CN112054773A - Amplifying circuit, power analyzer and measuring device - Google Patents

Amplifying circuit, power analyzer and measuring device Download PDF

Info

Publication number
CN112054773A
CN112054773A CN201910491164.1A CN201910491164A CN112054773A CN 112054773 A CN112054773 A CN 112054773A CN 201910491164 A CN201910491164 A CN 201910491164A CN 112054773 A CN112054773 A CN 112054773A
Authority
CN
China
Prior art keywords
node
input
feedback
coupled
inverting input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910491164.1A
Other languages
Chinese (zh)
Inventor
赵章琰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fluke Corp
Original Assignee
Fluke Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fluke Corp filed Critical Fluke Corp
Priority to CN201910491164.1A priority Critical patent/CN112054773A/en
Publication of CN112054773A publication Critical patent/CN112054773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

The application discloses an amplifying circuit, a power analyzer and a measuring device. The amplifying circuit comprises an operational amplifier, a voltage division network and a feedback network. The operational amplifier comprises a non-inverting input node, an inverting input node and an output node, wherein the non-inverting input node is coupled to a reference voltage; a voltage divider network coupled between an input signal and an inverting input node, the voltage divider network including a receiving node for receiving the input signal, an intermediate node coupled to the inverting input node, a first input resistor, a first input capacitor, and a second input capacitor coupled in series between the intermediate node and a reference voltage; a feedback network is coupled between the inverting input node and the output node.

Description

放大电路、功率分析仪和测量装置Amplifier circuits, power analyzers and measurement devices

技术领域technical field

本申请涉及电子电路,更具体地,涉及一种放大电路以及包括该放大电路的功率分析仪和测量装置。The present application relates to electronic circuits, and more particularly, to an amplifier circuit and a power analyzer and measurement device including the amplifier circuit.

背景技术Background technique

功率分析仪可用于测量电机、变频器、变压器等功率转换装置的功率参量,如有功功率、无功功率或视在功率等。功率分析仪通常包括输入级电路以将被测设备的高电压信号转换为较低电压信号,再输入到分析电路对该低电压信号进行分析。该输入级电路的结构会显著影响功率分析仪的性能。Power analyzers can be used to measure power parameters of power conversion devices such as motors, frequency converters, and transformers, such as active power, reactive power, or apparent power. A power analyzer usually includes an input stage circuit to convert the high voltage signal of the device under test into a lower voltage signal, which is then input to the analysis circuit for analysis of the low voltage signal. The structure of this input stage circuit can significantly affect the performance of the power analyzer.

发明内容SUMMARY OF THE INVENTION

本申请的目的之一在于提供一种结构简单的放大电路。One of the objectives of the present application is to provide an amplifier circuit with a simple structure.

根据本申请的一个方面,提供了一种放大电路,所述放大电路包括:运算放大器,所述运算放大器包括同相输入节点、反相输入节点和输出节点,所述同相输入节点耦接到参考电压;分压网络,所述分压网络耦接在输入信号和所述反相输入节点之间,所述分压网络包括:接收节点,所述接收节点用于接收输入信号;中间节点,所述中间节点耦接到所述反相输入节点;第一输入电阻器和第一输入电容器,所述第一输入电阻器和第一输入电容器并联耦接在所述接收节点和所述中间节点之间;和第二输入电容器,所述第二输入电容器耦接在所述中间节点和所述参考电压之间;和反馈网络,所述反馈网络耦接在所述反相输入节点和所述输出节点之间。According to one aspect of the present application, an amplifying circuit is provided, the amplifying circuit includes an operational amplifier, the operational amplifier includes a non-inverting input node, an inverting input node and an output node, the non-inverting input node is coupled to a reference voltage ; a voltage dividing network, the voltage dividing network is coupled between the input signal and the inverting input node, the voltage dividing network includes: a receiving node, the receiving node is used for receiving the input signal; an intermediate node, the an intermediate node coupled to the inverting input node; a first input resistor and a first input capacitor coupled in parallel between the receive node and the intermediate node ; and a second input capacitor coupled between the intermediate node and the reference voltage; and a feedback network coupled between the inverting input node and the output node between.

在一些实施例中,所述反馈网络包括一个或多个反馈支路,每个所述反馈支路耦接在所述反相输入节点和所述输出节点之间。In some embodiments, the feedback network includes one or more feedback branches, each of the feedback branches being coupled between the inverting input node and the output node.

在一些实施例中,所述反馈网络包括至少一个反馈支路,所述至少一个反馈支路包括彼此并联耦接的反馈电阻器和反馈电容器。In some embodiments, the feedback network includes at least one feedback branch including a feedback resistor and a feedback capacitor coupled in parallel with each other.

在一些实施例中,所述至少一个反馈支路还包括与所述并联耦接的反馈电阻器和反馈电容器串联的开关。In some embodiments, the at least one feedback branch further includes a switch in series with the parallel coupled feedback resistor and feedback capacitor.

在一些实施例中,所述反馈网络包括至少一个反馈支路,所述至少一个反馈支路包括开关。In some embodiments, the feedback network includes at least one feedback branch including a switch.

在一些实施例中,所述分压网络还包括:第二输入电阻器,所述第二输入电阻器耦接在所述中间节点和所述反相输入节点之间。In some embodiments, the voltage divider network further includes a second input resistor coupled between the intermediate node and the inverting input node.

在一些实施例中,所述第一输入电容器的电容值和所述第一输入电阻器的电阻值的乘积等于所述第二输入电容器的电容值和所述第二输入电阻器的电阻值的乘积。In some embodiments, the product of the capacitance value of the first input capacitor and the resistance value of the first input resistor is equal to the difference between the capacitance value of the second input capacitor and the resistance value of the second input resistor product.

在一些实施例中,所述第二输入电阻器的电阻值小于所述第一输入电阻器的电阻值的10%。In some embodiments, the resistance value of the second input resistor is less than 10% of the resistance value of the first input resistor.

根据本申请的另一方面,还提供了一种功率分析仪,所述功率分析仪包括如前述方面所述的放大电路。According to another aspect of the present application, there is also provided a power analyzer, the power analyzer comprising the amplification circuit described in the foregoing aspect.

根据本申请的另一方面,还提供了一种测量装置,所述测量装置包括如前述方面所述的放大电路。According to another aspect of the present application, there is also provided a measuring device, the measuring device comprising the amplifying circuit as described in the previous aspect.

以上为本申请的概述,可能有简化、概括和省略细节的情况,因此本领域的技术人员应该认识到,该部分仅是示例说明性的,而不旨在以任何方式限定本申请范围。本概述部分既非旨在确定所要求保护主题的关键特征或必要特征,也非旨在用作为确定所要求保护主题的范围的辅助手段。The above is an overview of the application, and there may be cases of simplification, generalization and omission of details, so those skilled in the art should realize that this part is only illustrative, and is not intended to limit the scope of the application in any way. This Summary section is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

附图说明Description of drawings

通过下面结合附图所做的详细说明以及所附的权利要求书,本领域技术人员将会更加充分地清楚理解本申请内容的上述和其他特征。可以理解,这些附图和详细说明仅描绘了本申请内容的若干示例性实施方式,不应将其认为是对本申请内容范围的限定。通过参考附图,本申请的内容将会得到更加明确和详细地说明。The above and other features of the present disclosure will be more fully understood by those skilled in the art from the following detailed description taken in conjunction with the accompanying drawings and the appended claims. It is to be understood that these drawings and detailed description depict only several exemplary embodiments of the present disclosure and should not be considered as limiting the scope of the present disclosure. The contents of the present application will be explained more clearly and in detail by referring to the accompanying drawings.

图1示出了根据本申请一个实施例的放大电路100的电路结构图。FIG. 1 shows a circuit structure diagram of an amplifying circuit 100 according to an embodiment of the present application.

具体实施方式Detailed ways

在下面的详细描述中,参考了构成说明书的一部分的附图。在附图中,除非上下文另有说明,类似的符号通常表示类似的组成部分。详细描述、附图和权利要求书中描述的说明性实施方式并非旨在限定。在不偏离本申请主题的精神或范围的情况下,可以采用其他实施方式,和做出其他变化。可以理解,可以对本申请中一般性描述的、在附图中图解说明的本申请内容的各个方面进行多种不同构成的配置、替换、组合,设计,而所有这些都明确地构成本申请内容的一部分。In the following detailed description, reference is made to the accompanying drawings which form a part of this specification. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not intended to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter of the present application. It will be appreciated that various configurations, substitutions, combinations, designs of various configurations may be made to the various aspects of the content of the present application generally described in the present application and illustrated in the accompanying drawings, all of which expressly constitute the subject matter of the present application. part.

参考图1,图1示意性地示出了根据本申请一个实施例的放大电路100的电路结构图。Referring to FIG. 1 , FIG. 1 schematically shows a circuit structure diagram of an amplifying circuit 100 according to an embodiment of the present application.

如图1所示,放大电路100包括运算放大器102、分压网络104和反馈网络106。其中,运算放大器102包括同相输入节点(+)、反相输入节点(-)和输出节点。在一些实施例中,运算放大器102可以是基于双极型结型晶体管的运算放大器,也可以是基于场效应晶体管的运算放大器,或者基于其他适合的器件实现的运算放大器。As shown in FIG. 1 , the amplifier circuit 100 includes an operational amplifier 102 , a voltage divider network 104 and a feedback network 106 . The operational amplifier 102 includes a non-inverting input node (+), an inverting input node (-) and an output node. In some embodiments, the operational amplifier 102 may be a bipolar junction transistor-based operational amplifier, a field-effect transistor-based operational amplifier, or an operational amplifier implemented based on other suitable devices.

分压网络104耦接在输入信号Vin与运算放大器102的反相输入节点之间,用于对该输入信号Vin进行采样。分压网络104可以以与其电路结构对应的分压系数对输入信号Vin进行分压,并且产生幅值小于输入信号Vin的采样信号VsThe voltage divider network 104 is coupled between the input signal Vin and the inverting input node of the operational amplifier 102 for sampling the input signal Vin . The voltage dividing network 104 can divide the input signal Vin with a voltage dividing coefficient corresponding to its circuit structure, and generate a sampling signal V s whose amplitude is smaller than that of the input signal Vin .

反馈网络106耦接在运算放大器102的反相输入节点与输出节点之间,其与分压网络104共同使得运算放大器102被配置为反相放大电路的结构。相比于同相放大电路,反相放大电路能够较容易地实现小于1的电路放大增益,并且也不需要为了切换电路的放大增益而在分压网络104中添加具有较高耐压的开关或继电器,这使得放大电路100的结构变得简单、体积缩小。对于功率分析仪或类似的电气测量装置,反相放大电路的较小的电路放大增益可以使得较大幅值的输入电压(例如220V的交流电压)减小到适于电子测量装置的幅值范围(例如小于或等于12V,或者小于或等于5V);另外,反相放大电路在切换这种较小的电路放大增益时,仅需要体积较小的低电压开关;因而,采用反相放大电路结构的运算放大器特别适用于便携式电子测量装置。另外,较小的电路放大增益也有利于实现宽带宽输出。The feedback network 106 is coupled between the inverting input node and the output node of the operational amplifier 102, which together with the voltage divider network 104 enables the operational amplifier 102 to be configured as an inverting amplifier circuit. Compared with the non-inverting amplifier circuit, the inverting amplifier circuit can easily achieve a circuit amplification gain of less than 1, and it is not necessary to add a switch or relay with a higher withstand voltage in the voltage divider network 104 in order to switch the amplification gain of the circuit. , which makes the structure of the amplifying circuit 100 simple and the volume small. For power analyzers or similar electrical measurement devices, the smaller circuit amplification gain of the inverting amplifier circuit can reduce a larger amplitude input voltage (eg, 220V AC voltage) to an amplitude range suitable for electronic measurement devices ( For example, less than or equal to 12V, or less than or equal to 5V); in addition, when the inverting amplifier circuit switches the amplification gain of this small circuit, only a small low-voltage switch is required; therefore, the inverting amplifier circuit structure is adopted. Operational amplifiers are particularly suitable for portable electronic measurement devices. In addition, the smaller circuit amplification gain is also beneficial to realize the wide bandwidth output.

在一些实施例中,反馈网络106可以包括一个或多个反馈支路,并且每个反馈支路单独耦接在反相输入节点和输出节点之间。当反馈网络106包括多个反馈支路时,多个反馈支路之间彼此并联。这些反馈支路可以具有相同的或不同的反馈系数。可选地,每个反馈支路可以耦接有一个开关用于控制该反馈支路的闭合或断开。这样,通过控制每个反馈支路的开关的闭合或断开状态,可以调节放大电路100的电路增益,以适应输入信号Vin的不同幅值。在一些实施例中,每个反馈支路可以包括彼此并联耦接的反馈电阻器和反馈电容器,其中反馈电阻器可以用于确定该反馈支路的反馈增益,而反馈电容器可以用于:低通滤波,以滤除可能影响测量的高频噪声;确保放大电路的稳定性;以及协同下文将会详细描述的第二输入电容器Cin2一起确保放大电路频率响应特性的平坦。在一些实施例中,反馈电容器可以具有较小的电容值,例如1皮法至200皮法,或者其他适合的电容值。在一些实施例中,反馈电阻器的电阻值可以为100欧姆至500千欧姆,或者其他适合的电阻值。In some embodiments, the feedback network 106 may include one or more feedback branches, and each feedback branch is individually coupled between the inverting input node and the output node. When the feedback network 106 includes multiple feedback branches, the multiple feedback branches are connected in parallel with each other. These feedback branches may have the same or different feedback coefficients. Optionally, each feedback branch may be coupled with a switch for controlling closing or opening of the feedback branch. In this way, by controlling the closed or open state of the switch of each feedback branch, the circuit gain of the amplifier circuit 100 can be adjusted to adapt to different amplitudes of the input signal V in . In some embodiments, each feedback branch can include a feedback resistor and a feedback capacitor coupled in parallel with each other, wherein the feedback resistor can be used to determine the feedback gain of the feedback branch, and the feedback capacitor can be used to: low pass filtering to filter out high frequency noise that may affect the measurement; to ensure the stability of the amplifier circuit; and to ensure a flat frequency response characteristic of the amplifier circuit in conjunction with a second input capacitor C in2 , which will be described in detail below. In some embodiments, the feedback capacitor may have a smaller capacitance value, such as 1 picofarad to 200 picofarads, or other suitable capacitance values. In some embodiments, the resistance value of the feedback resistor may be 100 ohms to 500 kiloohms, or other suitable resistance values.

具体地,如图1所示,分压网络104包括接收节点IN、中间节点IMN、第一输入电阻器Rin1、第一输入电容器Cin1和第二输入电容器Cin2。其中,接收节点IN用于接收输入信号Vin;中间节点IMN耦接到运算放大器102的反相输入节点;第一输入电阻器Rin1和第一输入电容器Cin1并联耦接在接收节点IN和所述中间节点IMN之间;第二输入电容器Cin1串联耦接在中间节点IMN和参考电压Vref之间;反馈网络106耦接在运算放大器102的反相输入节点和输出节点OUT之间。如图1所示,反馈网络106包括一个或多个反馈支路,每个反馈支路包括彼此并联耦接的反馈电阻器Rf和反馈电容器Cf,还包括开关S用于控制该反馈支路的闭合或断开。在一些实施例中,同相输入节点耦接到参考电压Vref。图1所示的放大电路可以基于输入信号Vin的电压生成电压形式的输出信号Vout,其中,第二输入电容器Cin2对获得平坦的频率响应特征起主要作用,其电容值通常取值较大(例如,几千皮法或其它合适的电容值)。可以看出,运算放大器102的输出端不直接驱动第二输入电容器Cin2,这可以提高放大电路100本身的稳定性。此外,该放大电路100仅具有单级放大,不仅有利于减小电路体积,还可以有效避免多级放大引入电路的噪声。Specifically, as shown in FIG. 1 , the voltage dividing network 104 includes a receiving node IN, an intermediate node IMN, a first input resistor R in1 , a first input capacitor C in1 and a second input capacitor C in2 . The receiving node IN is used to receive the input signal V in ; the intermediate node IMN is coupled to the inverting input node of the operational amplifier 102 ; the first input resistor R in1 and the first input capacitor C in1 are coupled in parallel to the receiving node IN and between the intermediate nodes IMN; the second input capacitor C in1 is coupled in series between the intermediate node IMN and the reference voltage V ref ; the feedback network 106 is coupled between the inverting input node and the output node OUT of the operational amplifier 102 . As shown in FIG. 1 , the feedback network 106 includes one or more feedback branches, each of which includes a feedback resistor R f and a feedback capacitor C f coupled in parallel with each other, and a switch S for controlling the feedback branch closing or opening of the circuit. In some embodiments, the non-inverting input node is coupled to the reference voltage Vref . The amplifying circuit shown in FIG. 1 can generate an output signal V out in the form of a voltage based on the voltage of the input signal V in , wherein the second input capacitor C in2 plays a major role in obtaining a flat frequency response characteristic, and its capacitance value is usually higher than large (eg, several thousand picofarads or other suitable capacitance). It can be seen that the output terminal of the operational amplifier 102 does not directly drive the second input capacitor C in2 , which can improve the stability of the amplifier circuit 100 itself. In addition, the amplifying circuit 100 only has a single-stage amplification, which is not only beneficial to reduce the circuit volume, but also can effectively avoid the noise introduced into the circuit by the multi-stage amplification.

对于交流形式的输入信号Vin,分压网络104的分压系数取决于第一输入电容器Cin1和第二输入电容器Cin2的电容值的比值,具体地,中间节点IMN处生成的采样信号Vs可以由下述等式(1)表示:For the input signal V in in AC form, the voltage dividing coefficient of the voltage dividing network 104 depends on the ratio of the capacitance values of the first input capacitor C in1 and the second input capacitor C in2 , specifically, the sampled signal V generated at the intermediate node IMN s can be represented by the following equation (1):

Figure BDA0002087064160000041
Figure BDA0002087064160000041

在图1所示的实施例中,分压网络104还包括第二输入电阻器Rin2,第二输入电阻器Rin2耦接在中间节点IMN和运算放大器102的反相输入节点之间。由于运算放大器的虚短特性,同相输入节点与反相输入节点可以被认为具有相同的电位,也即同相输入节点的电位等于参考电压Vref。基于此,在假设参考电压Vref为零时,放大电路100的电路传递函数由下述等式(2)表示(不考虑反馈网络中反馈电容的值):In the embodiment shown in FIG. 1 , the voltage divider network 104 further includes a second input resistor R in2 coupled between the intermediate node IMN and the inverting input node of the operational amplifier 102 . Due to the virtual short characteristic of the operational amplifier, the non-inverting input node and the inverting input node can be considered to have the same potential, that is, the potential of the non-inverting input node is equal to the reference voltage V ref . Based on this, when the reference voltage Vref is assumed to be zero, the circuit transfer function of the amplifier circuit 100 is represented by the following equation (2) (without considering the value of the feedback capacitance in the feedback network):

Figure BDA0002087064160000051
Figure BDA0002087064160000051

其中,Rfi表示被选择的反馈支路中耦接的反馈电阻器的电阻值,根据具体电路运行的不同,Rfi可以是被选择的Rf1至Rfn中的一个,或者这些反馈电阻Rf1至Rfn的并联组合(多个反馈支路被选择闭合)。Wherein, R fi represents the resistance value of the feedback resistor coupled in the selected feedback branch, and R fi may be one of the selected R f1 to R fn , or these feedback resistors R, depending on the operation of the specific circuit. Parallel combination of f1 to R fn (multiple feedback branches are selectively closed).

可以看出,对于高频交流形式的输入信号,放大电路100的电路放大增益受第二输入电阻器Rin2的电阻值影响,其电阻值越大,电路放大增益越小。在一些实施例中,第二输入电阻器Rin2的电阻值可以被设置为较小值,例如第二输入电阻器Rin2的电阻值小于第一输入电阻器Rin1的电阻值的10%。在一些实施例中,第一输入电阻器Rin1的电阻值可以为200千欧姆至100兆欧姆(例如,2兆欧姆),而第二输入电阻器Rin2的电阻值可以为1千欧姆至500千欧姆(例如,10千欧姆),或者为其他适合的电阻值。It can be seen that for the input signal in the form of high frequency AC, the circuit amplification gain of the amplifier circuit 100 is affected by the resistance value of the second input resistor R in2 , and the larger the resistance value is, the smaller the circuit amplification gain is. In some embodiments, the resistance value of the second input resistor R in2 may be set to a small value, eg, the resistance value of the second input resistor R in2 is less than 10% of the resistance value of the first input resistor R in1 . In some embodiments, the first input resistor R in1 may have a resistance value of 200 kohms to 100 megohms (eg, 2 megohms), and the second input resistor R in2 may have a resistance value of 1 kohms to 100 megohms 500k ohms (eg, 10k ohms), or other suitable resistance values.

由于反相输入节点被认为耦接到参考电压Vref,同样在假设Vref为零时,放大电路100的输入阻抗Rin由下述等式(3)表示:Since the inverting input node is considered to be coupled to the reference voltage V ref , also assuming that V ref is zero, the input impedance R in of the amplifier circuit 100 is represented by the following equation (3):

Figure BDA0002087064160000052
Figure BDA0002087064160000052

在一些实施例中,第一输入电容器Cin1的电容值和第一输入电阻器Rin1的电阻值的乘积等于第二输入电容器Cin2的电容值和所述第二输入电阻器Rin2的电阻值的乘积,这可以减少放大电路100的极点数量,由等式(3)可知输入阻抗Rin随频率的变化是平坦的,即,使得放大电路100的频率响应曲线更为平坦。另外,当第一输入电容器Cin1的电容值和第一输入电阻器Rin1的电阻值的乘积等于第二输入电容器Cin2的电容值和所述第二输入电阻器Rin2的电阻值的乘积时,由上文的等式(2)可知,放大电路100的增益H等于

Figure BDA0002087064160000053
因此放大电路100的增益是平坦的。In some embodiments, the product of the capacitance value of the first input capacitor C in1 and the resistance value of the first input resistor R in1 is equal to the capacitance value of the second input capacitor C in2 and the resistance of the second input resistor R in2 This can reduce the number of poles of the amplifier circuit 100. From equation (3), it can be known that the change of the input impedance R in with frequency is flat, that is, the frequency response curve of the amplifier circuit 100 is flatter. In addition, when the product of the capacitance value of the first input capacitor C in1 and the resistance value of the first input resistor R in1 is equal to the product of the capacitance value of the second input capacitor C in2 and the resistance value of the second input resistor R in2 , it can be known from the above equation (2) that the gain H of the amplifier circuit 100 is equal to
Figure BDA0002087064160000053
Therefore, the gain of the amplifier circuit 100 is flat.

在一些实施例中,对应于上文中第一输入电阻器Rin1和第二输入电阻器Rin2的电阻值,第一输入电容器Cin1的电容值可以为0.5皮法至250皮法(例如,5皮法),而第二输入电阻器Cin2的电容值可以为100皮法至50千皮法(例如,1000皮法),或者为其他适合的电容值。In some embodiments, corresponding to the resistance values of the first input resistor R in1 and the second input resistor R in2 above, the capacitance value of the first input capacitor C in1 may be 0.5 picofarads to 250 picofarads (eg, 5 picofarads), and the capacitance value of the second input resistor C in2 may be 100 picofarads to 50 kpicofarads (eg, 1000 picofarads), or other suitable capacitance values.

在一些实施例中,本申请实施例所示的放大电路可以用于功率分析仪,或者其他测量装置。特别地,本申请实施例所示的放大电路可以用于便携式功率分析仪或测量装置,例如,作为便携式功率分析仪或测量装置的输入级电路以采样电压。可以理解,对于功率分析仪,除了图1所示的用于采样电压的放大电路,其还可以包括用于采样电流的电流采样电路,该电流采样电路可以例如是电感线圈或者其他类似电流采样或感测电路。通过计算采样电流和采样电压,功率分析仪可以得到被测设备的功率。In some embodiments, the amplification circuit shown in the embodiments of the present application may be used in a power analyzer or other measurement device. In particular, the amplifying circuit shown in the embodiments of the present application can be used in a portable power analyzer or measuring device, for example, as an input stage circuit of the portable power analyzer or measuring device to sample voltage. It can be understood that, for the power analyzer, in addition to the amplifying circuit for sampling voltage shown in FIG. 1, it may also include a current sampling circuit for sampling current, and the current sampling circuit may be, for example, an inductance coil or other similar current sampling or sensing circuit. By calculating the sampling current and sampling voltage, the power analyzer can obtain the power of the device under test.

那些本技术领域的一般技术人员可以通过研究说明书、公开的内容及附图和所附的权利要求书,理解和实施对披露的实施方式的其他改变。在权利要求中,措词“包括”不排除其他的元素和步骤,并且措辞“一”、“一个”不排除复数。在本申请的实际应用中,一个零件可能执行权利要求中所引用的多个技术特征的功能。权利要求中的任何附图标记不应理解为对范围的限制。Other modifications to the disclosed embodiments can be understood and effected by those of ordinary skill in the art from a study of the specification, disclosure and drawings, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps and the word "a", "an" does not exclude plurals. In a practical application of the present application, one component may perform the functions of several technical features recited in the claims. Any reference signs in the claims shall not be construed as limiting the scope.

Claims (10)

1.一种放大电路,其特征在于,所述放大电路包括:1. An amplifying circuit, characterized in that the amplifying circuit comprises: 运算放大器,所述运算放大器包括同相输入节点、反相输入节点和输出节点,所述同相输入节点耦接到参考电压;an operational amplifier including a non-inverting input node, an inverting input node and an output node, the non-inverting input node being coupled to a reference voltage; 分压网络,所述分压网络耦接在输入信号和所述反相输入节点之间,所述分压网络包括:a voltage divider network coupled between the input signal and the inverting input node, the voltage divider network comprising: 接收节点,所述接收节点用于接收输入信号;a receiving node, the receiving node is configured to receive the input signal; 中间节点,所述中间节点耦接到所述反相输入节点;an intermediate node coupled to the inverting input node; 第一输入电阻器和第一输入电容器,所述第一输入电阻器和第一输入电容器并联耦接在所述接收节点和所述中间节点之间;和a first input resistor and a first input capacitor coupled in parallel between the receive node and the intermediate node; and 第二输入电容器,所述第二输入电容器耦接在所述中间节点和所述参考电压之间;和a second input capacitor coupled between the intermediate node and the reference voltage; and 反馈网络,所述反馈网络耦接在所述反相输入节点和所述输出节点之间。a feedback network coupled between the inverting input node and the output node. 2.根据权利要求1所述的放大电路,其特征在于,所述反馈网络包括一个或多个反馈支路,每个所述反馈支路耦接在所述反相输入节点和所述输出节点之间。2 . The amplifier circuit according to claim 1 , wherein the feedback network comprises one or more feedback branches, and each of the feedback branches is coupled to the inverting input node and the output node. 3 . between. 3.根据权利要求1所述的放大电路,其特征在于,所述反馈网络包括至少一个反馈支路,所述至少一个反馈支路包括彼此并联耦接的反馈电阻器和反馈电容器。3. The amplifier circuit of claim 1, wherein the feedback network comprises at least one feedback branch, the at least one feedback branch comprising a feedback resistor and a feedback capacitor coupled in parallel with each other. 4.根据权利要求3所述的放大电路,其特征在于,所述至少一个反馈支路还包括与所述并联耦接的反馈电阻器和反馈电容器串联的开关。4. The amplifier circuit of claim 3, wherein the at least one feedback branch further comprises a switch in series with the parallel coupled feedback resistor and feedback capacitor. 5.根据权利要求1所述的放大电路,其特征在于,所述反馈网络包括至少一个反馈支路,所述至少一个反馈支路包括开关。5. The amplifier circuit of claim 1, wherein the feedback network comprises at least one feedback branch, and the at least one feedback branch comprises a switch. 6.根据权利要求1所述的放大电路,其特征在于,所述分压网络还包括:6. The amplifying circuit according to claim 1, wherein the voltage dividing network further comprises: 第二输入电阻器,所述第二输入电阻器耦接在所述中间节点和所述反相输入节点之间。A second input resistor coupled between the intermediate node and the inverting input node. 7.根据权利要求6所述的放大电路,其特征在于,所述第一输入电容器的电容值和所述第一输入电阻器的电阻值的乘积等于所述第二输入电容器的电容值和所述第二输入电阻器的电阻值的乘积。7. The amplifier circuit according to claim 6, wherein the product of the capacitance value of the first input capacitor and the resistance value of the first input resistor is equal to the capacitance value of the second input capacitor and the the product of the resistance values of the second input resistors. 8.根据权利要求6所述的放大电路,其特征在于,所述第二输入电阻器的电阻值小于所述第一输入电阻器的电阻值的10%。8. The amplifier circuit according to claim 6, wherein the resistance value of the second input resistor is less than 10% of the resistance value of the first input resistor. 9.一种功率分析仪,其特征在于,所述功率分析仪包括如权利要求1至8中任一项所述的放大电路。9 . A power analyzer, characterized in that, the power analyzer comprises the amplification circuit according to any one of claims 1 to 8 . 10.一种测量装置,其特征在于,所述测量装置包括如权利要求1至8中任一项所述的放大电路。10. A measuring device, characterized in that, the measuring device comprises the amplifying circuit according to any one of claims 1 to 8.
CN201910491164.1A 2019-06-06 2019-06-06 Amplifying circuit, power analyzer and measuring device Pending CN112054773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910491164.1A CN112054773A (en) 2019-06-06 2019-06-06 Amplifying circuit, power analyzer and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910491164.1A CN112054773A (en) 2019-06-06 2019-06-06 Amplifying circuit, power analyzer and measuring device

Publications (1)

Publication Number Publication Date
CN112054773A true CN112054773A (en) 2020-12-08

Family

ID=73609740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910491164.1A Pending CN112054773A (en) 2019-06-06 2019-06-06 Amplifying circuit, power analyzer and measuring device

Country Status (1)

Country Link
CN (1) CN112054773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115598410A (en) * 2022-12-13 2023-01-13 成都爱旗科技有限公司(Cn) Power consumption acquisition system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253687B1 (en) * 2012-12-03 2013-07-31 三菱電機株式会社 Voltage detector
CN106385238A (en) * 2016-08-31 2017-02-08 兰州空间技术物理研究所 Ion current amplifying circuit for collecting electrode of vacuum ionization gauge
CN108508399A (en) * 2018-04-02 2018-09-07 国网安徽省电力有限公司电力科学研究院 Voltage transient test method based on the emulation of electronic type voltage transformer transmittance process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253687B1 (en) * 2012-12-03 2013-07-31 三菱電機株式会社 Voltage detector
CN104781679A (en) * 2012-12-03 2015-07-15 三菱电机株式会社 Voltage detection device
CN106385238A (en) * 2016-08-31 2017-02-08 兰州空间技术物理研究所 Ion current amplifying circuit for collecting electrode of vacuum ionization gauge
CN108508399A (en) * 2018-04-02 2018-09-07 国网安徽省电力有限公司电力科学研究院 Voltage transient test method based on the emulation of electronic type voltage transformer transmittance process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李波等: "电容分压型电子式电压互感器积分电路研究", 《江西科学》, vol. 35, no. 2, 30 April 2017 (2017-04-30), pages 266 - 269 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115598410A (en) * 2022-12-13 2023-01-13 成都爱旗科技有限公司(Cn) Power consumption acquisition system and method
CN115598410B (en) * 2022-12-13 2023-03-10 成都爱旗科技有限公司 Power consumption acquisition system and method

Similar Documents

Publication Publication Date Title
CN108494370A (en) Chopper-stabilized instrumentation amplifier
Hernes et al. Distortion in single-, two-and three-stage amplifiers
KR20170110103A (en) Electronic integrator for Rogowski coil sensor
US7423480B2 (en) AC amplifier for precision measurement
CN112054773A (en) Amplifying circuit, power analyzer and measuring device
Yuce Voltage-mode multifunction filters employing a single DVCC and grounded capacitors
JP2015023581A (en) Analog-to-digital converter circuit, method of driving fully differential circuit, and interface circuit for driving fully differential circuit
Bruschi et al. A fully integrated single-ended 1.5–15-Hz low-pass filter with linear tuning law
US9531341B2 (en) Method and apparatus for converting single-ended signals into differential signals
CN101995519B (en) Device and method for testing common-mode input impedance of operation amplifier
del Rio et al. Reliable analysis of settling errors in SC integrators-application to the design of high-speed/spl Sigma//spl Delta/modulators
CN117630624A (en) Temperature measuring circuit and method for power chip
TWI454047B (en) Method and system for improving limiting amplifier phase noise for low slew-rate input signals
CN116232241B (en) Instrument amplifying circuit and current monitor
US8941438B2 (en) Bandwidth limiting for amplifiers
CN106788263B (en) Fractional order capacitor circuit
Psychalinos et al. A novel all-pass current-mode filter realized using a minimum number of single output OTAs
CN113078923A (en) Signal transmission network, chip and signal processing device
Maundy et al. A novel hybrid active inductor
CN118033209B (en) Dual-channel broadband Hall current sensor and implementation method
CN206272568U (en) A Fractional Capacitance Circuit
CN116559513B (en) Integrating circuit and current sensor
CN216900705U (en) Circuit for reducing current sampling error of low-power frequency converter
CN101701977A (en) Single-ended electrical signal measuring instrument
CN222531676U (en) Analog-to-digital conversion circuit and analog-to-digital conversion system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination