CN112062217A - 可降解复合材料在吸油中的应用 - Google Patents

可降解复合材料在吸油中的应用 Download PDF

Info

Publication number
CN112062217A
CN112062217A CN202011061624.6A CN202011061624A CN112062217A CN 112062217 A CN112062217 A CN 112062217A CN 202011061624 A CN202011061624 A CN 202011061624A CN 112062217 A CN112062217 A CN 112062217A
Authority
CN
China
Prior art keywords
oil
composite material
families
degradable composite
pleurotus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011061624.6A
Other languages
English (en)
Inventor
姜文侠
杨萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202011061624.6A priority Critical patent/CN112062217A/zh
Publication of CN112062217A publication Critical patent/CN112062217A/zh
Priority to PCT/CN2020/137649 priority patent/WO2022068093A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mushroom Cultivation (AREA)

Abstract

本发明涉及生物材料应用领域,公开了可降解复合材料在吸油中的应用,所述可降解复合材料包括真菌菌丝形成的三维立体网状结构和被所述三维立体网状结构固定的至少一个木质纤维素碎屑。所述可降解复合材料具有较好的吸油性能,在石油泄漏、水上油污清除、含油废水的处理等方面有着良好的应用潜力。另一个角度而言,本发明可以解决秸秆、木屑等农业剩余物和林业剩余物处理的难题,增加这些剩余物的附加值,减少环境污染,有助于经济、生态环境和社会的协调发展。

Description

可降解复合材料在吸油中的应用
技术领域
本发明涉及生物材料应用领域,具体涉及可降解复合材料(木质纤维素类碎屑增强菌丝复合材料)在吸油中的应用。
背景技术
油类污染分为溢油污染和含油废水污染。石油化工、采矿业、食品工业、纺织工业、金属工业、水上设备和餐饮业等均会产生含油废水,厨房和生活垃圾是城市污水中含油废水的主要来源。
处理溢油污染和含油废水,使用吸油材料吸附是常用的有效方法之一。吸油也是清除地面及物体上油污的最佳选择之一。对于保持地面、走道、车间工作环境洁净,杜绝因油气挥发而引发爆炸事故有积极作用。
近年来研制的很多新型吸油材料,尽管吸油率很高,但尚不具备商业上的可行性。从现实应用的角度,必须考虑吸油的成本,包括吸油材料的成本和使用成本,比如,吸收一定质量的油所需吸油材料的原料、制造、运输、储存、吸油操作过程的成本,吸油材料使用后的无害化处置成本等。此外,吸油材料的安全性和环境协调性也是重要的评价指标。目前使用最普遍的是合成高分子吸油材料,但其生产多是以石油为原料,不可生物降解,后续处理麻烦易造成二次污染,生产工艺复杂,生产过程的危险性较高,成本相对较高。
另一方面,目前使用的很多吸油材料是软质的,吸油后,在捕捞回收和装运过程中,受重力和挤压而变形,导致已经被吸附的油流出、滴落、洒漏,容易造成新的污染。
因此,开发原料廉价、易得、可再生,生产工艺简单,成本低,压缩强度适宜及环境协调性好(环保性能,特别是生物可降解)的吸油材料具有重要的现实应用价值。
发明内容
本发明的目的是提供一种价格低廉,环境友好的可降解复合材料(木质纤维素类碎屑增强菌丝复合材料)在吸油中的应用。针对吸油材料的环境协调性和成本等问题,以废弃的木质纤维素类生物质为主原料,通过绿色生物工艺,低成本地制备有适宜的吸油性能的可降解的环境友好的吸油材料。
本发明的发明人在研究中发现,利用真菌(Fungi)的菌丝(hypha)形成的网状结构固定木质纤维素碎屑能够获得具有优异性能的吸油材料,因此,为了实现上述目的,本发明第一方面提供了可降解复合材料在吸油中的应用,所述可降解复合材料包括真菌菌丝形成的三维立体网状结构和被所述三维立体网状结构固定的至少一个木质纤维素碎屑。
本发明第二方面提供了一种吸油的方法,该方法包括:将可降解复合材料与油进行接触,所述可降解复合材料包括真菌菌丝形成的三维立体网状结构和被所述三维立体网状结构固定的至少一个木质纤维素碎屑。
所述可降解复合材料具有较好的吸油性能,在石油泄漏、水上油污清除等方面有着良好的应用潜力;也可用于水体净化或油污吸附,包括:海上、河域和湖泊等水体表面浮油污染处理,含油的工业污水净化,有机溶剂以及生活厨余油脂处理及地面油污吸附等。另一个角度而言,本发明可以解决秸秆等农业剩余物和林业剩余物处理的难题,增加秸秆等剩余物的附加值,减少环境污染,有助于促进经济、生态环境以及社会的协调发展。
具体地,本发明具备以下优点:
(1)本发明中,真菌菌丝缠绕固定培养基质碎屑(木质纤维素碎屑)获得的复合材料具有较好的吸油性能,成本低,而且,本领域技术人员能够很容易根据材料的预期用途对外形及原料配比进行设计得到外观和性能都满足要求的可降解复合材料。
(2)由于不使用不可降解的有机物,不使用石油基化学品,本发明的可降解复合材料可以降解。如果在运输、使用中散落、遗失于土壤、水体等环境中,该材料不会造成污染。
(3)本发明的方法简便易行,原料均为天然产物,可再生、来源广、成本低,所制备的可降解复合材料易于运输和储存,漂浮性好,持油率高,该吸附材料在吸油前后均能浮在水面,便于回收和后处理,不易对环境造成二次污染。
(4)本发明的可降解复合材料的制备过程节能环保,仅依靠固态培养的菌丝生长成形(可为方形、球形等常规结构,也可为空心结构、异形结构),不依赖其他物理/化学方法成形,无高温高压,制备过程的意外事故(爆炸、火灾等)风险小,产生的废渣、废水、废气少。
(5)本发明的可降解复合材料易于储存,且不易发生由静电导致的燃烧。
(6)本发明的可降解复合材料整个生命周期的碳排放少。材料废弃后,可以通过燃烧回收能量。
(7)进一步地,借助保藏编号为CGMCC No.10485的撕裂蜡孔菌(Ceriporialacerata),培养基质(原料)可在不经灭菌或抑菌处理的情况下制备可降解复合材料,且制备过程不要求无菌环境,在很大程度上降低了制备成本。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供了可降解复合材料在吸油中的应用,所述可降解复合材料包括真菌菌丝形成的三维立体网状结构和被所述三维立体网状结构固定的至少一个木质纤维素碎屑。
本发明中,所述可降解复合材料中,真菌菌丝可以在木质纤维素碎屑表面和/或内部生长,从而能够将至少一个木质纤维素碎屑固定,形成菌丝作为基体,木质纤维素碎屑作为增强体的复合材料。可降解复合材料中,所述木质纤维素碎屑的数量可以为一个或多个,所述木质纤维素碎屑为多个时,真菌菌丝将多个木质纤维素碎屑固定在一起,形成一个整体。所述可降解复合材料呈规则或不规则的三维立体状,可以为片状或条状,也可以为颗粒状(方形或球形),还可以为空心的,亦可以为不规则的异形结构。为了适应不同的吸油场景,本领域技术人员能够对所述可降解复合材料的形状进行选择。
本发明中,所述可降解复合材料的密度通常在70-400kg/m3范围内,压缩性能也较好。
本发明中,所述油可以是现有的在一定条件下能够呈液态的疏水性物质,也即包括在一定条件呈液态,而在另一种条件呈固态的物质。例如,所述油可以是25℃时在100mL水中溶解度小于1g的物质。在实际应用时,所述可降解复合材料在被吸附对象(油)呈液态的温度进行吸油。
优选地,所述油的表面张力小于40×10-3N/m。
优选地,所述油的密度小于1g/cm3
本发明中,所述油可以是天然存在的,也可以是人工合成的。
优选地,所述油选自植物油、矿物油、动物油和人工合成的非水溶性液体中的至少一种。其中,所述植物油可以为花生油、豆油、亚麻油、蓖麻油、菜子油、玉米油、橄榄油、胡麻油、肉桂油、香精油等。所述矿物油可以为石油(原油)、凝析油、汽油、煤油、柴油、润滑油、变压器油、机油、液体石蜡、石蜡、煤焦油。所述动物油可以来源于猪、牛、羊、马、鸡、昆虫(如蜂蜡、虫蜡等)等。人工合成的非水溶性液体包括各种硅油、芳香烃(如苯、甲苯、二甲苯、二氯甲苯、溴苯等)、烷烃(如十五烷、十四烷、十三烷、十二烷、十一烷、壬烷、异辛烷、己烷、三氯甲烷、四氯甲烷等)、环烷烃(如环己烷、环戊烷、环庚烷等)、醚(如石油醚、丁醚等)、酯(如油酸丁酯、乙酸丁酯、棕榈酸丁酯等)、酮(如2-壬酮、甲基异丁酮、3-己酮等)和有机酸(如辛酸等)的至少一种。
本发明中,对所述木质纤维素碎屑的来源没有特别的限制,优选为能够为真菌菌丝的形成提供营养源或载体的植物性原料,可以来源于植物、植物性废料和废菌糠中的至少一种。
本发明中,所述木质纤维素碎屑可以来源于植物,例如种子、茎秆、根、叶和果实中的至少一种,即,可以来源于木、竹、棉花、棉绒、纸、丝瓜络、麦秸、稻草、高粱秆、芦苇、麻、桑皮、楮皮、玉米秸、苞米皮、油菜秆、菊芋茎秆、狼尾草、茅草、芒草、象草、巨菌草、竹草、沙柳、柠条、柳枝稷、藤条、葡萄藤、甘蔗以及它们的加工剩余物(即植物性废料)。
如前所述,所述木质纤维素碎屑也可以由植物性废料提供。所述植物性废料可以为农作物的茎叶部分(如秸秆(包括水稻、小麦、大麦、玉米、高粱等禾本科农作物成熟脱粒后剩余的茎秆)、棉花秆、豆秸、油菜秆、狼尾草、芦苇、荻、龙须草、乌拉草、芨芨草、茅草、芒草、象草、席草、巨菌草、竹草、藤条、沙柳、柠条、柳枝稷等)、种子壳和果壳(如棉籽壳、轧棉碎屑、稻壳、薏米壳、花生壳、麸皮、米糠、椰棕等)、木质废料(木屑、边角料、薪柴、树皮、枝桠柴、卷皮、刨花、果树修剪下的枝条等)、藤质废料(葡萄藤条、黄交藤等)、竹、纸、棉、麻、剑麻、菠萝茎叶、香蕉茎叶、玉米芯、甘蔗渣、棕榈茎叶、龙舌兰茎叶等。
本发明中,所述木质纤维素碎屑可以来源于栽培食用菌剩余的废弃培养基质,栽培食用菌剩余的废弃培养基质指收获食用菌子实体后的含菌丝体的培养基质,称废菌糠。
本发明中,下脚料是指在植物加工过程中作为残余分离的下脚或废料。
更优选地,所述植物性废料为豆秸、玉米秸秆、麸皮、棉籽壳、花生壳、玉米芯、下脚料、植物浸提剩余物、蒸馏干酒糟(distiller’s dried grain,DDG)和废菌糠中的至少一种。
本发明中,对所述木质纤维素碎屑的形状没有特别的要求,可以为片状、条状、纤维状、颗粒状、羽状、绒毛状、网状或其他不规则形状。
本发明中,对所述木质纤维素碎屑的大小没有特别的限定,为了使可降解复合材料获得更佳的成形效果和适宜的性能,优选地,粒径在2mm以上(更优选在25mm以下,进一步优选2-15mm)的木质纤维素碎屑的重量占木质纤维素碎屑总重量的20-100%(如20%、30%、40%、50%、60%、70%、80%、90%、100%或者上述任意两个数值之间的范围)。
本发明中,木质纤维素类碎屑是制备可降解复合材料的主原料,作为载体支撑真菌菌丝的生长,其可以在菌丝生长阶段提供菌丝生长所需的部分营养成分,剩余的未被利用部分在复合材料的立体网状结构中起增强体和辅助吸油的作用。因此,在本发明中,所述可降解复合材料中的木质纤维素碎屑可以指为真菌生长形成菌丝提供养分后的剩余物,也可以指仅为真菌生长形成菌丝提供支撑而真菌生长不利用的木质纤维素类原料。
一方面,可以直接将木质纤维素碎屑作为营养使用。因此,所述可降解复合材料为以木质纤维素碎屑作为营养源培养真菌得到的含菌丝的固体发酵产物。
另一方面,所述营养源(含有木质纤维素碎屑的培养基质)还可以含有真菌形成菌丝所需的其他碳源、氮源、无机盐、维生素和微量元素等营养物质,对所述其他碳源、氮源和无机盐等没有特别的限定,只要能为真菌提供生长所需的营养及适宜的环境即可。例如,可以引入玉米粉等谷物粉、淀粉、糊精、麦芽糖、葡萄糖、蔗糖、果糖、木糖等作为碳源;引入麸皮、米糠、玉米浆、铵盐、硝酸盐、亚硝酸盐、酵母粉、酵母浸粉、鱼粉、明胶、动物和植物蛋白及其水解物等含氮的物料作为氮源,还可根据需要以含氮无机盐为氮源。根据需要还可以在培养基质中添加一定的无机盐,例如,硫酸钙,还可以添加钾盐、镁盐、磷酸盐、硫酸盐、亚铁盐、氨基酸、维生素B1等营养物质促进菌丝生长。
本发明中,所述真菌菌丝可以选自各种能够形成菌丝(菌丝可缠绕形成三维的立体网状结构)的真菌,如子囊菌(Ascomycote)和担子菌(Basidiomycota)中的大型真菌(蘑菇,又称蕈菌),可以选自蘑菇科(Agaricaceae)、木耳科(Auriculariaceae)、瘤孢多孔菌科(Bondarzewiaceae)、拟层孔菌科(Fomitopsidaceae)、灵芝科(Ganodermataceae)、褐褶菌科(Gloeophyllaceae)、马鞍菌科(Helvllaceae)、羊肚菌科(Morchellaceae)、光茸菌科(Omphalotacea)、泡头菌科(Physalacriaceae)、侧耳科(Pleurotaceae)、光柄菇科(Pluteaceae)、多孔菌科(Polyporaceae)、红菇科(Russulaceae)、裂褶菌科(Schizophyllaceae)、革菌科(Stereaceae)、球盖菇科(Strophariaceae)、韧革菌科(Thelephoraceae)、银耳科(Tremellaceae)和白蘑科(Tricholomataceae)中真菌中的至少一种。
优选地,所述真菌选自蘑菇属(Agaricus)、田头菇属(Agrocybe)木耳属(Auricularia)、烟管菌属(Bjerkandera)、瘤孢多孔菌属(Bondarzewia)、蜡孔菌属(Ceriporia)、杯伞属(Clitocybe)、革盖菌属(Coriolus)、拟迷孔菌属(Daedaleopsis)、大孔菌属(Favolus)、冬菇属(Flammulina)、层孔菌属(Fomes)、拟层孔菌属(Fomitopsis)、灵芝属(Ganoderma)、粘褶菌属(Gloeophyllum)、马鞍菌属(Helvella)、沿丝伞属(Hypholoma)、纤孔菌属(Inonotus)、乳菇属(Lactarius)、香菇属(Lentinula)、离褶伞属(Lyophyllum)、羊肚菌属(Morchella)、韧伞属(Naematoloma)、丘伞属(Nolanea)、脐盖菇属(Omphalia)、革耳属(Panus)、木层孔菌属(Phellinus)、环锈伞菌属(Pholiota)、剥管菌属(Piptoporus)、侧耳属(Pleurotus)、乌茸属(Polyozellus)、多孔菌属(Polyporus)、茯苓属(Poria)、锈迷孔菌属(Porodaedalea)、褐层孔菌属(Pyropolyporu)、裂褶菌属(Schizophyllum)、韧革菌属(Stereum)、栓菌属(Trametes)、银耳属(Tremella)、口蘑属(Tricholoma)、干酪菌属(Tyromyces)和小包脚菇属(Volvariella)中的真菌中的至少一种。
更优选地,所述真菌选自双孢蘑菇(Agaricus bisporus)、双环林地蘑菇(Agaricus placomyces)、茶树菇(Agrocybe aegerita)木耳(Auricularia auricula)、烟色烟管菌(Bjerkandera fumosa)、伯氏圆孢地花(Bondarzewia berkeleyi)、撕裂蜡孔菌(Ceriporia lacerata)、大杯蕈(Clitocybe maxima)、二型革盖菌(Coriolus biformis)、毛革盖菌(Coriolus hirsutus)、云芝(Coriolus versicolor)、粗糙拟迷孔菌(Daedaleopsis confragosa)、三色拟迷孔菌(Daedaleopsis tricolor)、漏斗大孔菌(Favolus arcularius)、金针菇(Flammulina velutipes)、木质层孔菌(Fomes ligneus)、红缘拟层孔菌(Fomitopsis pinicola)、灵芝(Ganoderma lucidum)、松杉灵芝(Ganodermatsugae)、蜜粘褶菌(Gloeophyllum trabeum)、马鞍菌(Helvella elastica)、橙黄褐韧伞(Hypholoma capnoides)、桦褐孔菌(Inonotus oblique)、浓香乳菇(Lactariuscumphoratus)、香菇(Lentinula edodes)、洁丽香菇(Lentinus lepideus)、榆干离褶伞(Lyophyllum ulmarium)、小羊肚菌(Morchella deliciosa)、砖红韧黑伞(Naematolomasublateritium)、细毛柄丘伞(Nolanea hirtipes)、雷丸(Omphalia lapidescens)、野生革耳(Panus rudis)、裂蹄木层孔菌(Phellinus linteus)、滑菇(Pholiota nameko)、桦剥管菌(Piptoporus betulinus)、杏鲍菇(Pleurotus eryngii)、白灵菇(Pleurotusnebrodensis)、糙皮侧耳(Pleurotus ostreatus)、乌茸菌(Polyozellus multiplex)、冬生多孔菌(Polyporus brumalis)、桑生卧孔菌(Poria moricola)、金缘锈迷孔菌(Porodaedalea chrysoloma)、木蹄(Pyropolyporus fomentarius)、裂褶菌(Schizophyllum commune)、扁韧革菌(Stereum fasciatum)、毛韧革菌(Stereumhirsutum)、东方栓菌(Trametes orientalis)、血红栓菌(Trametes sanguinea)、银耳(Tremella fuciformis)、苦口蘑(Tricholoma acerbum)、接骨木状干酪菌(Tyromycessambuceus)和草菇(Volvariella volvacea)中的至少一种。
进一步优选地,本发明中所述真菌选自撕裂蜡孔菌(特别是保藏编号为CGMCCNo.10485的撕裂蜡孔菌,已在CN106318876A中公开)和/或糙皮侧耳。
本发明中,所述可降解复合材料可以通过常规的方式制得,以下主要以撕裂蜡孔菌为例描述所述可降解复合材料的制备方法。
本发明中,所述可降解复合材料的制备可以包括:将真菌接种至含有木质纤维素碎屑的培养基质中进行培养,而后进行脱水。所述培养可以在常规的培养真菌的条件下进行,以撕裂蜡孔菌为例,所述培养的条件包括:温度15-35℃,培养环境的相对湿度为40-95%。所述培养的时间可以根据接种量和可降解复合材料的预期用途进行适当的选择,一般地,所述培养的时间为5-15天。真菌的接种量可以为1-10g/kg培养基质。需要特别说明的是,本发明涉及的接种量和含菌量均以菌丝体的干重(105℃干燥至恒重时的质量)计;本发明涉及的培养基质的质量同样以干重(105℃干燥至恒重时的质量)计。
本发明中,为了获得预定形状、压缩强度和适宜性能的可降解复合材料,所述培养的方式优选为依次进行预培养、模具内培养和模具外培养,或者依次进行模具内培养和模具外培养。当真菌的接种量为1-10g/kg培养基质时,所述培养的方式为依次进行预培养、模具内培养和模具外培养;或者,当真菌的接种量大于10且小于等于50g/kg培养基质时,所述培养的方式为依次进行模具内培养和模具外培养。所述预培养的目的是增加菌丝的生物量。模具内培养的主要目的是使培养物获得一定的立体形状,通过菌丝体的生长将培养物定形。所述模具外培养的目的是使菌丝体在培养物内部和培养物的表面充分生长,进一步提高可降解复合材料的强度,进一步提高材料的吸油性能,同时改善材料的外观。
如前所述,模具内培养开始时,如果接种的真菌量较少(如1-10g/kg培养基质),可以通过预培养的步骤使真菌含量得到扩增。所述预培养、模具内培养和模具外培养的条件均可以包括温度为15-35℃,(培养环境的)相对湿度为40-95%,且预培养、模具内培养和模具外培养的条件可以相同或不同。
为了更好地实现预培养的上述目的,更优选地,相对于真菌的接种量为1-10g/kg培养基质,预培养的时间为1-5天(1、2、3、4、5或者上述任意两个数值之间的范围),最优选为2-4天。
为了更好地实现模具内培养的上述目的,更优选地,相对于真菌的接种量为1-10g/kg培养基质,模具内培养的时间为1-9天(1、2、3、4、5、6、7、8、9或者上述任意两个数值之间的范围),最优选为3-6天。
为了更好地实现模具外培养的上述目的,更优选地,相对于真菌的接种量为1-10g/kg培养基质,模具外培养的时间为1-5天(1、2、3、4、5或者上述任意两个数值之间的范围),最优选为1-3天。
本发明中,所使用的撕裂蜡孔菌CGMCC No.10485具有较强的抵抗杂菌的能力,因此所述培养无需在无菌条件下进行操作,即,所使用的培养基质可以不经灭菌或抑菌处理(包括消毒和杀菌等各种常规的抑制菌生长或繁殖的方式)而直接使用,接种适量的撕裂蜡孔菌后也不需要将其与外界环境无菌地隔离而进行无菌培养(所述培养基质为未经灭菌或抑菌处理的培养基质,和/或所述培养方式为开放式培养(即非无菌式培养))。其中,灭菌或抑菌处理包括湿热灭菌、干热灭菌、热消毒、热杀菌、辐射杀菌、化学熏蒸杀菌,额外添加杀菌剂和/或抑菌剂和/或抗菌剂和/或溶菌酶等各种杀菌或抑菌的处理方式。
本发明中,在进行培养之前,可以对所述真菌的菌种依次进行活化和菌种扩培,活化是为了将保藏状态的菌种放入适宜的培养基中培养,使其恢复发酵性能;菌种扩培是为了得到较多的纯而壮的菌丝体,即获得活力旺盛、接种数量足够的真菌。可以采用本领域常规的方法进行活化和菌种扩培,例如,所述活化可以包括将真菌的菌丝体接种至PDA斜面,20-35℃培养5-10天。所述菌种扩培可以包括将活化后的真菌接种至液体种子培养基中,15-35℃培养3-4天(为了得到更多的种子液,可以采用两级或多级液体菌种扩培的方式进行液体种子的扩大培养)。PDA斜面和液体种子培养基均为本领域技术人员能够进行选择的,在此不再赘述。
本发明中,固体培养结束后,对得到的培养物进行脱水,即可获得可降解复合材料的成品。所述脱水的方式优选为真空干燥、热风干燥、微波干燥、红外线干燥、冷冻干燥、晾晒和自然风干。所述干燥的条件可以为常规的干燥条件,例如,当采用热风干燥的方式进行干燥时,干燥的条件可以包括温度为50-260℃,时间为0.1-36h。
根据本发明的一种优选实施方式,本发明中制备可降解复合材料的方法包括将真菌接种至含有木质纤维素碎屑的培养基质中依次进行预培养、模具内培养和模具外培养,继而选择性地进行脱水干燥。预培养、模具内培养、模具外培养和脱水干燥的条件如前所述,不再赘述。
本发明在制备可降解复合材料的过程中,可以在培养基质中混入和或/镶嵌或/和包埋天然的吸油材料,如活性炭、木炭、竹炭、沸石、膨胀珍珠岩、陶粒等。
本发明在制备可降解复合材料的过程中,可以在材料中镶嵌或/和包埋某些(强度改善)材料,比如纤维、织物、羽绒、网状物,提高材料的弯曲强度、剪切强度、拉伸强度等力学性能。
本发明中,所述可降解复合材料的吸油倍率不低于1g/g。“吸油倍率”是指在设定的测试时间内,单位质量的可降解复合材料能够吸附的油的质量,即特定时间内,可降解复合材料试样所吸附的油的质量与该试样吸油前的干燥质量之比,单位为g/g。
本发明中,所述可降解复合材料中菌丝是基体,而木质纤维素碎屑是增强体,二者共同形成具有一定形状的有较好吸油性能的复合材料。
本发明第二方面提供了一种吸油的方法,该方法包括:将可降解复合材料与油进行接触,所述可降解复合材料包括真菌菌丝形成的三维立体网状结构和被所述三维立体网状结构固定的至少一个木质纤维素碎屑。
本发明的方法中,对所述可降解复合材料的用量没有特别的要求,本领域技术人员能够根据待吸附的油量及吸油材料的吸油倍率进行选择。
本发明的方法中,所述油可以为各种场景下泄露或产生的油,因此,本发明的方法适用于:海洋、港湾和河湖等各类水体溢油和油污的捕集、回收;油车、油箱、输油管道、车间、机器周围等小面积漏油的围拦和吸附;工厂废水和循环水中油的吸附;养殖场或浴场等防油类入侵的保护围挡;有机溶剂的吸收及脱臭;油水分离装置的吸油填料;泄漏阀门、管道和设备下吸收有害滴漏;铺设在生产线、机器、汽车下,或者放在工作台上用于吸附清理油类溢漏、滴漏和泄漏;吸附市政污水中的油。本发明中,所述可降解复合材料适用于对各种不同状态的油的吸附,例如,液态的油或气体中的油雾或气态的油分子。
本发明的方法中,还可以包括制备所述可降解复合材料的步骤,以及将使用后或吸了油的可降解复合材料进行后处理(如焚烧),并将焚烧产生的热量回收利用的步骤,从而使可降解复合材料的价值最大化,碳排放最少化。因此,根据一种具体的实施方式,所述方法包括以下步骤:
(1)制备可降解复合材料;
(2)将所述可降解复合材料与油进行接触;
(3)对步骤(2)中吸了油的可降解复合材料进行后处理,所述后处理选自再利用和焚烧中的至少一种。
需要说明的是,有关可降解复合材料和油等的具体内容(包括原料及制备方法及性能参数等)如前所述,此处不再赘述。
以下将通过实施例对本发明进行详细描述。以下实施例中,使用的撕裂蜡孔菌的保藏编号为CGMCC No.10485,已公开于CN106318876A。
制备实施例1
将撕裂蜡孔菌(以下简称YY菌)菌种转接入克氏瓶斜面,采用PDA培养基,25℃培养7天,得到斜面菌种。
PDA培养基的制备方法:取去皮的马铃薯200g,切成小块,加水1L,煮沸30min,滤去马铃薯块,将滤液补足至1.0L,即为马铃薯浸取液。1.0L马铃薯浸取液加葡萄糖20.0g、琼脂15.0g,自然pH,121℃灭菌20min。
将斜面菌种接入一级种子的液体培养基,该培养基的质量百分比配方为:可溶性淀粉2%,玉米浆干粉0.6%,磷酸二氢钾0.1%,自然pH,121℃灭菌20min。培养条件:装液量为150mL/500mL挡板三角瓶,接种量约3cm2菌苔,于25℃摇床150rpm培养3天,得到一级种子液。
将一级种子液接入二级种子的液体培养基,该培养基的质量百分比配方为:葡萄糖8%,玉米浆干粉0.8%,磷酸二氢钾0.5%,pH自然,115℃灭菌30min。装液量150mL/500mL挡板三角瓶,按5%的体积比接种,于25℃摇床150rpm培养3天。获得的发酵液作为固体培养的种子液(生物量干重为5g/L)。
制备实施例2
将糙皮侧耳(购自中国普通微生物保藏管理中心,CGMCC 5.759)菌种,转接入克氏瓶斜面,采用PDA培养基,25℃培养7天,得到斜面菌种。
将斜面菌种接入PDW(马铃薯葡萄糖水)培养基(青岛日水生物科技有限公司),自然pH,121℃灭菌20min。培养条件:装液量为150mL/500mL挡板三角瓶,接种量约3cm2菌苔,于25℃摇床150rpm培养3天,得到用于固体培养的种子液(生物量干重为9g/L)。
实施例1
本实施例用来说明本发明使用的可降解复合材料的制备方法。
将制备实施例1获得的种子液与未经灭菌处理的培养基质(培养基质成分的质量百分比为:大豆秆(粒径在2-15mm范围内)95%,麸皮4%,葡萄糖1%,石膏1%)混合,不经灭菌或杀菌处理,接种量为4g/kg培养基质。以自来水将培养基质的含水量提高至65-70%。在25℃进行开放式培养,培养环境的相对湿度为85%:预培养3天,使得菌丝在培养基质中充分生长,预培养结束后将培养的物料置于模具中进行模具内培养5天,待菌丝长满培养基质后,从模具中取出,于模具外培养2天。于55℃干燥10h,得到可降解复合材料A。
实施例2-5
这些实施例用来说明本发明使用的可降解复合材料的制备方法。
按照实施例1的方法制备可降解复合材料B-E,不同的是,分别用“质量比为1:1的大豆秆和玉米秆”、“质量比为1:1的大豆秆和棉籽壳”、“质量比为1:1的大豆秆和玉米芯”、“质量比为1:1的大豆秆和花生壳”替换实施例1培养基质中的大豆秆,均能生长成形且材料的成形效果均较好。
实施例6
本实施例用来说明本发明使用的可降解复合材料的制备方法。
将制备实施例1获得的种子液与未经灭菌处理的培养基质(培养基质成分的质量百分比为:杨树的木屑(粒径在2-15mm范围内)96.3%,糊精2%,酵母浸粉0.5%,石膏1%,KH2PO40.2%)混合,接种量为10g/kg培养基质,在环境湿度65%,35℃进行开放式生料固态发酵:预培养1天,使得菌丝在培养基质中充分生长,预培养结束后将培养的物料置于模具中进行模具内培养3天,待菌丝长满培养基质后,从模具中取出,于模具外培养1天。于65℃干燥8h,得到可降解复合材料F,其成形效果与实施例1基本相同。
实施例7
本实施例用来说明本发明使用的可降解复合材料的制备方法。
将制备实施例1获得的种子液与未经灭菌处理的培养基质(培养基质成分的质量百分比为:玉米芯颗粒(粒径在0.1-5mm范围内,粒径为2mm以下的玉米芯与粒径为2mm以上的玉米芯的质量比为1:4)96%,果糖2%,豆粕水解液1%,石膏1%)混合,接种量为2g/kg培养基质。以自来水将培养基质的含水量提高至65-70%。在15℃进行开放式培养(培养环境的湿度为55%):预培养4天,使得菌丝在培养基质中充分生长,预培养结束后将培养的物料置于模具中进行模具内培养8天,待菌丝长满培养基质后,从模具中取出,进行模具外培养3天。于80℃干燥20h,得到可降解复合材料G,其成形效果与实施例1基本相同。
实施例8
本实施例用来说明本发明使用的可降解复合材料的制备方法。
按照实施例7的方法制备可降解复合材料H,不同的是,将培养基质中“玉米芯”的40%替换为等质量的栽培香菇的“废菌糠”。
对比例1
将制备实施例1获得的种子液与经灭菌处理的培养基质(培养基质成分的质量百分比为:竹纤维(宜宾长顺竹木产业有限公司生产竹原纤维的下脚料,长度30-80mm)94%,玉米粉5%,石膏1%)混合,接种量为4g/kg培养基质,培养基质的含水量控制在65-70%。在25℃,相对湿度为85%培养。培养8天仍未见所接入的YY菌丝生长,竹纤维未被固结成形。置于85℃干燥10h,得到对比材料I。
实施例9
采用无菌操作将制备实施例2获得的种子液接种于经灭菌处理的培养基质(培养基质成分的质量百分比为:棉籽壳88%,麸皮8%,蒸馏干酒糟2%,蔗糖1%,石膏1%)混合,接种量为8g/kg培养基质,培养基质的含水量控制在65-70%。装入无菌模具中,在25℃培养。培养环境要求无菌,以保证菌丝在培养基质中充分生长。待菌丝长满培养基质后,脱模,置于65℃干燥10h,得到可降解复合材料J。
实施例10
将制备实施例1获得的种子液与未经灭菌处理的培养基质(培养基质成分的质量百分比为:稻草79%,麸皮20%,石膏1%)混合,接种量为2g/kg培养基质。以自来水将培养基质的含水量提高至65-70%。在25℃,相对湿度为85%进行培养。预培养2天后装入模具继续培养6天,菌丝长满培养基质,从模具中取出,在模具外培养2天。置于105℃干燥10h,得到可降解复合材料K,其成形效果与实施例1基本相同。
实施例11
将制备实施例1获得的种子液与未经灭菌处理的培养基质(培养基质成分的质量百分比为:经酸处理的竹纤维(宜宾长顺竹木产业有限公司生产竹原纤维的下脚料,长度30-80mm)30%,大豆秆69%,石膏1%)混合,接种量为4g/kg培养基质。以自来水将培养基质的含水量提高至65-70%。在25℃,相对湿度为85%培养。预培养3天,接入的菌丝长满培养基质,装入模具继续培养3天,从模具中取出,在模具外培养1天。置于80℃干燥16h,得到可降解复合材料L,其成形效果与实施例1基本相同。
实施例12
按实施例1的方法预培养完成后,装入直径4cm的半球状凹槽内,用球形的压头将半球形的培养物中心压出直径约1.5cm的半球状凹陷。于25℃,相对湿度85%的恒温恒湿培养箱中培养2d,培养物固结成中间凹陷的半球。将已成形的中间凹陷的半球从模具中取出,扣放在另一个相同形状的半球上,使二个中间凹陷的半球的切面贴合培养5天,这两个中间凹陷的半球通过菌丝的生长而紧密连接起来,形成了一个内部有球形空腔的完整的空心球(可降解复合材料M)。
测试例1
本测试例用来说明本发明制备的可降解复合材料的物理性能。
通过测量质量和体积,计算上述实施例制得的可降解复合材料的表观密度。
将实施例获得的可降解复合材料进行压缩性能测试(测试方法GB/T 8813-2008《硬质泡沫塑料压缩性能的测定》):采用可降解复合材料压缩50%时需要施加的压力来表示,需要施加的压力越大,说明可降解复合材料的压缩强度越高。
表观密度和压缩强度的测定结果见表1。
表1可降解复合材料的表观密度和压缩强度
可降解复合材料 表观密度(kg/m<sup>3</sup>) 压缩强度(MPa)
A 160±2 1.2
B 120±9 0.82
C 228.4±15 1.5
D 196.5±8 1.8
E 197.2±21 2.08
F 223.6±9 2.3
G 334.15±12 3.2
H 278±19 2.9
J 185±9 1.5
K 155±8 1.3
L 178±11 1.4
M(空心球状材料) 112±12 未测试
测试例2
按照如下方式测定实施例获得的成形可降解复合材料的吸水性能:
(1)在20℃±1℃的水中浸泡可降解复合材料,使试样的上表面距离水面约25mm,浸泡2h后悬空沥水10±2min,继续将试样水平地浸入水面以下,使试样的上表面距离水面约25mm,浸泡22h。经2h和22h浸泡测试后肉眼观察,材料无明显变形,仍漂浮于水面。
(2)在20℃±1℃的水中浸泡可降解复合材料,使试样的上表面距离水面约25mm,浸泡24h后,肉眼观察材料无明显变形,试样不会自然沉入水中。
该测试例的结果表明:本发明使用的可降解复合材料密度低,漂浮性好,充分吸水后仍然漂浮于水面。
测试例3
参照GB/T 19277.1-2011《受控堆肥条件下材料最终需氧生物分解能力的测定采用测定释放的二氧化碳的方法第1部分:通用方法》测试可降解复合材料A的180天最终生物分解率为75.1%,超过GB/T 20197-2006《降解塑料的定义、分类、标志和降解性能要求》对混合物的技术要求。
测试例4
本发明的可降解复合材料均是可燃材料,根据GB/T 8627-2007《建筑材料燃烧或分解的烟密度试验方法》,测定可降解复合材料A的烟密度为51.2。
按照GB/T 20285《材料产烟毒性危险分级》,测试可降解复合材料A的产烟毒性,符合该标准的安全级(AQ2)要求,烟气浓度50.0mg/L时,麻醉性和刺激性合格。
测试实施例1
本测试实施例示出了本发明的可降解复合材料吸油倍率的测定方法和结果。
(Ⅰ)全油体系的静态吸油倍率:
将适量的可降解复合材料置于测试的油中,可降解复合材料与油于23℃±2℃静置接触10min,将可降解复合材料与油一起倾倒于筛网上,沥油3min,称量可降解复合材料吸油后的质量。吸油倍率的计算公式如下:
Figure BDA0002712543750000201
其中,“试验前材料的干燥质量”是指在吸油试验前材料的试样在105℃干燥至恒重的质量。
全油体系的静态吸油倍率测定结果见表2(每组试验6个平行)。
表2对比材料和可降解复合材料在全油体系的静态吸油倍率
Figure BDA0002712543750000202
(Ⅱ)全油体系的动态吸油倍率:
在500mL锥形瓶中,放入适量的可降解复合材料A和测试的油,于23℃±2℃,100r/min分别振荡1min,2min,3min,5min,10min,20min,40min,1h,2h,4h和24h;振荡结束将可降解复合材料A与油一起倾倒于筛网上,沥油3min,称量可降解复合材料A吸油后的质量。吸油倍率的计算同上述全油体系的静态吸油倍率。
全油体系的动态吸油倍率测定结果见表3。
表3可降解复合材料A在不同吸附时间在全油体系的动态吸油倍率
时间 柴油(0#) 机油(壳牌,HX6) 大豆油(金龙鱼)
1min 0.72 1.23 0.96
2min 1.32 2.12 1.29
3min 1.68 3.08 2.89
5min 2.45 4.24 4.65
10min 3.86 4.52 4.89
20min 4.28 4.67 4.99
40min 4.62 5.12 4.97
1h 4.71 5.23 5.01
2h 4.75 5.31 5.03
4h 4.76 5.32 5.01
24h 4.78 5.36 5.05
(Ⅲ)油水混合体系的动态吸油倍率:
将25g油和125mL去离子水置于500mL锥形瓶中,100r/min振荡混合10min;将适量的可降解复合材料置于该油水混合物中,23℃±2℃,100r/min振荡10min,将可降解复合材料与油水混合物一起倾倒于筛网上,滴沥3min,然后将其置于105℃烘箱4h,脱去水分,称量其脱水后的质量。吸油倍率计算公式如下:
Figure BDA0002712543750000211
其中,“试验前材料的干燥质量”是指在吸油试验前材料的试样在105℃干燥至恒重时的质量。
油水混合体系的动态吸油倍率结果见表4。
表4对比材料和可降解复合材料在油水混合体系的动态吸油倍率
Figure BDA0002712543750000221
(Ⅳ)油与模拟海水混合体系的动态吸油倍率:
方法同上述(Ⅲ)油水混合体系的动态吸油倍率,仅将去离子水更换为模拟海水。模拟海水的配制参照ASTM D1141《Standard Practice for the Preparation ofSubstitute Ocean Water》。吸油倍率的计算结果见表5。
表5对比材料和可降解复合材料在油与模拟海水混合体系的动态吸油倍率
Figure BDA0002712543750000231
测试实施例2
本测试实施例示出了本发明的可降解复合材料的持油率的测定方法和结果。
吸油后的材料在自然重力的作用下沥油,于不同时间点称量含油材料的质量,将沥油3min的作为持油率测定的起点(0min),将沥油63min的作为持油率测定的60min(1h),以此类推。
Figure BDA0002712543750000232
持油率的测定结果见表6。
表6对比材料和可降解复合材料不同时间的持油率
Figure BDA0002712543750000241
测试实施例3
按照测试实施例1中之(Ⅰ)的方法测定可降解复合材料A在不同温度对0#柴油的吸油倍率,测定条件100r/min振荡4h。结果见表7。
表7可降解复合材料A在不同温度对0#柴油的吸油倍率
温度(℃) 吸油倍率(g/g)
5 4.18
10 4.35
20 4.92
25 4.76
30 5.34
40 5.26
测试实施例4
按照测试实施例1中之(Ⅰ)的方法测试可降解复合材料C对牛油(市售)的静态吸油倍率。测试的吸油和沥油温度均为60℃(该温度牛油为液体状态),可降解复合材料C的吸油倍率为3.92g/g。
测试实施例5
(1)按照测试实施例1中之(Ⅰ)的方法测试可降解复合材料在不同油中的静态吸油倍率,结果见表8。
(2)按照测试实施例1中之(Ⅲ)的方法测试可降解复合材料在几种油水混合体系中的动态吸油倍率,所不同的是,吸油后3min内滴沥下来的油要回到油水混合体系中。通过测量油水混合体系中油的减少量来计算材料的吸油倍率。吸油倍率的计算公式如下:
Figure BDA0002712543750000251
结果见表8。
表8可降解复合材料对油的吸油倍率
Figure BDA0002712543750000252
本测试实施例使用的有机试剂均是市售分析纯试剂。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (7)

1.可降解复合材料在吸油中的应用,其中,所述可降解复合材料包括真菌菌丝形成的三维立体网状结构和被所述三维立体网状结构固定的至少一个木质纤维素碎屑。
2.一种吸油的方法,其特征在于,该方法包括:将可降解复合材料与油进行接触,所述可降解复合材料包括真菌菌丝形成的三维立体网状结构和被所述三维立体网状结构固定的至少一个木质纤维素碎屑。
3.根据权利要求1所述的应用或权利要求2所述的方法,其中,所述可降解复合材料呈规则或不规则的三维立体状。
4.根据权利要求1所述的应用或权利要求2所述的方法,其中,所述木质纤维素碎屑来源于植物、植物性废料和栽培食用菌剩余的废弃培养基质中的至少一种;
优选地,所述植物选自种子、茎秆、根、叶和果实中的至少一种;
优选地,所述植物性废料选自种子壳、秸秆、木质废料、藤质废料、纸屑、棉屑、玉米芯和甘蔗渣中的至少一种;
更优选地,所述木质纤维素碎屑来源于豆秸、玉米秸秆、稻秆、麦秆、棉秆、麸皮、棉籽壳、玉米芯、木屑、竹屑和废菌糠中的至少一种。
5.根据权利要求1所述的应用或权利要求2所述的方法,其中,所述真菌为具有菌丝生长阶段的真菌,优选子囊菌(Ascomycote)和担子菌(Basidiomycota)中的大型真菌,选自蘑菇科(Agaricaceae)、木耳科(Auriculariaceae)、瘤孢多孔菌科(Bondarzewiaceae)、拟层孔菌科(Fomitopsidaceae)、灵芝科(Ganodermataceae)、褐褶菌科(Gloeophyllaceae)、马鞍菌科(Helvllaceae)、羊肚菌科(Morchellaceae)、光茸菌科(Omphalotacea)、泡头菌科(Physalacriaceae)、侧耳科(Pleurotaceae)、光柄菇科(Pluteaceae)、多孔菌科(Polyporaceae)、红菇科(Russulaceae)、裂褶菌科(Schizophyllaceae)、革菌科(Stereaceae)、球盖菇科(Strophariaceae)、韧革菌科(Thelephoraceae)、银耳科(Tremellaceae)和白蘑科(Tricholomataceae)中真菌中的至少一种;
仍优选地,所述真菌选自蘑菇属(Agaricus)、田头菇属(Agrocybe)木耳属(Auricularia)、烟管菌属(Bjerkandera)、瘤孢多孔菌属(Bondarzewia)、蜡孔菌属(Ceriporia)、杯伞属(Clitocybe)、革盖菌属(Coriolus)、拟迷孔菌属(Daedaleopsis)、大孔菌属(Favolus)、冬菇属(Flammulina)、层孔菌属(Fomes)、拟层孔菌属(Fomitopsis)、灵芝属(Ganoderma)、粘褶菌属(Gloeophyllum)、马鞍菌属(Helvella)、沿丝伞属(Hypholoma)、纤孔菌属(Inonotus)、乳菇属(Lactarius)、香菇属(Lentinula)、离褶伞属(Lyophyllum)、羊肚菌属(Morchella)、韧伞属(Naematoloma)、丘伞属(Nolanea)、脐盖菇属(Omphalia)、革耳属(Panus)、木层孔菌属(Phellinus)、环锈伞菌属(Pholiota)、剥管菌属(Piptoporus)、侧耳属(Pleurotus)、乌茸属(Polyozellus)、多孔菌属(Polyporus)、茯苓属(Poria)、锈迷孔菌属(Porodaedalea)、褐层孔菌属(Pyropolyporu)、裂褶菌属(Schizophyllum)、韧革菌属(Stereum)、栓菌属(Trametes)、银耳属(Tremella)、口蘑属(Tricholoma)、干酪菌属(Tyromyces)和小包脚菇属(Volvariella)中的真菌中的至少一种;
更优选地,所述真菌选自双孢蘑菇(Agaricus bisporus)、双环林地蘑菇(Agaricusplacomyces)、茶树菇(Agrocybe aegerita)木耳(Auricularia auricula)、烟色烟管菌(Bjerkandera fumosa)、伯氏圆孢地花(Bondarzewia berkeleyi)、撕裂蜡孔菌(Ceriporialacerata)、大杯蕈(Clitocybe maxima)、二型革盖菌(Coriolus biformis)、毛革盖菌(Coriolus hirsutus)、云芝(Coriolus versicolor)、粗糙拟迷孔菌(Daedaleopsisconfragosa)、三色拟迷孔菌(Daedaleopsis tricolor)、漏斗大孔菌(Favolusarcularius)、金针菇(Flammulina velutipes)、木质层孔菌(Fomes ligneus)、红缘拟层孔菌(Fomitopsis pinicola)、灵芝(Ganoderma lucidum)、松杉灵芝(Ganoderma tsugae)、蜜粘褶菌(Gloeophyllum trabeum)、马鞍菌(Helvella elastica)、橙黄褐韧伞(Hypholomacapnoides)、桦褐孔菌(Inonotus oblique)、浓香乳菇(Lactarius cumphoratus)、香菇(Lentinula edodes)、洁丽香菇(Lentinus lepideus)、榆干离褶伞(Lyophyllumulmarium)、小羊肚菌(Morchella deliciosa)、砖红韧黑伞(Naematolomasublateritium)、细毛柄丘伞(Nolanea hirtipes)、雷丸(Omphalia lapidescens)、野生革耳(Panus rudis)、裂蹄木层孔菌(Phellinus linteus)、滑菇(Pholiota nameko)、桦剥管菌(Piptoporus betulinus)、杏鲍菇(Pleurotus eryngii)、白灵菇(Pleurotusnebrodensis)、糙皮侧耳(Pleurotus ostreatus)、乌茸菌(Polyozellus multiplex)、冬生多孔菌(Polyporus brumalis)、桑生卧孔菌(Poria moricola)、金缘锈迷孔菌(Porodaedalea chrysoloma)、木蹄(Pyropolyporus fomentarius)、裂褶菌(Schizophyllumcommune)、扁韧革菌(Stereum fasciatum)、毛韧革菌(Stereumhirsutum)、东方栓菌(Trametes orientalis)、血红栓菌(Trametes sanguinea)、银耳(Tremella fuciformis)、苦口蘑(Tricholoma acerbum)、接骨木状干酪菌(Tyromycessambuceus)和草菇(Volvariella volvacea)中的至少一种;
进一步优选地,所述真菌选自撕裂蜡孔菌和/或糙皮侧耳。
6.根据权利要求1所述的应用或权利要求2所述的方法,所述油选自植物油、矿物油、动物油和人工合成的非水溶性液体中的至少一种。
7.根据权利要求1所述的应用或权利要求2所述的方法,其中,所述可降解复合材料包括保藏编号为CGMCC No.10485的撕裂蜡孔菌菌丝形成的立体网状结构和被所述立体网状结构固定的至少一个木质纤维素碎屑。
CN202011061624.6A 2020-09-30 2020-09-30 可降解复合材料在吸油中的应用 Pending CN112062217A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011061624.6A CN112062217A (zh) 2020-09-30 2020-09-30 可降解复合材料在吸油中的应用
PCT/CN2020/137649 WO2022068093A1 (zh) 2020-09-30 2020-12-18 可降解复合材料在吸油中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011061624.6A CN112062217A (zh) 2020-09-30 2020-09-30 可降解复合材料在吸油中的应用

Publications (1)

Publication Number Publication Date
CN112062217A true CN112062217A (zh) 2020-12-11

Family

ID=73683264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011061624.6A Pending CN112062217A (zh) 2020-09-30 2020-09-30 可降解复合材料在吸油中的应用

Country Status (2)

Country Link
CN (1) CN112062217A (zh)
WO (1) WO2022068093A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679978A (zh) * 2020-12-24 2021-04-20 李红霞 一种抗菌生物质包装材料的制备方法
WO2022068093A1 (zh) * 2020-09-30 2022-04-07 中国科学院天津工业生物技术研究所 可降解复合材料在吸油中的用途
CN114984920A (zh) * 2022-06-15 2022-09-02 安徽工程大学 用于油水分离的疏水丝瓜络制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115300985B (zh) * 2022-06-17 2023-11-24 华电电力科学研究院有限公司 一种电力设备用油高效除酸再生处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240334C1 (ru) * 2003-06-25 2004-11-20 Общество с ограниченной ответственностью "ТрансПлюс" Композиция на древесной основе
CN104277986A (zh) * 2014-09-30 2015-01-14 浙江大学 撕裂蜡孔菌菌株及其应用
CN106111695A (zh) * 2016-07-26 2016-11-16 白银博奥普生物科技有限公司 一种利用大型真菌菌丝体降解土壤有机污染物的方法
CN106317922A (zh) * 2015-07-07 2017-01-11 中国科学院天津工业生物技术研究所 一种可降解材料及其制备方法
CN106633990A (zh) * 2016-12-30 2017-05-10 深圳市泽青源科技开发服务有限公司 以玉米秸秆为主料的真菌基生物质包装材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011110A (en) * 1996-09-13 2000-01-04 Nisshinbo Industries, Inc. Carrier for bioreactor and method of producing the same
US20120276021A1 (en) * 2003-03-12 2012-11-01 Danisco Us Inc. Use of repeat sequence protein polymers in personal care compositions
CN112062217A (zh) * 2020-09-30 2020-12-11 中国科学院天津工业生物技术研究所 可降解复合材料在吸油中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240334C1 (ru) * 2003-06-25 2004-11-20 Общество с ограниченной ответственностью "ТрансПлюс" Композиция на древесной основе
CN104277986A (zh) * 2014-09-30 2015-01-14 浙江大学 撕裂蜡孔菌菌株及其应用
CN106317922A (zh) * 2015-07-07 2017-01-11 中国科学院天津工业生物技术研究所 一种可降解材料及其制备方法
CN106111695A (zh) * 2016-07-26 2016-11-16 白银博奥普生物科技有限公司 一种利用大型真菌菌丝体降解土壤有机污染物的方法
CN106633990A (zh) * 2016-12-30 2017-05-10 深圳市泽青源科技开发服务有限公司 以玉米秸秆为主料的真菌基生物质包装材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
彭丹: "生物改性木质纤维素材料制备溢油吸附剂的特性和机理研究", 《中国博士学位论文全文数据库(电子期刊)工程科技I辑》 *
杨东方等: "《海湾生态学 上册》", 31 January 2010, 北京:海洋出版社 *
石若夫等: "《应用微生物技术》", 30 April 2020, 北京航空航天大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068093A1 (zh) * 2020-09-30 2022-04-07 中国科学院天津工业生物技术研究所 可降解复合材料在吸油中的用途
CN112679978A (zh) * 2020-12-24 2021-04-20 李红霞 一种抗菌生物质包装材料的制备方法
CN112679978B (zh) * 2020-12-24 2022-04-08 李红霞 一种抗菌生物质包装材料的制备方法
CN114984920A (zh) * 2022-06-15 2022-09-02 安徽工程大学 用于油水分离的疏水丝瓜络制备方法

Also Published As

Publication number Publication date
WO2022068093A1 (zh) 2022-04-07

Similar Documents

Publication Publication Date Title
CN112062217A (zh) 可降解复合材料在吸油中的应用
Leong et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review
Bellettini et al. Factors affecting mushroom Pleurotus spp.
Rinker Spent mushroom substrate uses
US20220380271A1 (en) Growth Media for Improved Growth and Yield of Fungus Using Treated Lignocellulosic Biomass
Phan et al. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes
US20100120128A1 (en) Eco-engineering for systematic carbon mitigation
Das Heavy metals biosorption by mushrooms
CN112225326A (zh) 菌丝体材料在吸油中的应用
Economou et al. Valorization of spent oyster mushroom substrate and laccase recovery through successive solid state cultivation of Pleurotus, Ganoderma, and Lentinula strains
Desrochers et al. Sargassum uses guide: a resource for Caribbean researchers, entrepreneurs and policy makers
Jafari et al. The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw
Gholizadeh et al. Remediation of contaminated rice farmlands soil and Oryza sativa rice product by apple pomace as adsorbent
Alam et al. Harvesting and pretreatment techniques of aquatic macrophytes and macroalgae for production of biofuels
Fernández et al. Fundamentals in applications of algae biomass: A review
Shirkhan et al. Green technologies and environmental management: A new understanding and approach to the use of agricultural waste
CN101817589A (zh) 一种微生物生态床及使用该微生物生态床治理河涌的方法
Gupta et al. Agricultural Waste as a Resource: The Lesser Travelled Road to Sustainability
CN112175406B (zh) 可降解复合材料在调湿中的应用
El Hage et al. Harvest and postharvest technologies
Lakshmi In vivo Utilization of Seafood Processing Waste for Cultivation of the Medicinal Mushroom (Ganoderma lucidum) using Agro-Industrial Waste
Kousar et al. Recent advances on environmentally sustainable valorization of spent mushroom substrate: A review
Khan et al. Agricultural solid waste management: an approach to protect the environment and increase agricultural productivity
Owaid et al. Cultivation performance of Pleurotus salmoneostramineus mushroom on wastes of date-palm trunk, phoenix dactylifera L., and woodworking sawdust
Jha et al. Sustainable solutions for water hyacinth invasion: Characteristics, impacts, control, and utilization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201211

RJ01 Rejection of invention patent application after publication