CN112054069A - 一种基于圆盘超表面结构窄带滤光的集成化光电探测器件 - Google Patents

一种基于圆盘超表面结构窄带滤光的集成化光电探测器件 Download PDF

Info

Publication number
CN112054069A
CN112054069A CN202010879039.0A CN202010879039A CN112054069A CN 112054069 A CN112054069 A CN 112054069A CN 202010879039 A CN202010879039 A CN 202010879039A CN 112054069 A CN112054069 A CN 112054069A
Authority
CN
China
Prior art keywords
disc
surface structure
narrow
super
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010879039.0A
Other languages
English (en)
Inventor
吴志鹏
王琦龙
翟雨生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010879039.0A priority Critical patent/CN112054069A/zh
Publication of CN112054069A publication Critical patent/CN112054069A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,该探测器件结构自下而上分别为:底部电极结构,半导体层,金属薄膜层,介质层以及顶部的金属圆盘结构。其中圆盘超表面结构支持的等离激元共振模式与超表面结构‑介质层‑金属薄膜层支持的腔体模式进行共振耦合,产生选择性透射窄带光谱,结合半导体层实现可见及近红外波段的窄带光电探测特性;金属薄膜的设立有效降低了电极结构对集成化的影响,有利于多个窄带滤光纳米阵列的高度集成,并且受益于圆盘超表面结构在空间分布上呈正六边形,而不受入射光偏振态的影响。该集成化探测器具有微型化、集成化、可调谐的特征,在光电子器件及光谱成像领域具有很好的应用前景。

Description

一种基于圆盘超表面结构窄带滤光的集成化光电探测器件
技术领域
本发明涉及光电探测器领域,尤其涉及一种基于圆盘超表面结构窄带滤光的集成化光电探测器件。
背景技术
光电探测器是光谱成像领域的核心器件,以能带理论为基础,将入射光信号转换为电信号,实现光电转换功能。但传统的光电探测器绝大多数是宽波段的响应,需要借助分光系统来实现精细的光谱分辨。而目前分光系统一般为光栅为主导的光学系统或有机材料为主导的滤光片,光学系统体积庞大、系统复杂不利于器件的集成化与微型化;染料型滤光片稳定性差、透射率低,也难以与光电探测器件深度集成化。因此急需设计基于新结构或者新原理的可以实现光谱分辨功能的新型窄带光电探测器件。
近年来,受益于电磁仿真软件的发展和微纳加工工艺的成熟,超表面结构为高光谱集成化器件提供了新方法。但目前以超表面结构的分光特性也存在损耗较大、峰值半高宽较宽、透射率低、集成度差等问题,而且现阶段超表面结构在分光领域的研究仍然集中在光谱分辨与彩色显示领域,对于超表面结构与光电探测器的完美集成仍待进一步研究。
发明内容
本发明目的是提出一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,该器件利用圆盘超表面结构在特定波段下激发等离激元模式,与此波段下超表面结构-介质层-金属薄膜层存在相长干涉激发的腔体模式共振耦合,产生透射窄带光谱,结合半导体层实现可见及近红外波段的窄带光电探测特性,并且不受入射光偏振态的影响。此种器件改变圆盘超表面结构和介质层厚度,可调控响应波段,并且此种器件的电极结构无需另行设立,可用金属薄膜波导直接作为电极结构,降低了额外的电极结构对集成化的影响;此结构高度集成滤光膜层与探测系统,实现集成化的窄带光谱探测功能,便于高光谱成像系统微型化与集成化的发展。
本发明提出一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,该探测器件结构自下而上分别为:底部电极结构,半导体层,金属薄膜层,介质层以及顶部的金属圆盘结构。
所述金属圆盘超表面结构利用圆盘超表面结构在特定波段下激发等离激元模式,与此波段下超表面结构-介质层-金属薄膜层的腔体模式共振耦合,结合半导体层实现可见及近红外波段的窄带光电探测特性,并且不受入射光偏振态的影响。
所述金属圆盘超表面结构空间上为正六边形分布,圆盘厚度为10nm~200nm,圆盘周期为200~2000nm,圆盘半径为80~900nm,其材料为金、银、铝、钯、铜材料中一种或上述金属组合的合金。
所述介质层的厚度为20nm~500nm,其材料为二氧化硅、氮化硅、三氧化二铝、氧化锌、二氧化钛、氧化铪或者氟化镁中的一种或者多种。
所述金属薄膜层厚度为10nm~80nm,其材料为金、银、铝、钯、铜材料中一种或多种金属的合金,其作用不仅能够做为光学波导实现窄带分光,同时可以做为底部半导体层的电极,与底部电极结构形成对电极,实现光电流的探测功能。
所述半导体层的厚度为100nm~5000nm,其材料为氧化锌、氧化钛、硅、锗、砷化镓、磷化铟或铟镓砷,其结构为任意一种上述材料的层状结构或者多种上述材料叠加组成PN结型或者PIN结型结构。
所述底部电极结构的厚度为50 nm以上,其材料为金、银、铜或者铝中的一种或者多种上述金属组成的合金。
当入射光谱照射圆盘超表面结构表面时,将会在特定的波段下激发圆盘超表面结构的等离激元模式,并与此波段下超表面结构-介质层-金属薄膜层相长干涉激发的腔体模式共振耦合,透射窄带光谱,进而半导体层仅接收到此作用下的光谱信息,产生电子空穴对被金属薄膜层与底部电极结构收集,产生窄带光电响应电流或电压信号,最终实现窄带光谱探测,同时金属薄膜层的设立有效降低了额外设立的电极结构对集成化的影响;此外,通过改变超表面结构的尺寸分布、介质层材料、介质层厚度以及半导体层材料调控探测器的探测波段。
有益效果:与现有技术相比,本发明具有以下优势:
1、本发明提供的高光谱集成化探测器耦合超表面结构与介质层-金属层薄膜结构,实现高度集成化的窄带光谱分辨,与半导体层进一步结合,实现高光谱窄带分光探测;
2、本发明提供的高光谱集成化探测器中的金属薄膜层不仅能够做为光学波导实现窄带分光,同时可以做为底部半导体层的电极,与底部电极结构形成对电极,实现光电流或电压的探测功能,并且此金属薄膜的设立有效降低了额外设立的电极结构对集成化的影响,并有利于单个像元中集成多个谱段的探测单元;
3、本发明提供的高光谱集成化探测器由超表面结构/介质层/金属薄膜/半导体层/底部电极完美吸收,提高了半导体层对入射光的吸收,提升了光电转效率及器件灵敏度;
4、本发明提供的高光谱集成化探测器结构高度集成分光系统与探测系统,实现集成化的窄带光谱探测功能,便于高光谱成像系统微型化与集成化的发展。
附图说明:
图1、为本发明提供的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件的三维结构示意图;
图2、为本发明提供的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件的截面示意图;
图3、为本发明提供的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件的截面电场分布原理图。
图4、为本发明提供的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件的电学工作原理图。
图中有:底部电极结构1,半导体层2,金属薄膜层3,介质层4以及顶部的金属圆盘结构5。
具体实施方式
本发明目的是提出一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,下面结合附图和具体实施方式,进一步阐明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
下面结合附图和实施例对本发明作进一步解释:
实施例1:
一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,如图1-4所示,该探测器的结构自下而上依次为:自下而上分别为:底部电极结构1,半导体层2,金属薄膜层3,介质层4以及顶部的金属圆盘结构5。
其中底部电极结构1为热蒸镀制备的底部银电极结构,厚度为100nm;
半导体层2为PECVD制备的PN型半导体层,厚度为1500nm;
金属薄膜层3采用热蒸镀制备的银薄膜层,厚度为20nm;
介质层4采用PECVD制备的二氧化硅介质层;厚度为150nm
金属圆盘结构5采用热蒸镀制备的银圆盘结构;厚度为20nm,周期为600nm,圆盘半径70nm。
电流表连接金属薄膜层3与底部电极结构1,实现电学测试回路。
当入射光照射到器件上表面时,将会在530nm波段下激发圆盘超表面结构的等离激元模式,并与银金属圆盘-二氧化硅介质层-银薄膜激发的腔体模式共振耦合,透射窄带光谱,进而PN型半导体产生电子空穴对,被银薄膜层与底部银电极结构收集,产生窄带光电响应电流信号,最终实现窄带光谱探测。将上述原型器件集成式布局,可实现高光谱探测成像器件。
实施例2:
一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,如图1-4所示,该探测器的结构自下而上依次为:探测器的结构自下而上依次为:自下而上分别为:底部电极结构1,半导体层2,金属薄膜层3,介质层4以及顶部的金属圆盘结构5。
其中底部电极结构1为热蒸镀制备的底部金电极结构,厚度为100nm;
半导体层2为铟镓砷半导体层,厚度为1500nm;
金属薄膜层3采用热蒸镀制备的金薄膜层,厚度为15nm;
介质层4采用PECVD制备的氮化硅介质层;厚度为100nm
金属圆盘结构5采用热蒸镀制备的金圆盘结构;厚度为15nm,周期为1200nm,半径为460nm。
电流表连接金薄膜层与底部金电极结构,实现电学测试回路。
当近红外光入射到器件上表面时,将会在980nm波段下激发圆盘超表面结构的等离激元模式,并与金超表面圆盘-二氧化硅介质层-金薄膜激发的腔体模式共振耦合,透射窄带光谱,进而铟镓砷半导体层产生电子空穴对,被金薄膜层与底部金电极结构收集,产生窄带光电响应电流信号,最终实现近红外波段的窄带光谱探测。将上述原型器件集成式布局,可实现近红外波段的高光谱探测成像器件。
上述实施例用来解释说明本发明,而不是对本发明的限制。在本发明的精神和权利要求的保护内,对本发明作出的任何修改和改变,都落入本发明的保护范围内。

Claims (6)

1.一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,其特征在于:该探测器件结构自下而上分别为:底部电极结构(1),半导体层(2),金属薄膜层(3),介质层(4)以及顶部的金属圆盘结构(5)。
2.如权利要求1所述的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,其特征在于:所述的圆盘超表面结构(5)在空间分布上呈正六边形分布,圆盘厚度为10nm~200nm,圆盘周期为200~2000nm,圆盘半径为80~900nm,其材料为金、银、铝、钯、铜中的其中一种或多种上述金属组合的合金。
3.如权利要求1所述的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,其特征在于:所述的介质层(4)的厚度为20nm~500nm,其材料为二氧化硅、氮化硅、三氧化二铝、氧化锌、二氧化钛、氧化铪或者氟化镁中的一种或者多种。
4.如权利要求1所述的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,其特征在于:所述的金属薄膜层(3)厚度为10nm~80nm,其材料为金、银、铝、钯、铜中一种或多种金属的合金,其作用不仅能够做为光学波导实现窄带分光,同时可以做为底部半导体层(2)的电极,与底部电极结构(1)形成对电极,实现光电流的探测功能。
5.如权利要求1所述的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,其特征在于:所述的半导体层(2)的厚度为100nm~5000nm,其材料为氧化锌、氧化钛、硅、锗、砷化镓、磷化铟或铟镓砷,其结构为任意一种上述材料的层状结构或者多种上述材料叠加组成PN结型或者PIN结型结构。
6.如权利要求1所述的一种基于圆盘超表面结构窄带滤光的集成化光电探测器件,其特征在于:所述底部电极结构(1)的厚度为50 nm以上,其材料为金、银、铜或者铝中的一种或者多种上述金属组成的合金。
CN202010879039.0A 2020-08-27 2020-08-27 一种基于圆盘超表面结构窄带滤光的集成化光电探测器件 Pending CN112054069A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010879039.0A CN112054069A (zh) 2020-08-27 2020-08-27 一种基于圆盘超表面结构窄带滤光的集成化光电探测器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010879039.0A CN112054069A (zh) 2020-08-27 2020-08-27 一种基于圆盘超表面结构窄带滤光的集成化光电探测器件

Publications (1)

Publication Number Publication Date
CN112054069A true CN112054069A (zh) 2020-12-08

Family

ID=73600001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010879039.0A Pending CN112054069A (zh) 2020-08-27 2020-08-27 一种基于圆盘超表面结构窄带滤光的集成化光电探测器件

Country Status (1)

Country Link
CN (1) CN112054069A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296179A (zh) * 2021-06-08 2021-08-24 哈尔滨工业大学 一种用于热光伏的金属超表面滤波器
CN113465736A (zh) * 2021-06-30 2021-10-01 中国电子科技集团公司信息科学研究院 片上集成红外探测器
WO2022165937A1 (zh) * 2021-02-04 2022-08-11 苏州大学 一种电信号直接读出的光学传感装置及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233835A1 (en) * 2014-02-17 2015-08-20 Seiko Epson Corporation Analysis apparatus and electronic device
CN206654729U (zh) * 2017-02-13 2017-11-21 中北大学 一种表面等离激元增强型红外辐射器结构
CN107478342A (zh) * 2017-07-17 2017-12-15 华中科技大学 一种钽酸锂窄带探测器及其制备方法
CN109755331A (zh) * 2018-12-04 2019-05-14 东南大学 一种基于等离激元-光子模式耦合的窄带光电探测器
CN111430496A (zh) * 2020-04-24 2020-07-17 魔童智能科技(扬州)有限公司 一种窄带红外探测器及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233835A1 (en) * 2014-02-17 2015-08-20 Seiko Epson Corporation Analysis apparatus and electronic device
CN206654729U (zh) * 2017-02-13 2017-11-21 中北大学 一种表面等离激元增强型红外辐射器结构
CN107478342A (zh) * 2017-07-17 2017-12-15 华中科技大学 一种钽酸锂窄带探测器及其制备方法
CN109755331A (zh) * 2018-12-04 2019-05-14 东南大学 一种基于等离激元-光子模式耦合的窄带光电探测器
CN111430496A (zh) * 2020-04-24 2020-07-17 魔童智能科技(扬州)有限公司 一种窄带红外探测器及其制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165937A1 (zh) * 2021-02-04 2022-08-11 苏州大学 一种电信号直接读出的光学传感装置及其制备方法
CN113296179A (zh) * 2021-06-08 2021-08-24 哈尔滨工业大学 一种用于热光伏的金属超表面滤波器
CN113465736A (zh) * 2021-06-30 2021-10-01 中国电子科技集团公司信息科学研究院 片上集成红外探测器
CN113465736B (zh) * 2021-06-30 2023-08-11 中国电子科技集团公司信息科学研究院 片上集成红外探测器

Similar Documents

Publication Publication Date Title
CN112054069A (zh) 一种基于圆盘超表面结构窄带滤光的集成化光电探测器件
CN109755331B (zh) 一种基于等离激元-光子模式耦合的窄带光电探测器
Meng et al. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm
US10763382B2 (en) Backside configured surface plasmonic structure for infrared photodetector and imaging focal plane array enhancement
Beck et al. Tunable light trapping for solar cells using localized surface plasmons
US11060916B2 (en) Adjustable hyperspectral detection chip enhanced by multi-resonance plasmonic mechanism
US8969850B2 (en) Nano-structure arrays for EMR imaging
Brongersma Plasmonic photodetectors, photovoltaics, and hot-electron devices
CN106941779A (zh) 集成束缚模式频谱/角度传感器
CN209087884U (zh) 一种用于制作红外探测器的复合结构及红外探测器
US8492727B1 (en) Nano-structure arrays for EMR imaging
US7723763B2 (en) Color photodetector apparatus with multi-primary pixels
Cansizoglu et al. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: Enhancing photon–material interactions via low-dimensional structures
Veenkamp et al. Plasmonic metal nanocubes for broadband light absorption enhancement in thin-film a-Si solar cells
WO2020062468A1 (zh) 一种电读出光学传感器
CN106057957A (zh) 具有周期性纳米结构的雪崩光电二极管
US8884271B2 (en) Photodetection device
CN102237432A (zh) 一种太赫兹、红外频段灵敏光子探测器
Wang et al. Surface state induced filterless SWIR narrow-band Si photodetector
US10403781B1 (en) Silicon-based photodetectors with expanded bandwidth
Crozier et al. Controlling the light absorption in a photodetector via nanowire waveguide resonances for multispectral and color imaging
WO2012044250A1 (en) A photodetector
Schmelz et al. Black-silicon-structured back-illuminated Ge-on-Si photodiode arrays
Suo et al. Photon-trapping array for enhanced midwave infrared photoresponse
Zhang et al. Plasmon enhancement of optical absorption in ultra-thin film solar cells by rear located aluminum nanodisk arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201208

RJ01 Rejection of invention patent application after publication