CN112080482B - Taq DNA polymerase mutant Mut2 and application thereof - Google Patents

Taq DNA polymerase mutant Mut2 and application thereof Download PDF

Info

Publication number
CN112080482B
CN112080482B CN202010982425.2A CN202010982425A CN112080482B CN 112080482 B CN112080482 B CN 112080482B CN 202010982425 A CN202010982425 A CN 202010982425A CN 112080482 B CN112080482 B CN 112080482B
Authority
CN
China
Prior art keywords
leu
ala
glu
arg
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010982425.2A
Other languages
Chinese (zh)
Other versions
CN112080482A (en
Inventor
聂俊伟
瞿志鹏
韩锦雄
曹林
张力军
江明扬
赵芳芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Novozan Biotechnology Co Ltd
Original Assignee
Nanjing Novozan Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Novozan Biotechnology Co Ltd filed Critical Nanjing Novozan Biotechnology Co Ltd
Priority to CN202010982425.2A priority Critical patent/CN112080482B/en
Publication of CN112080482A publication Critical patent/CN112080482A/en
Application granted granted Critical
Publication of CN112080482B publication Critical patent/CN112080482B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/10Nucleotidyl transfering
    • C12Q2521/101DNA polymerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/125Electrophoretic separation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase

Abstract

The invention discloses a Taq DNA polymerase mutant Mut2 and application thereof, wherein the mutant Taq DNA polymerase has amino acid substitutions at one or more of the following amino acid positions in a sequence shown in SEQ ID NO.1, and each substitution is represented by a triplet: letter-number-letter, wherein the number indicates the position of the mutated amino acid, the letter before the number corresponds to the amino acid involved in the mutation, and the letter after the number indicates the amino acid used to replace the amino acid before the number: T386A, a407L, F413Y. The mutant provided by the invention can improve the enzyme tolerance capability by changing the conformation of the enzyme, and is well applied to the amplification of blood samples.

Description

Taq DNA polymerase mutant Mut2 and application thereof
The application is a divisional application of Chinese invention patents with application date of 2019, 10 and 29 months and application number of 201911038688.1 and named as a Taq DNA polymerase mutant and application thereof.
Technical Field
The invention relates to the technical field of biology, in particular to a Taq DNA polymerase mutant Mut2 and application thereof.
Background
The PCR technology is widely applied to a plurality of fields such as genetic disease molecular diagnosis, animal and plant import and export quarantine, clinical examination, food safety monitoring, paternity test, soil microorganism detection and the like. The gene template to be detected is mainly from tissues, saliva, cells, sputum, blood, excrement, soil and the like. The samples such as blood and soil also contain hemoglobin, heme, lactoferrin, IgG, humic acid and the like, and all of these substances have strong inhibitory effects on Taq DNA polymerase. Traditionally, nucleic acids are extracted from these samples and then subjected to PCR amplification. As the detection flux in the field is increasingly large, the traditional method has multiple operation steps, so that the working efficiency is low, time and reagent are consumed, the time and financial cost are high, and the sample size is large, so that the cross contamination is easily generated. Therefore, it is a trend to select direct amplification, and there are many substances that inhibit amplification in a sample without nucleic acid extraction, resulting in amplification failure and false negative results. Therefore, the improvement of the inhibitor-resistant efficacy of amplification reagents is a popular research direction in the molecular biology industry, mainly in the modification of Taq DNA polymerase.
The total length of a coding gene of Taq DNA polymerase is 2496 bases, 832 amino acids are coded, the whole enzyme is divided into three structural domains, 1-291 amino acids at the N end of a protein polypeptide chain of the Taq DNA polymerase form a first structural domain, and the structural domain expresses 5 '-3' exonuclease activity; the C end 424-832 amino acids of the peptide chain form a second structural domain, and the structural domain expresses 5 '-3' polymerase activity; 292-423 amino acids in the middle of the peptide chain form a third domain, which is related to the three-dimensional structure of Taq DNA polymerase.
The following methods are mainly used for modifying and modifying the enzyme: gene mutation, gene fusion, chemical modification, antibody modification, aptamer modification and the like. Wherein, in the aspect of improving the inhibition resistance, a gene mutation method is mainly adopted, and a plurality of reported mutation sites are as follows: E189K, E230K, E507K, H28R, L30R, G38R, H75R, E76G, E76K, E90K, E734K, E734G, D732G, E708Q, E681M, Q680R, H676R, D578N, I553V, etc. Mutations to inhibitors of tolerance, such as: E189K, E230K and E507K can improve the tolerance of Taq DNA polymerase to SYBR Green I dye, whole blood, SDS, guanidine hydrochloride and the like; D452N and D551N can enhance the tolerance of enzyme to heparin; E708Q provides enzyme tolerance to SYBR Green I dye, whole blood and soil. From the reported mutations, it is known that most of the mutation sites are located in the first domain and the second domain, and the alteration of Taq DNA polymerase is achieved by affecting the properties associated with the 5 '-3' exonuclease activity and the 5 '-3' polymerase activity.
Inhibitors affect the amplification reaction mainly by interfering with the cell lysis process, fusing or reducing nucleic acids, or inhibiting the activity of DNA polymerase, most of which are mainly the inhibition of the activity of DNA polymerase. Inhibitors in the blood, such as: hemoglobin, lactoferrin, and the like inhibit amplification by inactivating Taq DNA polymerase or inhibiting its activity, or by trapping/degrading template DNA and primers. At present, gene mutation is carried out in the first domain and the second domain, mutants capable of improving whole blood tolerance are screened, mutation of the third domain is hardly involved, and the method has important significance for research of the third domain.
Disclosure of Invention
The invention aims to provide a Taq DNA polymerase mutant and application thereof in the field of PCR.
The object of the invention can be achieved by the following measures:
the invention provides mutant Taq DNA polymerase, which is characterized in that the mutant has amino acid substitutions at one or more of the following amino acid positions in a sequence shown in SEQ ID NO.1, and each substitution is represented by a triplet: letter-number-letter, wherein the number indicates the position of the mutated amino acid, the letter before the number corresponds to the amino acid involved in the mutation, and the letter after the number indicates the amino acid used to replace the amino acid before the number: T386A, a407L, F413Y.
According to the invention, through screening a mutant of a third structural domain of Taq DNA polymerase, three meaningful mutation sites are found in the third structural domain, wherein the three meaningful mutation sites are respectively as follows: T386A (threonine to alanine), a407L (alanine to leucine), F413Y (phenylalanine to tyrosine). We find that the mutant obtained by simultaneously mutating three sites or mutating two sites has good amplification performance in blood direct amplification, and specifically shows that: strong ability of resisting blood inhibition, high yield and the like.
In a specific embodiment of the invention, the mutant Taq DNA polymerase Taq-Mut is characterized in that the amino acid sequence is shown in SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4 or SEQ ID NO.5, or an amino acid sequence with 80% identity to the shown sequence and Taq DNA polymerase activity; preferably 85% identity, more preferably 90% identity, most preferably 95% identity, even more preferably 99% identity.
The invention also provides a nucleotide sequence for coding the mutant Taq DNA polymerase.
In a specific embodiment of the invention, the nucleotide sequence encoding the mutant Taq DNA polymerase is shown in SEQ ID NO.7, SEQ ID NO.8, SEQ ID NO.9 or SEQ ID NO. 10. It should be noted that, since the same amino acid may be determined by a plurality of different codons, the nucleotide sequence encoding the variant Taq DNA polymerase Taq-Mut may be a nucleotide sequence obtained by mutating one or more nucleotides from the nucleotide sequence of the wild type Taq DNA polymerase shown in SEQ ID NO.6 to form a synonymous mutation, and the nucleotide sequence may also encode the amino acid sequence of the variant Taq DNA polymerase of the present invention. It may also be a synonymous sequence of SEQ ID NO.7, SEQ ID NO.8, SEQ ID NO.9 or SEQ ID NO. 10.
The invention also provides a recombinant vector containing the nucleotide sequence.
The invention also comprises a recombinant cell comprising the nucleotide sequence or the recombinant vector of the invention.
The invention also provides the application of the mutant Taq DNA polymerase, the nucleotide sequence, the recombinant vector or the recombinant cell in the field of biotechnology.
The invention also provides the application of the mutant Taq DNA polymerase, the nucleotide sequence, the recombinant vector or the recombinant cell in the PCR field.
The invention also provides the application of the mutant Taq DNA polymerase, the nucleotide sequence, the recombinant vector or the recombinant cell in the PCR field of samples containing blood.
In one embodiment of the present invention, the blood volume concentration of the sample containing blood may be 10% to 40%, and the inventors have found that the mutant Taq DNA polymerase of the present invention has high tolerance to blood, and can preferably perform PCR amplification in a sample having a blood volume concentration of 30% to 40%, and more preferably, in a sample having a blood volume concentration of 30%.
The invention has the beneficial effects that:
the mutant provided by the invention can improve the enzyme tolerance capability by changing the conformation of the enzyme, and is well applied to the amplification of blood samples. Although the enzyme activity of the mutant Taq DNA polymerase is not enhanced, the mutant Taq DNA polymerase shows good amplification performance when a sample containing high-concentration blood is amplified. Therefore we speculate that: the T386A (threonine mutation to alanine), A407L (alanine mutation to leucine) and F413Y (phenylalanine mutation to tyrosine) mutations selected from the third domain structurally change Taq DNA polymerase, and are mutants capable of changing the conformation of the Taq DNA polymerase, so that the structure of the region which can be originally blocked by the inhibitor is changed, and after the change, the inhibitor can not block the position any more, thereby reducing or eliminating the inhibition of PCR amplification by the inhibitor.
Defining:
gene mutation: the gene mutation can be spontaneous or induced by the change of gene structure caused by the substitution, addition and deletion of base pairs in DNA molecules.
The first domain: 1-291 amino acids at the N-terminal of the protein polypeptide chain of Taq DNA polymerase constitute a first domain expressing 5 '-3' exonuclease activity.
Second domain: the C-terminal 424-832 amino acids of the peptide chain constitute a second domain which expresses 5 '-3' polymerase activity.
A third domain: 292-423 amino acids in the middle of the peptide chain form a third domain, which is related to the three-dimensional structure of Taq DNA polymerase.
Direct blood expansion: the method is used for directly carrying out PCR amplification by taking blood as a template without extracting nucleic acid in the blood, and is used for realizing nucleic acid detection, and hemoglobin, lactoferrin and the like in the blood have an inhibiting effect on PCR.
Drawings
FIG. 1 is the results of amplification of 500bp substrate at different blood concentrations for four mutant Taq and wild type Taq;
FIG. 2 is the results of amplification of 1013bp substrates at different blood concentrations of four mutant Taqs and wild type Taq;
FIG. 3 is the results of amplification of 2000bp substrate by four mutant Taq and wild type Taq at different blood concentrations.
Detailed Description
The present invention will be further described with reference to the following examples, which are intended to illustrate the present invention and not to limit the scope of the present invention, and all simple modifications of the preparation method of the present invention based on the idea of the present invention are within the scope of the present invention. The following examples are experimental methods without specifying specific conditions, and generally follow the methods known in the art. The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified.
EXAMPLE 1 acquisition of four mutants
Using Nanjing Novozam Biotech Co., Ltd
Figure BDA0002688034590000042
Max Master Mix (P515) and
Figure BDA0002688034590000043
the Taq DNA polymerase (SEQ ID NO. 1) was subjected to site-directed mutagenesis by the Ultra One Step Cloning Kit (C115) to obtain a mutant, which was named: mut1, Mut2, Mut3, and Mut 4.
The mutation sites of Mut1 are: T386A, A407L and F413Y (the sequence is shown as SEQ ID NO. 2);
the mutation sites of Mut2 are: T386A and A407L (the sequence is shown as SEQ ID NO. 3);
the mutation sites of Mut3 are: A407L, F413Y (the sequence is shown as SEQ ID NO. 4);
the mutation sites of Mut4 are: T386A and F413Y (the sequence is shown as SEQ ID NO. 5).
The primers used for the Mut1 point mutation are shown in tables 1-2 below:
TABLE 1 Mut1 primer sequences
Figure BDA0002688034590000041
Figure BDA0002688034590000051
TABLE 2 amplification of vectors and inserts of Mut1
Amplification primer pair (P515) Tm(℃)
Insert-01 1-1F+2-1R 60
Vector-01 2-1F+1-1R 60
Insert-01 and Vector-01 were then used
Figure BDA0002688034590000052
The Ultra One Step Cloning Kit (C115) was recombined to obtain Mut 1.
Primers for the Mut2 point mutation are shown in tables 3-4 below:
TABLE 3 Mut2 primer sequences
Primer name 5 '-3' sequence
1-1F CCAACACCGCCCCCGAGGGGGTG
1-1R TCGGGGGCGGTGTTGGAAGGGTCCAG
2-2F GCCCTCCTTTCCGAGAGGCTCTTCGCCAACCTGTGGGGGA
2-2R GGCGAAGAGCCTCTCGGAAAGGAGGGCCCGCTCCC
TABLE 4 amplification of vectors and inserts of Mut2
Amplification primer pair (P515) Tm(℃)
Insert-02 1-1F+2-2R 60
Vector-02 2-2F+1-1R 60
Insert-02 and Vector-02 were then used
Figure BDA0002688034590000053
The Ultra One Step Cloning Kit (C115) was recombined to obtain Mut 2.
Primers for the Mut3 point mutation are shown in tables 5-6 below:
TABLE 5 Mut3 primer sequences
Primer name 5 '-3' sequence
2-1F GCCCTCCTTTCCGAGAGGCTCTACGCCAACCTGTGGGGGA
2-1R GGCGTAGAGCCTCTCGGAAAGGAGGGCCCGCTCCC
TABLE 6 amplification regimen of Mut3
Amplification primer pair (P515) Tm(℃)
Insert-03 2-1F+1-1R 60
Insert-03 was then used
Figure BDA0002688034590000054
The Ultra One Step Cloning Kit (C115) was recombined to obtain Mut 3.
Primers for the Mut4 point mutation are shown in tables 7-8 below:
TABLE 7 Mut4 primer sequences
Figure BDA0002688034590000055
Figure BDA0002688034590000061
TABLE 8 amplification of vectors and inserts of Mut4
Amplification primer pair (P515) Tm(℃)
Insert-04 1-1F+2-3R 60
Vector-04 2-3F+1-1R 60
Insert-04 and Vector-04 were then used
Figure BDA0002688034590000062
The Ultra One Step Cloning Kit (C115) was recombined to obtain Mut 4.
The nucleic acid sequence before mutation of the wild-type Taq DNA polymerase is shown as SEQ ID NO.6, and the nucleic acid sequence after mutation is shown as SEQ ID NO.7(Mut1), SEQ ID NO.8(Mut2), SEQ ID NO.9(Mut3) and SEQ ID NO.10(Mut 4).
Example 2 four mutant Taq antibodies have high blood tolerance
Wild-type Taq and four mutants were formulated into 2 XPCR Mix according to the following formulation to obtain five kinds of 2 XPCR Mix.
2×PCR Mix1:200mM Tris-HCl,100mM KCl,0.8mM dNTP,4mM MgCl2,0.2U/μl Taq;
2×PCR Mix2:200mM Tris-HCl,100mM KCl,0.8mM dNTP,4mM MgCl2,0.2U/μl Mut1;
2×PCR Mix3:200mM Tris-HCl,100mM KCl,0.8mM dNTP,4mM MgCl2,0.2U/μl Mut2;
2×PCR Mix4:200mM Tris-HCl,100mM KCl,0.8mM dNTP,4mM MgCl2,0.2U/μl Mut3;
2×PCR Mix5:200mM Tris-HCl,100mM KCl,0.8mM dNTP,4mM MgCl2,0.2U/μl Mut4。
Five 2 XPCR Mix samples were mixed (50. mu.l reaction system) as in the following Table 20, and in order to control the amount of template input per well to be consistent, lambda DNA was used as a template and blood was added as an impurity to verify the degree of blood tolerance.
TABLE 9 PCR reaction System mixing mode
Components Volume of
2×PCR Mix1/2/3/4/5 25μl
10M primer 2. mu.l each
λDNA 5ng
Blood, blood-enriching agent and method for producing the same 0/5/10/15μl
H2O To 50μl
The three primer pairs used in the test were as follows in table 10:
TABLE 10 test System primer sequences
Figure BDA0002688034590000071
The reaction procedure is as follows in table 11:
TABLE 11 PCR reaction procedure
Figure BDA0002688034590000072
The results shown in FIG. 1(500bp), FIG. 2(1013bp) and FIG. 3(2000bp) were obtained by running nucleic acid electrophoresis on 1% agarose gel, in which Taq-WT was the amplification result of wild-type Taq, and Mut1, Mut2, Mut3 and Mut4 were the amplification results of four mutant enzymes. 0% means that the reaction system contained no blood, 10% means that the reaction system contained 10% of blood (50. mu.l of the reaction system contained 5. mu.l of blood), 20% means that the reaction system contained 20% of blood (50. mu.l of the reaction system contained 10. mu.l of blood), and 30% means that the reaction system contained 30% of blood (50. mu.l of the reaction system contained 15. mu.l of blood). The Marker in FIG. 1(500bp), FIG. 2(1013bp), FIG. 3(2000bp) is DL 5000.
As can be seen from FIGS. 1(500bp), 2(1013bp) and 3(2000 bp): compared with wild Taq, Mut2, Mut3 and Mut4 have better amplification performance in 3 test systems, Mut1 has the best amplification performance, and the amplification performance is still good when the blood content is up to 30%.
Example 3 detection of enzyme Activity of four mutant and wild type Taq
The 5 kinds of 2 XPCR Mix prepared in example 2 were subjected to enzyme activity detection by a method conventional in the art, and the results are shown in Table 12.
TABLE 125 results of enzyme activity detection of 2 XPCR Mix (enzyme activity, unit: mU/. mu.l)
Class of enzyme Repeat one Repeat two Repeat three Mean value of
2×PCR Mix1 192 190 188 190
2×PCR Mix2 195 183 190 189
2×PCR Mix3 184 191 183 186
2×PCR Mix4 190 187 192 190
2×PCR Mix5 183 197 190 190
As can be seen from the data in Table 12, the enzyme activity of the mutant enzyme was not enhanced, but it showed excellent amplification performance when the blood-containing sample was amplified. Therefore in combination with the results of example 2 we speculate that: the T386A (threonine to alanine), A407L (alanine to leucine) and F413Y (phenylalanine to tyrosine) mutations screened from the third domain can improve the tolerance of the enzyme by changing the conformation of the enzyme, so the method can be well applied to the amplification of blood samples.
Sequence listing
<110> Nanjing Novozan Biotechnology GmbH
<120> Taq DNA polymerase mutant Mut2 and application thereof
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 832
<212> PRT
<213> Thermus aquaticus (Thermus aquaticus)
<400> 1
Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu
1 5 10 15
Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly
20 25 30
Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala
35 40 45
Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val
50 55 60
Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly
65 70 75 80
Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu
85 90 95
Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu
100 105 110
Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys
115 120 125
Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp
130 135 140
Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly
145 150 155 160
Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro
165 170 175
Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn
180 185 190
Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu
195 200 205
Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu
210 215 220
Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys
225 230 235 240
Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val
245 250 255
Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe
260 265 270
Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu
275 280 285
Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly
290 295 300
Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp
305 310 315 320
Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro
325 330 335
Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu
340 345 350
Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro
355 360 365
Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn
370 375 380
Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu
385 390 395 400
Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu
405 410 415
Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu
420 425 430
Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly
435 440 445
Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala
450 455 460
Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His
465 470 475 480
Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp
485 490 495
Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg
500 505 510
Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile
515 520 525
Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr
530 535 540
Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu
545 550 555 560
His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser
565 570 575
Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln
580 585 590
Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala
595 600 605
Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly
610 615 620
Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr
625 630 635 640
Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro
645 650 655
Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly
660 665 670
Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu
675 680 685
Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg
690 695 700
Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val
705 710 715 720
Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg
725 730 735
Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro
740 745 750
Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu
755 760 765
Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His
770 775 780
Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala
785 790 795 800
Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro
805 810 815
Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu
820 825 830
<210> 2
<211> 832
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu
1 5 10 15
Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly
20 25 30
Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala
35 40 45
Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val
50 55 60
Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly
65 70 75 80
Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu
85 90 95
Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu
100 105 110
Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys
115 120 125
Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp
130 135 140
Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly
145 150 155 160
Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro
165 170 175
Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn
180 185 190
Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu
195 200 205
Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu
210 215 220
Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys
225 230 235 240
Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val
245 250 255
Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe
260 265 270
Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu
275 280 285
Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly
290 295 300
Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp
305 310 315 320
Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro
325 330 335
Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu
340 345 350
Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro
355 360 365
Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn
370 375 380
Thr Ala Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu
385 390 395 400
Glu Ala Gly Glu Arg Ala Leu Leu Ser Glu Arg Leu Tyr Ala Asn Leu
405 410 415
Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu
420 425 430
Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly
435 440 445
Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala
450 455 460
Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His
465 470 475 480
Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp
485 490 495
Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg
500 505 510
Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile
515 520 525
Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr
530 535 540
Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu
545 550 555 560
His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser
565 570 575
Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln
580 585 590
Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala
595 600 605
Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly
610 615 620
Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr
625 630 635 640
Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro
645 650 655
Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly
660 665 670
Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu
675 680 685
Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg
690 695 700
Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val
705 710 715 720
Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg
725 730 735
Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro
740 745 750
Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu
755 760 765
Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His
770 775 780
Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala
785 790 795 800
Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro
805 810 815
Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu
820 825 830
<210> 3
<211> 832
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 3
Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu
1 5 10 15
Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly
20 25 30
Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala
35 40 45
Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val
50 55 60
Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly
65 70 75 80
Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu
85 90 95
Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu
100 105 110
Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys
115 120 125
Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp
130 135 140
Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly
145 150 155 160
Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro
165 170 175
Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn
180 185 190
Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu
195 200 205
Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu
210 215 220
Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys
225 230 235 240
Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val
245 250 255
Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe
260 265 270
Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu
275 280 285
Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly
290 295 300
Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp
305 310 315 320
Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro
325 330 335
Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu
340 345 350
Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro
355 360 365
Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn
370 375 380
Thr Ala Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu
385 390 395 400
Glu Ala Gly Glu Arg Ala Leu Leu Ser Glu Arg Leu Phe Ala Asn Leu
405 410 415
Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu
420 425 430
Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly
435 440 445
Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala
450 455 460
Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His
465 470 475 480
Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp
485 490 495
Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg
500 505 510
Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile
515 520 525
Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr
530 535 540
Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu
545 550 555 560
His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser
565 570 575
Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln
580 585 590
Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala
595 600 605
Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly
610 615 620
Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr
625 630 635 640
Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro
645 650 655
Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly
660 665 670
Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu
675 680 685
Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg
690 695 700
Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val
705 710 715 720
Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg
725 730 735
Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro
740 745 750
Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu
755 760 765
Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His
770 775 780
Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala
785 790 795 800
Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro
805 810 815
Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu
820 825 830
<210> 4
<211> 832
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu
1 5 10 15
Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly
20 25 30
Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala
35 40 45
Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val
50 55 60
Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly
65 70 75 80
Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu
85 90 95
Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu
100 105 110
Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys
115 120 125
Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp
130 135 140
Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly
145 150 155 160
Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro
165 170 175
Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn
180 185 190
Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu
195 200 205
Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu
210 215 220
Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys
225 230 235 240
Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val
245 250 255
Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe
260 265 270
Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu
275 280 285
Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly
290 295 300
Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp
305 310 315 320
Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro
325 330 335
Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu
340 345 350
Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro
355 360 365
Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn
370 375 380
Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu
385 390 395 400
Glu Ala Gly Glu Arg Ala Leu Leu Ser Glu Arg Leu Tyr Ala Asn Leu
405 410 415
Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu
420 425 430
Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly
435 440 445
Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala
450 455 460
Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His
465 470 475 480
Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp
485 490 495
Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg
500 505 510
Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile
515 520 525
Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr
530 535 540
Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu
545 550 555 560
His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser
565 570 575
Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln
580 585 590
Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala
595 600 605
Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly
610 615 620
Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr
625 630 635 640
Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro
645 650 655
Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly
660 665 670
Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu
675 680 685
Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg
690 695 700
Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val
705 710 715 720
Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg
725 730 735
Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro
740 745 750
Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu
755 760 765
Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His
770 775 780
Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala
785 790 795 800
Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro
805 810 815
Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu
820 825 830
<210> 5
<211> 832
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 5
Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu
1 5 10 15
Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly
20 25 30
Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala
35 40 45
Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val
50 55 60
Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly
65 70 75 80
Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu
85 90 95
Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu
100 105 110
Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys
115 120 125
Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp
130 135 140
Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly
145 150 155 160
Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro
165 170 175
Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn
180 185 190
Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu
195 200 205
Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu
210 215 220
Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys
225 230 235 240
Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val
245 250 255
Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe
260 265 270
Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu
275 280 285
Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly
290 295 300
Ala Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp
305 310 315 320
Leu Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro
325 330 335
Glu Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu
340 345 350
Ala Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro
355 360 365
Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn
370 375 380
Thr Ala Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu
385 390 395 400
Glu Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Tyr Ala Asn Leu
405 410 415
Trp Gly Arg Leu Glu Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu
420 425 430
Val Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly
435 440 445
Val Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala
450 455 460
Glu Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His
465 470 475 480
Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp
485 490 495
Glu Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg
500 505 510
Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile
515 520 525
Val Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr
530 535 540
Tyr Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu
545 550 555 560
His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser
565 570 575
Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln
580 585 590
Arg Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala
595 600 605
Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly
610 615 620
Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr
625 630 635 640
Glu Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro
645 650 655
Leu Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly
660 665 670
Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu
675 680 685
Ala Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg
690 695 700
Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val
705 710 715 720
Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg
725 730 735
Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro
740 745 750
Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu
755 760 765
Phe Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His
770 775 780
Asp Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala
785 790 795 800
Arg Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro
805 810 815
Leu Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu
820 825 830
<210> 6
<211> 2499
<212> DNA
<213> Thermus aquaticus (Thermus aquaticus)
<400> 6
atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60
cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120
gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180
gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240
tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300
gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360
gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420
gccgacaaag acctttacca gctcctttcc gaccgcatcc acgccctcca ccccgagggg 480
tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540
gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600
gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660
ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720
ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780
aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840
ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900
ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960
cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020
gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080
ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140
gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200
gaggcggggg agcgggccgc cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260
gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320
ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380
ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440
cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500
cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560
gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620
ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680
cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740
ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800
gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860
cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920
gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980
gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040
gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100
cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160
gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220
cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280
atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340
cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400
cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460
gtggggatag gggaggactg gctctccgcc aaggaatga 2499
<210> 7
<211> 2499
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60
cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120
gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180
gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240
tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300
gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360
gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420
gccgacaaag acctttacca gctcctttcc gaccgcatcc acgccctcca ccccgagggg 480
tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540
gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600
gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660
ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720
ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780
aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840
ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900
ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960
cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020
gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080
ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140
gacccttcca acaccgcccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200
gaggcggggg agcgggccct cctttccgag aggctctacg ccaacctgtg ggggaggctt 1260
gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320
ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380
ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440
cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500
cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560
gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620
ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680
cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740
ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800
gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860
cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920
gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980
gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040
gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100
cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160
gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220
cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280
atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340
cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400
cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460
gtggggatag gggaggactg gctctccgcc aaggaatga 2499
<210> 8
<211> 2499
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60
cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120
gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180
gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240
tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300
gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360
gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420
gccgacaaag acctttacca gctcctttcc gaccgcatcc acgccctcca ccccgagggg 480
tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540
gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600
gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660
ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720
ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780
aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840
ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900
ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960
cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020
gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080
ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140
gacccttcca acaccgcccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200
gaggcggggg agcgggccct cctttccgag aggctcttcg ccaacctgtg ggggaggctt 1260
gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320
ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380
ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440
cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500
cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560
gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620
ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680
cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740
ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800
gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860
cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920
gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980
gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040
gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100
cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160
gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220
cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280
atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340
cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400
cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460
gtggggatag gggaggactg gctctccgcc aaggaatga 2499
<210> 9
<211> 2499
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60
cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120
gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180
gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240
tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300
gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360
gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420
gccgacaaag acctttacca gctcctttcc gaccgcatcc acgccctcca ccccgagggg 480
tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540
gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600
gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660
ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720
ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780
aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840
ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900
ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960
cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020
gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080
ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140
gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200
gaggcggggg agcgggccct cctttccgag aggctctacg ccaacctgtg ggggaggctt 1260
gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320
ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380
ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440
cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500
cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560
gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620
ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680
cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740
ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800
gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860
cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920
gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980
gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040
gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100
cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160
gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220
cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280
atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340
cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400
cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460
gtggggatag gggaggactg gctctccgcc aaggaatga 2499
<210> 10
<211> 2499
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atgaggggga tgctgcccct ctttgagccc aagggccggg tcctcctggt ggacggccac 60
cacctggcct accgcacctt ccacgccctg aagggcctca ccaccagccg gggggagccg 120
gtgcaggcgg tctacggctt cgccaagagc ctcctcaagg ccctcaagga ggacggggac 180
gcggtgatcg tggtctttga cgccaaggcc ccctccttcc gccacgaggc ctacgggggg 240
tacaaggcgg gccgggcccc cacgccggag gactttcccc ggcaactcgc cctcatcaag 300
gagctggtgg acctcctggg gctggcgcgc ctcgaggtcc cgggctacga ggcggacgac 360
gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420
gccgacaaag acctttacca gctcctttcc gaccgcatcc acgccctcca ccccgagggg 480
tacctcatca ccccggcctg gctttgggaa aagtacggcc tgaggcccga ccagtgggcc 540
gactaccggg ccctgaccgg ggacgagtcc gacaaccttc ccggggtcaa gggcatcggg 600
gagaagacgg cgaggaagct tctggaggag tgggggagcc tggaagccct cctcaagaac 660
ctggaccggc tgaagcccgc catccgggag aagatcctgg cccacatgga cgatctgaag 720
ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgccaaa 780
aggcgggagc ccgaccggga gaggcttagg gcctttctgg agaggcttga gtttggcagc 840
ctcctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900
ccgccggaag gggccttcgt gggctttgtg ctttcccgca aggagcccat gtgggccgat 960
cttctggccc tggccgccgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020
gccctcaggg acctgaagga ggcgcggggg cttctcgcca aagacctgag cgttctggcc 1080
ctgagggaag gccttggcct cccgcccggc gacgacccca tgctcctcgc ctacctcctg 1140
gacccttcca acaccgcccc cgagggggtg gcccggcgct acggcgggga gtggacggag 1200
gaggcggggg agcgggccgc cctttccgag aggctctacg ccaacctgtg ggggaggctt 1260
gagggggagg agaggctcct ttggctttac cgggaggtgg agaggcccct ttccgctgtc 1320
ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgtcc 1380
ctggaggtgg ccgaggagat cgcccgcctc gaggccgagg tcttccgcct ggccggccac 1440
cccttcaacc tcaactcccg ggaccagctg gaaagggtcc tctttgacga gctagggctt 1500
cccgccatcg gcaagacgga gaagaccggc aagcgctcca ccagcgccgc cgtcctggag 1560
gccctccgcg aggcccaccc catcgtggag aagatcctgc agtaccggga gctcaccaag 1620
ctgaagagca cctacattga ccccttgccg gacctcatcc accccaggac gggccgcctc 1680
cacacccgct tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatcccaac 1740
ctccagaaca tccccgtccg caccccgctt gggcagagga tccgccgggc cttcatcgcc 1800
gaggaggggt ggctattggt ggccctggac tatagccaga tagagctcag ggtgctggcc 1860
cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggcggga catccacacg 1920
gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggaccccct gatgcgccgg 1980
gcggccaaga ccatcaactt cggggtcctc tacggcatgt cggcccaccg cctctcccag 2040
gagctagcca tcccttacga ggaggcccag gccttcattg agcgctactt tcagagcttc 2100
cccaaggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160
gagaccctct tcggccgccg ccgctacgtg ccagacctag aggcccgggt gaagagcgtg 2220
cgggaggcgg ccgagcgcat ggccttcaac atgcccgtcc agggcaccgc cgccgacctc 2280
atgaagctgg ctatggtgaa gctcttcccc aggctggagg aaatgggggc caggatgctc 2340
cttcaggtcc acgacgagct ggtcctcgag gccccaaaag agagggcgga ggccgtggcc 2400
cggctggcca aggaggtcat ggagggggtg tatcccctgg ccgtgcccct ggaggtggag 2460
gtggggatag gggaggactg gctctccgcc aaggaatga 2499

Claims (7)

1. A mutant Taq DNA polymerase is characterized in that the amino acid sequence is shown in SEQ ID NO. 3.
2. A nucleotide sequence encoding the mutant Taq DNA polymerase according to claim 1.
3. A nucleotide sequence encoding the mutant Taq DNA polymerase of claim 1, as set forth in SEQ ID No. 8.
4. A recombinant vector comprising the nucleotide sequence of claim 2 or 3.
5. A recombinant cell comprising the nucleotide sequence of claim 2 or 3 or the recombinant vector of claim 4.
6. The use of mutant Taq DNA polymerase according to claim 1, nucleotide sequence according to claim 2 or 3, recombinant vector according to claim 4, recombinant cell according to claim 5 in the field of PCR.
7. Use of the mutant Taq DNA polymerase according to claim 1, the nucleotide sequence according to claim 2 or 3, the recombinant vector according to claim 4, the recombinant cell according to claim 5 in the field of PCR of a sample comprising blood at a blood volume concentration of 10% to 30%.
CN202010982425.2A 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut2 and application thereof Active CN112080482B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010982425.2A CN112080482B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut2 and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911038688.1A CN110747183B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant and application thereof
CN202010982425.2A CN112080482B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut2 and application thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201911038688.1A Division CN110747183B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant and application thereof

Publications (2)

Publication Number Publication Date
CN112080482A CN112080482A (en) 2020-12-15
CN112080482B true CN112080482B (en) 2021-04-20

Family

ID=69280857

Family Applications (4)

Application Number Title Priority Date Filing Date
CN202010980819.4A Active CN112029749B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut3 and application thereof
CN202010980814.1A Active CN112029748B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut4 and application thereof
CN202010982425.2A Active CN112080482B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut2 and application thereof
CN201911038688.1A Active CN110747183B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant and application thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202010980819.4A Active CN112029749B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut3 and application thereof
CN202010980814.1A Active CN112029748B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant Mut4 and application thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911038688.1A Active CN110747183B (en) 2019-10-29 2019-10-29 Taq DNA polymerase mutant and application thereof

Country Status (1)

Country Link
CN (4) CN112029749B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690626B (en) * 2020-07-02 2021-03-26 南京诺唯赞生物科技股份有限公司 Fusion type Taq DNA polymerase and preparation method and application thereof
CN111560073B (en) * 2020-07-16 2020-10-09 翌圣生物科技(上海)有限公司 Taq enzyme 5 '-3' polymerase activity blocking monoclonal antibody and application thereof
CN112725299B (en) * 2020-12-30 2023-10-10 苏州白垩纪生物科技有限公司 Mutant for improving Taq DNA polymerase tolerance, preparation method and application
CN113373127B (en) * 2021-03-30 2022-10-04 中国农业科学院生物技术研究所 Taq DNA polymerase mutant and application thereof
CN116200363A (en) * 2021-11-30 2023-06-02 广州达安基因股份有限公司 Taq enzyme mutant, preparation method and application thereof
CN115261351B (en) * 2022-06-08 2024-03-29 厦门通灵生物医药科技有限公司 Reverse transcription-polymerization bifunctional enzyme and preparation method and application thereof
CN114958800B (en) * 2022-06-24 2023-08-25 北京脉道生物药品制造有限公司 Taq DNA polymerase mutant capable of tolerating blood or blood product inhibition and application thereof
CN117487775B (en) * 2024-01-02 2024-03-22 深圳市检验检疫科学研究院 Taq DNA polymerase with high enzyme activity and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014885A1 (en) * 2009-07-31 2011-02-03 Agilent Technologies, Inc. Thermostable type-a dna polymerase mutants with increased polymerization rate and resistance to inhibitors
CN104845950A (en) * 2014-02-14 2015-08-19 安捷伦科技有限公司 Thermostable type-A DNA polymerase mutant with increased resistance to inhibitors in blood
CN105907734A (en) * 2016-04-25 2016-08-31 天根生化科技(北京)有限公司 Taq DNA polymerase, and PCR (polymerase chain reaction) fluid and application thereof
CN108118038A (en) * 2016-11-28 2018-06-05 青岛蔚蓝生物集团有限公司 A kind of glucose oxidase mutant
CN108265039A (en) * 2016-12-30 2018-07-10 天津强微特生物科技有限公司 A kind of mutation T aqDNA polymerases and its purification process
CN109251907A (en) * 2017-07-12 2019-01-22 基因凯斯特有限公司 The archaeal dna polymerase that gene mutation specific amplification efficiency improves

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300073B1 (en) * 1999-10-01 2001-10-09 Clontech Laboratories, Inc. One step RT-PCR methods, enzyme mixes and kits for use in practicing the same
JP5809059B2 (en) * 2008-11-03 2015-11-10 カパ バイオシステムズ, インコーポレイテッド Modified type A DNA polymerase
ES2908415T3 (en) * 2010-06-21 2022-04-29 Life Technologies Corp Composition and method for the synthesis and amplification of nucleic acids by using RT
EP3502272A1 (en) * 2010-06-21 2019-06-26 Life Technologies Corporation Compositions, kits, and methods for synthesis and/or detection of nucleic acids
GB201113430D0 (en) * 2011-08-03 2011-09-21 Fermentas Uab DNA polymerases
CN103509767B (en) * 2012-06-27 2016-08-03 菲鹏生物股份有限公司 A kind of Mutant Taq enzyme and preparation method thereof
WO2016183294A1 (en) * 2015-05-12 2016-11-17 Dna Polymerase Technology, Inc. Mutant polymerases and uses thereof
CN105039278B (en) * 2015-06-17 2018-09-11 菲鹏生物股份有限公司 Saltant type Taq archaeal dna polymerases and its preparation method and application
CN106754812B (en) * 2016-12-21 2019-03-19 南京诺唯赞生物科技有限公司 It is a kind of that the Mutant Taq enzyme and its preparation method and application for adding A efficiency can be improved
CN108130318B (en) * 2018-02-28 2020-07-14 深圳市艾伟迪生物科技有限公司 Mutant Taq DNA polymerase, kit for direct PCR amplification without nucleic acid extraction and application thereof
CN109402082A (en) * 2018-11-26 2019-03-01 南京诺唯赞生物科技有限公司 A kind of Taq DNA polymerase mutant body and its application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014885A1 (en) * 2009-07-31 2011-02-03 Agilent Technologies, Inc. Thermostable type-a dna polymerase mutants with increased polymerization rate and resistance to inhibitors
CN104845950A (en) * 2014-02-14 2015-08-19 安捷伦科技有限公司 Thermostable type-A DNA polymerase mutant with increased resistance to inhibitors in blood
CN105907734A (en) * 2016-04-25 2016-08-31 天根生化科技(北京)有限公司 Taq DNA polymerase, and PCR (polymerase chain reaction) fluid and application thereof
CN108118038A (en) * 2016-11-28 2018-06-05 青岛蔚蓝生物集团有限公司 A kind of glucose oxidase mutant
CN108265039A (en) * 2016-12-30 2018-07-10 天津强微特生物科技有限公司 A kind of mutation T aqDNA polymerases and its purification process
CN109251907A (en) * 2017-07-12 2019-01-22 基因凯斯特有限公司 The archaeal dna polymerase that gene mutation specific amplification efficiency improves

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Direct DNA Amplification from Crude Clinical Samples Using a PCR Enhancer Cocktail and Novel Mutants of Taq;Zhian Zhang等;《Journal of Molecular Diagnostics》;20100331;第12卷(第2期);152-161 *
DNA polymerase [Thermus aquaticus];Lawyer,F.C.等;《Genbank database》;19930426;accession NO:AAA27507.1 *
Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering;Takeshi Yamagami等;《Frontiers in Microbiology》;20140903;第5卷(第1期);461 *
Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples;Milko B. Kermekchiev等;《Nucleic Acids Research》;20090210;第37卷(第5期);e40 *
Taq DNA聚合酶的改造及应用;林晴;《中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑》;20080715(第07期);A006-47 *
Taq DNA聚合酶的结构修饰与表征;郭佳;《中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑》;20140815(第08期);A006-105 *
优化反应体系提升Phanta DNA 聚合酶对非处理标本的检测性能;陈振华等;《生物加工过程》;20080315;第16卷(第2期);102-108 *

Also Published As

Publication number Publication date
CN112029749A (en) 2020-12-04
CN112029749B (en) 2021-05-04
CN110747183B (en) 2020-10-23
CN112029748A (en) 2020-12-04
CN110747183A (en) 2020-02-04
CN112080482A (en) 2020-12-15
CN112029748B (en) 2021-03-23

Similar Documents

Publication Publication Date Title
CN112080482B (en) Taq DNA polymerase mutant Mut2 and application thereof
CN110684752B (en) Mutant Taq DNA polymerase with improved tolerance as well as preparation method and application thereof
CN108130318B (en) Mutant Taq DNA polymerase, kit for direct PCR amplification without nucleic acid extraction and application thereof
CN108070577B (en) Antiserum interference TaqDNA polymerase and preparation and application thereof
CN108473970B (en) DNA polymerase variants
EP2582808B1 (en) Dna polymerases with increased 3&#39;-mismatch discrimination
CN108350087A (en) Archaeal dna polymerase variant
JP2020036614A (en) Nucleic acid amplification method
CN109266628B (en) Fused TaqDNA polymerase and application thereof
US10023850B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US20140342409A1 (en) Dna polymerases with increased 3&#39;-mismatch discrimination
EP2675897B1 (en) Dna polymerases with increased 3&#39;-mismatch discrimination
WO2012110060A1 (en) Dna polymerases with increased 3&#39;-mismatch discrimination
CN113186175B (en) Mutant Taq DNA polymerase, coding DNA sequence, recombinant vector, recombinant expression cell and application thereof
CN113388595B (en) High-efficiency terminal A-added mutant Taq DNA polymerase and encoding DNA thereof
EP2582805B1 (en) Dna polymerases with increased 3&#39;-mismatch discrimination
EP2582801B1 (en) Dna polymerases with increased 3&#39;-mismatch discrimination
CN114438053A (en) DNA polymerase mutant and application thereof
US9765311B2 (en) DNA polymerases with increased 3′-mismatch discrimination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant