信号光L1〞,并将偏振的信号光L1〞输出到测量光路固定部分13,并接收偏振的信号光L1〞从测量光路固定部分13反射的回波,并将反射回波L1'输出。耦合器124配置成接收偏振的本振光L2〞和环形器123输出的反射回波L1',并将偏振的本振光L2〞与反射回波L1'耦合。带通滤波器125配置成接收耦合光L3,进行带通滤波后输出到光电探测器14上。
在上述优选实施例中,两台光频梳11-1、11-2的输出光都经过起偏器(第一起偏器121、第二起偏器122)后变成线偏振光(L1〞、L2〞),在之后的保偏光纤网络中偏振态均保持线偏振。
根据本发明的一个优选实施例,如图6所示的带通滤波器125的带通范围小于fr1*fr2/2(Δfr),其中所述第一光频梳11-1的重频为fr1,所述第二光频梳11-2的重频为fr2,其重频之差为Δfr
光在光纤中的传播方向如图6中的箭头所示。第一光频梳11-1发出的信号光L1〞经环形器123后输出到测量光路固定部分13,测量光路固定部分13将信号光L1〞分成测量光L1〞-2和参考光L1〞-1,反射回波L1'回到环形器123后在环形器123的另一口输出,与第二光频梳11-2输出的本振光L2〞在耦合器124处合光。耦合器124合光后的光L3通过带通滤波器125进行带通光滤波后打到光电探测器14上,由光电探测器14探测得干涉信号。其中光滤波是为了防止出现周期性混叠即保证双光梳映射结果的唯一性,因此系统使用的带通滤波片的带通范围Δνcomb需要小于fr1fr2/2(Δfr)。
测量光路可动部分(测距模块12、光电探测器14)基于双光梳测距原理,将两台光频梳11-1、11-2的光进行放大、合光、滤波、探测,由于第一光频梳11-1的光作为信号光L1,需要在测量光路固定部分13经过迈克尔逊干涉光路,能量损失较大,因此要先进行能量放大。根据本发明的一个优选实施例,如图7所示,形变测量系统10还包括能量放大模块15,能量放大模块15接收第一光频梳11-1发出的信号光L1,放大后输入到测距模块12。优选地,能量放大模块15包括偏振控制器151和掺铒光纤放大器152。掺铒光纤放大器152可放大第一光频梳11-1的能量,且可通过调整泵浦电流强度和偏振控制器151的偏振态调节能量大小。
根据本发明的一个优选实施例,形变测量系统10还包括处理单元,处理单元接收光电探测器14的输出信号并配置成根据以下方式测量绝对距离值L:
Figure BDA0002680657600000101
其中υg为光脉冲的群速度,Δt为测量干涉信号L1〞-2和参考干涉信号L1〞-1之间的时间延迟,fr1为信号光L1的重频,Δfr为信号光L1与本振光L2的重频差。
根据本发明的一个优选实施例,如图8所示,本发明还提供一种使用如上所述的形变测量系统10测量形变的方法20,包括:
在步骤S201中,通过双光梳光源11发射两个具有微小重频差的光频梳脉冲,其中第一光频梳11-1发射出信号光L1用于测距,第二光频梳11-2发射出本振光L2用于采样。
在步骤S202中,通过测距模块12接收双光梳光源11发出的光束,并将信号光L1输出到测量光路固定部分13,并接收信号光L1从测量光路固定部分13反射的回波,将本振光L2与反射回波L1耦合,输出到光电探测器14上。
在步骤S203中,通过将测量光路固定部分13固定在待测目标上,通过测量光路固定部分13将信号光L1分为两路,以测量测量臂光程在待测目标上的变化。
在步骤S204中,通过光电探测器14接收测距模块12输出的耦合光L3。
根据本发明的一个优选实施例,其中测量光路固定部分13包括测量头模块131和目标角锥132,其中测量头模块131包括光纤准直镜1311、分束镜1312和参考臂角锥1313,形变测量的方法20还包括:
通过光纤准直镜1311接收测距模块12输出的信号光L1,准直后出射;
通过分束镜1312接收光纤准直镜1311出射的信号光L1,部分透射信号光L1成为测量光L1-2,部分反射信号光L1为参考光L1-1;
通过参考臂角锥1313接收分束镜1312反射的参考光L1-1,并将参考光L1-1沿原光路返回;
通过所述目标角锥132接收分束镜1312透射的测量光L1-1,并将测量光L1-1反射。
根据本发明的一个优选实施例,如图4所示,本发明还提供一种测量头模块131的结构,包括:主体131、准直镜1311、分束镜1312和参考臂角锥1313。其中准直镜1311设置在主体131内,配置成接收入射光,准直后出射准直光。分束镜1312设置在主体131内并位于准直镜1311的光路下游,配置成接收准直镜1311出射的准直光,将准直光部分透射,部分反射。参考臂角锥1313设置在主体131内并位于分束镜1312的光路下游,配置成接收分束镜1312反射的准直光,并将准直光沿原光路返回。
本发明的优选实施例提供了一种将迈克尔逊干涉仪的测量臂、参考臂结构与双光梳光源相结合的形变测量系统,可以实现非模糊范围数米内的绝对距离测量,精度可达到亚微米量级。相比传统的迈克尔逊干涉仪无法实现绝对距离测量,使用双光梳光源的绝对距离测量可以做到在断光后重新测量,这在形变测量的应用中是至关重要的。本发明的优选实施例还提供一种可用于形变测量系统的测量头结构,该测量头结构将迈克尔逊干涉光路的参考臂耦合在测量头的主体内,使测量头结构紧凑,便于安装,可以直接安装在待测目标上。上述形变测量系统及测量头结构,在航空航天、高端制造等众多领域均有良好的应用前景。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种形变测量系统,包括双光梳光源、测距模块、测量光路固定部分、光电探测器,其中
所述双光梳光源包括两个具有微小重频差的光频梳,其中第一光频梳发射出信号光用于测距,第二光频梳发射出本振光用于采样;
所述测距模块接收所述双光梳光源发出的光束,并将所述信号光输出到所述测量光路固定部分,接收所述信号光从测量光路固定部分反射的回波,将所述本振光与所述反射回波耦合,输出到所述光电探测器上;
所述测量光路固定部分固定在待测目标上,将所述信号光分为两路以测量测量臂和参考臂的光程差;
所述光电探测器配置成接收所述测距模块输出的耦合光。
2.如权利要求1所述的形变测量系统,其中所述测量光路固定部分包括测量头模块和目标角锥,
其中所述测量头模块包括:
光纤准直镜,配置成与所述测距模块通过光纤连接,接收所述信号光准直后出射;
分束镜,配置成接收所述光纤准直镜出射的信号光,部分透射所述信号光成为测量光,部分反射所述信号光为参考光;
参考臂角锥,配置成接收所述分束镜反射的参考光,并将所述参考光沿原光路返回;
所述目标角锥配置成接收所述分束镜透射的测量光,并将所述测量光反射。
3.如权利要求2所述的形变测量系统,其中所述光纤准直镜、所述分束镜、所述参考臂角锥通过顶丝固定,并可通过调节顶丝来调节角度。
4.如权利要求1-3中任一项所述的形变测量系统,其中所述测距模块由全保偏光纤结构组成,包括:
第一起偏器,配置成接收所述第一光频梳发出的信号光并将其过滤为偏振的信号光;
第二起偏器,配置成接收所述第二光频梳发出的本振光并将其过滤为偏振的本振光;
环形器,配置成接收所述偏振的信号光,并将所述偏振的信号光输出到所述测量光路固定部分,接收所述偏振的信号光从测量光路固定部分反射的回波,并将所述反射回波输出;
耦合器,配置成接收所述偏振的本振光和所述环形器输出的反射回波,并将所述偏折的本振光与所述反射回波耦合;
带通滤波器,配置成接收所述耦合光,进行带通滤波后输出到所述光电探测器上。
5.如权利要求4所述的形变测量系统,其中所述带通滤波器的带通范围小于fr1*fr2/2(Δfr),其中所述第一光频梳的重频为fr1,所述第二光频梳的重频为fr2,其重频之差为Δfr
6.如权利要求1-3中任一项所述的形变测量系统,还包括能量放大模块,所述能量放大模块接收所述第一光频梳发出的信号光,放大后输入到所述测距模块。
7.如权利要求6所述的形变测量系统,其中所述能量放大模块包括偏振控制器和掺铒光纤放大器。
8.如权利要求2或3所述的形变测量系统,还包括处理单元,所述处理单元接收所述光电探测器的输出信号并配置成根据以下方式测量绝对距离值L:
Figure FDA0002680657590000021
其中υg为光脉冲的群速度,Δt为测量干涉信号和参考干涉信号之间的时间延迟,fr1为所述信号光的重频,Δfr为所述信号光与所述本振光的重频差。
9.一种使用如权利要求1-8中任一项所述的形变测量系统测量形变的方法,包括:
通过所述双光梳光源发射两个具有微小重频差的光频梳脉冲,其中所述第一光频梳发射出信号光用于测距,所述第二光频梳发射出本振光用于采样;
通过所述测距模块接收所述双光梳光源发出的光束,并将所述信号光输出到所述测量光路固定部分,接收所述信号光从测量光路固定部分反射的回波,将所述本振光与所述反射回波耦合,输出到所述光电探测器上;
通过将所述测量光路固定部分固定在待测目标上,通过所述测量光路固定部分将所述信号光分为两路,以测量测量臂光程在所述待测目标上的变化;
通过所述光电探测器接收所述测距模块输出的耦合光。
10.如权利要求9所述的方法,其中所述测量光路固定部分包括测量头模块和目标角锥,所述测量头模块包括光纤准直镜、分束镜和参考臂角锥,所述方法还包括:
通过所述光纤准直镜接收所述测距模块输出的信号光,准直后出射;
通过所述分束镜接收所述光纤准直镜出射的信号光,部分透射所述信号光成为测量光,部分反射所述信号光为参考光;
通过所述参考臂角锥接收所述分束镜反射的参考光,并将所述参考光沿原光路返回;
通过所述目标角锥接收所述分束镜透射的测量光,并将所述测量光反射。
11.一种测量头,包括:
主体;
准直镜,设置在所述主体内,配置成接收所述入射光,准直后出射准直光;
分束镜,设置在所述主体内并位于所述准直镜的光路下游,配置成接收所述准直镜出射的准直光,将所述准直光部分透射,部分反射;
参考臂角锥,设置在所述主体内并位于所述分束镜的光路下游,配置成接收所述分束镜反射的准直光,并将所述准直光沿原光路返回。
CN202010961354.8A 2020-09-14 2020-09-14 形变测量系统、测量形变的方法及测量头 Active CN112082499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010961354.8A CN112082499B (zh) 2020-09-14 2020-09-14 形变测量系统、测量形变的方法及测量头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010961354.8A CN112082499B (zh) 2020-09-14 2020-09-14 形变测量系统、测量形变的方法及测量头

Publications (2)

Publication Number Publication Date
CN112082499A true CN112082499A (zh) 2020-12-15
CN112082499B CN112082499B (zh) 2022-08-26

Family

ID=73737775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010961354.8A Active CN112082499B (zh) 2020-09-14 2020-09-14 形变测量系统、测量形变的方法及测量头

Country Status (1)

Country Link
CN (1) CN112082499B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764165A (zh) * 2021-01-12 2021-05-07 北京凯普林光电科技股份有限公司 一种可调式光纤偏振准直镜头
CN113686245A (zh) * 2020-12-25 2021-11-23 深圳市中图仪器股份有限公司 具有保偏光纤的测距系统
CN114136502A (zh) * 2021-11-25 2022-03-04 Oppo广东移动通信有限公司 足端测量装置、足式机器人及足端接触力测量方法
CN115014214A (zh) * 2022-06-15 2022-09-06 深圳市圳阳精密技术有限公司 一种基于fmcw的纳米级厚度测试系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644859A (zh) * 2013-12-16 2014-03-19 中国工程物理研究院流体物理研究所 测量金刚石压砧在极端高温高压条件下形变的装置及方法
CN103822718A (zh) * 2014-03-10 2014-05-28 李剑平 一种成像傅里叶变换光谱测量用扫描干涉仪装置
CN105371777A (zh) * 2015-10-29 2016-03-02 北京交通大学 实时测量物体变形的方法和系统
CN106289090A (zh) * 2016-08-24 2017-01-04 广东工业大学 一种牙科树脂内应变场的测量装置
US20190204443A1 (en) * 2017-12-28 2019-07-04 Industrial Technology Research Institute Optical ranging method, phase difference of light measurement system and optical ranging light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644859A (zh) * 2013-12-16 2014-03-19 中国工程物理研究院流体物理研究所 测量金刚石压砧在极端高温高压条件下形变的装置及方法
CN103822718A (zh) * 2014-03-10 2014-05-28 李剑平 一种成像傅里叶变换光谱测量用扫描干涉仪装置
CN105371777A (zh) * 2015-10-29 2016-03-02 北京交通大学 实时测量物体变形的方法和系统
CN106289090A (zh) * 2016-08-24 2017-01-04 广东工业大学 一种牙科树脂内应变场的测量装置
US20190204443A1 (en) * 2017-12-28 2019-07-04 Industrial Technology Research Institute Optical ranging method, phase difference of light measurement system and optical ranging light source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZEBIN ZHU等: ""Dual-Comb Ranging"", 《ENGINEERING》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686245A (zh) * 2020-12-25 2021-11-23 深圳市中图仪器股份有限公司 具有保偏光纤的测距系统
CN112764165A (zh) * 2021-01-12 2021-05-07 北京凯普林光电科技股份有限公司 一种可调式光纤偏振准直镜头
CN114136502A (zh) * 2021-11-25 2022-03-04 Oppo广东移动通信有限公司 足端测量装置、足式机器人及足端接触力测量方法
CN115014214A (zh) * 2022-06-15 2022-09-06 深圳市圳阳精密技术有限公司 一种基于fmcw的纳米级厚度测试系统及方法

Also Published As

Publication number Publication date
CN112082499B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN112082499B (zh) 形变测量系统、测量形变的方法及测量头
CN102607720B (zh) 一种测量光程的方法和系统
CN108181627B (zh) 基于时域扫描的全光纤双向锁模飞秒激光测距装置及方法
CN109239726B (zh) 一种基于单台双梳飞秒激光器的非合作目标测距系统
WO2018170478A1 (en) Fmcw lidar methods and apparatuses including examples having feedback loops
CN106969714B (zh) 一种精确测量光纤长度的方法
US6549548B2 (en) Interferometric filter wavelength meter and controller
JPH09325005A (ja) 偏位を測定するための装置
CN107917669B (zh) 一种光纤位移传感器解调方法
US5910840A (en) Apparatus and method for interferometric measurements
US9772188B2 (en) Frequency based ring laser sensor
CN104634370B (zh) 一种基于激光器的传感器
CN107796422B (zh) 一种光纤位移传感器解调装置
CN112433221B (zh) 一种基于偏振调制的绝对距离测量装置
JP6763567B2 (ja) 光ファイバセンサ
CN110702090B (zh) 一种高精度无锁区激光陀螺装置及方法
CN104655159A (zh) 一种正交偏振激光器的传感器
US20220316855A1 (en) Dual-comb ranging with long ambiguity-free range
CN110319940A (zh) 高密度等离子体密度测量的激光光纤干涉仪诊断系统
Cheng et al. Fiber interferometer combining sub-nm displacement resolution with miniaturized sensor head
CN101825435A (zh) 一种全光纤位移测量方法及装置
US9837785B2 (en) Polarization laser sensor
WO2021109284A1 (zh) 基于oeo快速切换的大量程、高精度绝对距离测量仪器
Kuhnert et al. Metrology for the micro-arcsecond metrology testbed
EP4279949A1 (en) Distance measuring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant