CN112051727A - Variable structure control algorithm - Google Patents
Variable structure control algorithm Download PDFInfo
- Publication number
- CN112051727A CN112051727A CN202010823421.XA CN202010823421A CN112051727A CN 112051727 A CN112051727 A CN 112051727A CN 202010823421 A CN202010823421 A CN 202010823421A CN 112051727 A CN112051727 A CN 112051727A
- Authority
- CN
- China
- Prior art keywords
- gain part
- control system
- variable structure
- deviation
- hydraulic control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 36
- 238000004364 calculation method Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本公开涉及工业控制技术领域,尤其涉及一种变结构控制算法。The present disclosure relates to the technical field of industrial control, and in particular, to a variable structure control algorithm.
背景技术Background technique
工业控制中,电子液压控制是一种典型的时滞控制系统,其对液压控制算法的控制精度、适应性和鲁棒性等控制性能的要求较高。液压控制系统的工作原理是通过电子控制系统调节液压油流量,进而改变当前液压压力,从而驱动相关执行结构进行响应,并实施采集执行机构当前位置,并判断当前调节控制过程是否已经满足要求。In industrial control, electro-hydraulic control is a typical time-delay control system, which requires high control performance such as control accuracy, adaptability and robustness of hydraulic control algorithms. The working principle of the hydraulic control system is to adjust the hydraulic oil flow through the electronic control system, thereby changing the current hydraulic pressure, thereby driving the relevant execution structure to respond, and implementing the acquisition of the current position of the actuator, and judging whether the current adjustment control process has met the requirements.
从功能上分析,液压控制系统需要实时调节液压流量以实现液压压力实时调整;从性能上分析,液压控制系统需要以功能实现为基础,满足相应的调节时间、超调量、调节过程平滑度等制约因素。但是,现有的液压控制系统具有以下缺点:From the function analysis, the hydraulic control system needs to adjust the hydraulic flow in real time to realize the real-time adjustment of the hydraulic pressure; from the performance analysis, the hydraulic control system needs to be based on the function realization, to meet the corresponding adjustment time, overshoot, adjustment process smoothness, etc. Constraints. However, existing hydraulic control systems have the following disadvantages:
1.控制系统具有不确定性,且不能实时调整内部控制器的调节参数;1. The control system is uncertain, and the adjustment parameters of the internal controller cannot be adjusted in real time;
2.对于复杂液压控制系统来说,其需要建立复杂的控制对象模型,才能实现液压控制系统的精准控制;2. For a complex hydraulic control system, it needs to establish a complex control object model in order to achieve precise control of the hydraulic control system;
总之,现有的液压控制系统存在鲁棒性不强、控制精度低的问题。In a word, the existing hydraulic control system has the problems of weak robustness and low control precision.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本公开实施例提供一种变结构控制算法,其至少能够应用于后缘襟翼液压控制系统中,能够部分解决现有技术中存在的问题。本发明提供的变结构控制算法不仅能够克服液压控制系统的不确定性,并实时调整内部控制器的调节参数。同时,能够使液压控制系统拥有一定的自适应性与鲁棒性,从而解决复杂控制系统不需要建立复杂的控制对象模型而实现精准控制。In view of this, the embodiments of the present disclosure provide a variable structure control algorithm, which can be applied to at least a hydraulic control system of a trailing edge flap, and can partially solve the problems existing in the prior art. The variable structure control algorithm provided by the invention can not only overcome the uncertainty of the hydraulic control system, but also adjust the adjustment parameters of the internal controller in real time. At the same time, it can make the hydraulic control system have a certain degree of adaptability and robustness, so as to solve the complex control system without establishing a complex control object model to achieve precise control.
本算法的设计思路是:采用增量式PID控制模式,并打破常规PID控制结构,通过实时变化的系统偏差以及偏差变化率实时改变控制控制结构参数,从而提高控制系统的响应速率、减小系统超调量、提高系统稳定性。The design idea of this algorithm is: adopt the incremental PID control mode, break the conventional PID control structure, and change the control structure parameters in real time through the real-time changing system deviation and deviation change rate, thereby improving the response rate of the control system and reducing the system Overshoot, improve system stability.
实现发明目的的技术方案如下:一种变结构控制算法,变结构控制算法采用增量式PID控制模式,增量式PID控制模式通过实时变化的系统偏差以及偏差变化率实时改变控制控制结构参数。The technical scheme for realizing the purpose of the invention is as follows: a variable structure control algorithm, the variable structure control algorithm adopts an incremental PID control mode, and the incremental PID control mode changes the control structure parameters in real time through the real-time changing system deviation and the deviation change rate.
增量式PID控制模式包括比例增益部分、积分增益部分、微积分增益部分。本发明的变结构控制算法的原理是:当液压系统偏差较大时,比例增益部分取较大值,积分增益部分取较小值,微分增益部分取较小值,使液压控制系统进行快速响应,以缩短调节时间;当液压系统误差较小时,比例增益部分取值较小,积分增益部分取值较大,微分增益部分取较小值,消除液压控制系统静差,增强液压控制系统的鲁棒性;当液压控制系统的偏差由大变小过程中,微分增益部分的取值由小变大再变小,避免控液压制系统产生较大的超调量。Incremental PID control mode includes proportional gain part, integral gain part and calculus gain part. The principle of the variable structure control algorithm of the present invention is: when the deviation of the hydraulic system is large, the proportional gain part takes a larger value, the integral gain part takes a smaller value, and the differential gain part takes a smaller value, so that the hydraulic control system can respond quickly , in order to shorten the adjustment time; when the hydraulic system error is small, the proportional gain part takes a small value, the integral gain part takes a large value, and the differential gain part takes a small value to eliminate the static error of the hydraulic control system and enhance the robustness of the hydraulic control system. Rod; when the deviation of the hydraulic control system changes from large to small, the value of the differential gain part changes from small to large and then becomes small, so as to avoid the large overshoot of the hydraulic control system.
其中,比例增益部分为Kp,Kp的计算公式为:ap为比例增益范围设定最小值;bp为比例增益范围调节系数;cp为比例增益的变化速率。当液压控制系统偏差较小时,比例增益部分的参数取值较小;当液压控制系统偏差较大时,比例增益部分的参数取值较大。比例增益部分参数的变化趋势随系统偏差的变化趋势相同,这样既可以提高控制系统快速响应,也可以防止系统产生过大的超调量,而公式中cp决定比例增益部分的变化速率。Among them, the proportional gain part is Kp, and the calculation formula of Kp is: a p is the set minimum value of the proportional gain range; b p is the proportional gain range adjustment coefficient; c p is the rate of change of the proportional gain. When the deviation of the hydraulic control system is small, the parameter value of the proportional gain part is small; when the deviation of the hydraulic control system is large, the parameter value of the proportional gain part is large. The change trend of the proportional gain part parameters is the same as that of the system deviation, which can not only improve the fast response of the control system, but also prevent the system from generating excessive overshoot. In the formula, cp determines the proportional gain part change rate.
其中,积分增益部分为Ki,Ki的计算公式为:ai为积分增益范围调节系数;ci为积分增益的变化速率。当液压控制系统的偏差较小时,积分增益部分的参数取值较大,可消除液压控制系统静差,防止液压控制系统产生震荡和积分饱和现象;当液压控制系统的偏差较大时,积分增益部分的参数取值较小,加快液压控制系统快速响应,而公式中ci决定了积分增益部分的变化速率。Among them, the integral gain part is Ki, and the calculation formula of Ki is: a i is the integral gain range adjustment coefficient; c i is the rate of change of the integral gain. When the deviation of the hydraulic control system is small, the parameter value of the integral gain part is larger, which can eliminate the static error of the hydraulic control system and prevent the hydraulic control system from generating vibration and integral saturation; when the deviation of the hydraulic control system is larger, the integral gain The value of some parameters is small, which can speed up the fast response of the hydraulic control system, and c i in the formula determines the rate of change of the integral gain part.
其中,微分增益部分为Kd,Kd的计算公式为:ad为微分增益范围调节系数;cd为微分增益的变化速率;ε控制系统偏差系数。当液压控制系统的偏差大时,积分增益部分的参数取值很小,加快液压控制系统快速响应;当液压控制系统的偏差较小时,积分增益部分的参数取值较小;当液压控制系统的偏差由大到小变化过程中,微分增益部分的变化趋势按照正态分布变化趋势变化,可以减小液压控制系统超调量,克服液压控制系统震荡,增强液压控制系统的稳定性及加快控制系统动态响应速率。而公式中cd决定了积分增益部分的变化速率,液压控制系统的偏差处于ε附近开始增强微分增益作用。Among them, the differential gain part is Kd, and the calculation formula of Kd is: a d is the differential gain range adjustment coefficient; cd is the rate of change of the differential gain; ε controls the system deviation coefficient. When the deviation of the hydraulic control system is large, the parameter value of the integral gain part is small, which speeds up the rapid response of the hydraulic control system; when the deviation of the hydraulic control system is small, the parameter value of the integral gain part is small; When the deviation changes from large to small, the change trend of the differential gain part changes according to the normal distribution trend, which can reduce the overshoot of the hydraulic control system, overcome the shock of the hydraulic control system, enhance the stability of the hydraulic control system and speed up the control system. Dynamic response rate. In the formula, c d determines the rate of change of the integral gain part, and the deviation of the hydraulic control system starts to enhance the differential gain effect when the deviation of the hydraulic control system is near ε.
变结构控制算法的增量式PID控制模式的计算公式为:The calculation formula of the incremental PID control mode of the variable structure control algorithm is:
为控制器实时输出值。Real-time output value for the controller.
进一步的,比例增益部分Kp的取值范围为0≤ap≤Kp≤(ap+bp)。Further, the value range of the proportional gain part Kp is 0≤a p ≤Kp≤(a p +b p ).
进一步的,积分增益部分Ki的取值范围为0≤Ki≤ai。Further, the value range of the integral gain part Ki is 0≤Ki≤a i .
进一步的,微分增益部分Kd的取值范围为0≤Kd≤ad。Further, the value range of the differential gain part Kd is 0≤Kd≤ad .
与现有技术相比,本发明型的有益效果是:采用变结构控制算法,在液压控制系统的调节初始阶段,液压控制系统的偏差较大时,选取较大的比例增益部分的参数,较小的积分增益部分的参数,较小的微分增益部分的参数,使液压控制系统输出取值较大,对于液压系统而言,可以减小其储压时间,加快执行机构响应速度;当液压控制系统的偏差较小时,选取较小的比例增益部分的参数,较大的积分增益部分的参数,较小的微分增益部分的参数,使液压控制系统增强积分环节作用,避免产生震荡与积分饱和现象,有利于减小超调量;当液压控制系统的偏差由大变小过程,比例增益部分与积分增益部分随设定公式进行调整,微分增益部分先增大后减小。由于液压控制系统存在较大的惯性特性,为了克服液压控制系统在邻近控制目标时,须提前对液压控制系统进行制动,通过微分增益部分的参数实现液压控制系统提前降低控制量的输出量,可减小液压控制系统超调量、增强系统问题性,满足相应的控制性能。Compared with the prior art, the beneficial effect of the present invention is as follows: by adopting the variable structure control algorithm, in the initial stage of adjustment of the hydraulic control system, when the deviation of the hydraulic control system is large, the parameters of the larger proportional gain part are selected, and the parameters of the proportional gain part are selected to be relatively large. The parameters of the small integral gain part and the small differential gain part make the output value of the hydraulic control system larger. For the hydraulic system, the pressure storage time can be reduced and the response speed of the actuator can be accelerated; when the hydraulic control system is When the deviation of the system is small, select the parameters of the smaller proportional gain part, the parameters of the larger integral gain part, and the parameters of the smaller differential gain part, so that the hydraulic control system can enhance the effect of the integral link and avoid the phenomenon of oscillation and integral saturation. , which is beneficial to reduce the overshoot; when the deviation of the hydraulic control system changes from large to small, the proportional gain part and the integral gain part are adjusted with the setting formula, and the differential gain part increases first and then decreases. Due to the large inertia characteristic of the hydraulic control system, in order to overcome the hydraulic control system when it is close to the control target, the hydraulic control system must be braked in advance, and the hydraulic control system can reduce the output of the control amount in advance through the parameters of the differential gain part. It can reduce the overshoot of the hydraulic control system, enhance the problem of the system, and meet the corresponding control performance.
附图说明Description of drawings
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to explain the technical solutions of the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings that need to be used in the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present disclosure. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明变结构控制算法的结构框图;Fig. 1 is the structural block diagram of the variable structure control algorithm of the present invention;
图2为本发明比例增益部分的参数随系统偏差变化趋势图;Fig. 2 is the change trend diagram of the parameter of the proportional gain part of the present invention with the system deviation;
图3为本发明积分增益部分的参数随系统偏差变化趋势图;Fig. 3 is the variation trend diagram of the parameter of the integral gain part of the present invention with the system deviation;
图4为本发明微分增益部分的参数随系统偏差变化趋势图;Fig. 4 is the variation trend diagram of the parameter of the differential gain part of the present invention with the system deviation;
图5为本发明变结构控制算法的控制流程图;Fig. 5 is the control flow chart of the variable structure control algorithm of the present invention;
图6为本发明变结构控制算法的目标值与采集值仿真趋势变图;Fig. 6 is the target value of the variable structure control algorithm of the present invention and the simulation trend change diagram of the collected value;
图7本发明变结构控制算法中PID控制参数随系统偏差变化趋势变图。FIG. 7 is a graph of the variation trend of the PID control parameters with the system deviation in the variable structure control algorithm of the present invention.
具体实施方式Detailed ways
下面结合附图对本公开实施例进行详细描述。The embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。The embodiments of the present disclosure are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present disclosure from the contents disclosed in this specification. Obviously, the described embodiments are only some, but not all, embodiments of the present disclosure. The present disclosure can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present disclosure. It should be noted that the following embodiments and features in the embodiments may be combined with each other under the condition of no conflict. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.
要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。To illustrate, various aspects of embodiments within the scope of the appended claims are described below. It should be apparent that the aspects described herein may be embodied in a wide variety of forms and that any specific structure and/or function described herein is illustrative only. Based on this disclosure, those skilled in the art should appreciate that an aspect described herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented and/or a method may be practiced using any number of the aspects set forth herein. Additionally, such an apparatus may be implemented and/or such a method may be practiced using other structure and/or functionality in addition to one or more of the aspects set forth herein.
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本公开的基本构想,图式中仅显示与本公开中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should also be noted that the drawings provided in the following embodiments are only illustrative of the basic concept of the present disclosure, and the drawings only show the components related to the present disclosure rather than the number, shape and the number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。Additionally, in the following description, specific details are provided to facilitate a thorough understanding of the examples. However, one skilled in the art will understand that the described aspects may be practiced without these specific details.
本公开实施例提供了一种变结构控制算法,变结构控制算法采用增量式PID控制模式,增量式PID控制模式通过实时变化的系统偏差以及偏差变化率实时改变控制控制结构参数。The embodiment of the present disclosure provides a variable structure control algorithm, the variable structure control algorithm adopts an incremental PID control mode, and the incremental PID control mode changes the control structure parameters in real time by changing the system deviation and deviation change rate in real time.
增量式PID控制模式包括比例增益部分、积分增益部分、微积分增益部分。本实施例的变结构控制算法的原理是:当液压系统偏差较大时,比例增益部分取较大值,积分增益部分取较小值,微分增益部分取较小值,使液压控制系统进行快速响应,以缩短调节时间;当液压系统误差较小时,比例增益部分取值较小,积分增益部分取值较大,微分增益部分取较小值,消除液压控制系统静差,增强液压控制系统的鲁棒性;当液压控制系统的偏差由大变小过程中,微分增益部分的取值由小变大再变小,避免控液压制系统产生较大的超调量。Incremental PID control mode includes proportional gain part, integral gain part and calculus gain part. The principle of the variable structure control algorithm in this embodiment is: when the hydraulic system deviation is large, the proportional gain part takes a large value, the integral gain part takes a small value, and the differential gain part takes a small value, so that the hydraulic control system can quickly response to shorten the adjustment time; when the hydraulic system error is small, the proportional gain part takes a small value, the integral gain part takes a large value, and the differential gain part takes a small value to eliminate the static error of the hydraulic control system and enhance the hydraulic control system. Robustness: When the deviation of the hydraulic control system changes from large to small, the value of the differential gain part changes from small to large and then becomes small, so as to avoid the large overshoot of the hydraulic control system.
其中,比例增益部分为Kp,Kp的计算公式为:ap为比例增益范围设定最小值;bp为比例增益范围调节系数;cp为比例增益的变化速率。当液压控制系统偏差较小时,比例增益部分的参数取值较小;当液压控制系统偏差较大时,比例增益部分的参数取值较大。比例增益部分参数的变化趋势随系统偏差的变化趋势相同,这样既可以提高控制系统快速响应,也可以防止系统产生过大的超调量,而公式中cp决定比例增益部分的变化速率。进一步的,比例增益部分Kp的取值范围为0≤ap≤Kp≤(ap+bp)。比例增益部分的Kp的变化速率如图2所示。Among them, the proportional gain part is Kp, and the calculation formula of Kp is: a p is the set minimum value of the proportional gain range; b p is the proportional gain range adjustment coefficient; c p is the rate of change of the proportional gain. When the deviation of the hydraulic control system is small, the parameter value of the proportional gain part is small; when the deviation of the hydraulic control system is large, the parameter value of the proportional gain part is large. The change trend of the proportional gain part parameters is the same as that of the system deviation, which can not only improve the fast response of the control system, but also prevent the system from generating excessive overshoot. In the formula, cp determines the proportional gain part change rate. Further, the value range of the proportional gain part Kp is 0≤a p ≤Kp≤(a p +b p ). The rate of change of Kp in the proportional gain section is shown in Figure 2.
其中,积分增益部分为Ki,Ki的计算公式为:ai为积分增益范围调节系数;ci为积分增益的变化速率。当液压控制系统的偏差较小时,积分增益部分的参数取值较大,可消除液压控制系统静差,防止液压控制系统产生震荡和积分饱和现象;当液压控制系统的偏差较大时,积分增益部分的参数取值较小,加快液压控制系统快速响应,而公式中ci决定了积分增益部分的变化速率。进一步的,积分增益部分Ki的取值范围为0≤Ki≤ai。积分增益部分Ki的变化速率如图3所示。Among them, the integral gain part is Ki, and the calculation formula of Ki is: a i is the integral gain range adjustment coefficient; c i is the rate of change of the integral gain. When the deviation of the hydraulic control system is small, the parameter value of the integral gain part is larger, which can eliminate the static error of the hydraulic control system and prevent the hydraulic control system from generating vibration and integral saturation; when the deviation of the hydraulic control system is larger, the integral gain The value of some parameters is small, which can speed up the fast response of the hydraulic control system, and c i in the formula determines the rate of change of the integral gain part. Further, the value range of the integral gain part Ki is 0≤Ki≤a i . The rate of change of the integral gain part Ki is shown in Figure 3.
其中,微分增益部分为Kd,Kd的计算公式为:ad为微分增益范围调节系数;cd为微分增益的变化速率;ε控制系统偏差系数。当液压控制系统的偏差大时,积分增益部分的参数取值很小,加快液压控制系统快速响应;当液压控制系统的偏差较小时,积分增益部分的参数取值较小;当液压控制系统的偏差由大到小变化过程中,微分增益部分的变化趋势按照正态分布变化趋势变化,可以减小液压控制系统超调量,克服液压控制系统震荡,增强液压控制系统的稳定性及加快控制系统动态响应速率。而公式中cd决定了积分增益部分的变化速率,液压控制系统的偏差处于ε附近开始增强微分增益作用。进一步的,微分增益部分Kd的取值范围为0≤Kd≤ad。微分增益部分为Kd的变化速率如图4所示。Among them, the differential gain part is Kd, and the calculation formula of Kd is: a d is the differential gain range adjustment coefficient; cd is the rate of change of the differential gain; ε controls the system deviation coefficient. When the deviation of the hydraulic control system is large, the parameter value of the integral gain part is small, which speeds up the rapid response of the hydraulic control system; when the deviation of the hydraulic control system is small, the parameter value of the integral gain part is small; When the deviation changes from large to small, the change trend of the differential gain part changes according to the normal distribution trend, which can reduce the overshoot of the hydraulic control system, overcome the shock of the hydraulic control system, enhance the stability of the hydraulic control system and speed up the control system. Dynamic response rate. In the formula, c d determines the rate of change of the integral gain part, and the deviation of the hydraulic control system starts to enhance the differential gain effect when the deviation of the hydraulic control system is near ε. Further, the value range of the differential gain part Kd is 0≤Kd≤ad . The rate of change of the differential gain part, Kd, is shown in Figure 4.
变结构控制算法的增量式PID控制模式的计算公式为:The calculation formula of the incremental PID control mode of the variable structure control algorithm is:
为控制器实时输出值,其变结构控制算法的结构框图如图1所示。It is the real-time output value of the controller, and the structural block diagram of its variable structure control algorithm is shown in Figure 1.
下面结合图5、图6、图7对上述实施例的变结构控制算法的仿真做进一步详细描述。The simulation of the variable structure control algorithm of the above embodiment will be described in further detail below with reference to FIG. 5 , FIG. 6 , and FIG. 7 .
仿真系统以目标值为68、单步调节≯1.5°、稳态误差为0.25°、调节时间≯7s,平滑的控制过程为要求,并分别对变结构控制系统的参数ap、bp、cp、ai、ci、ad、cd、ε依次取值为0.30、0.5、8.00、1.00、0.05、0.50、0.08、10.00。经仿真测试,本变结构控制算法满足液压控制系统控制性能要求。如图6所示,整个调节过程相对比较平滑,未出现调节速率过大或过小的现象。如图7所示,系统调节初期,由于存在液压蓄能环节,控制算法模型以比例增益部分控制输出为主,加快控制系统响应,调节过程中,积分增益部分的作用逐渐增强,抑制控制系统出现震荡及超调现象,微分增益部分的作用先曾后降,主要为了克服液压系统存在的惯性环节,降低系统超调量;系统调节末期控制算法模型以积分增益部分控制输出为主,增强控制系统的稳定性以及抗干扰能力。The simulation system requires a target value of 68, a single-step adjustment ≯ 1.5°, a steady-state error of 0.25°, an adjustment time ≯ 7s , and a smooth control process. p , a i , c i , a d , c d , and ε take the values of 0.30, 0.5, 8.00, 1.00, 0.05, 0.50, 0.08, and 10.00 in sequence. After the simulation test, the variable structure control algorithm meets the control performance requirements of the hydraulic control system. As shown in Figure 6, the entire adjustment process is relatively smooth, and there is no phenomenon that the adjustment rate is too large or too small. As shown in Figure 7, in the early stage of system adjustment, due to the existence of hydraulic energy storage links, the control algorithm model mainly focuses on the control output of the proportional gain part, which speeds up the response of the control system. Oscillation and overshoot phenomenon, the role of the differential gain part first and then decreased, mainly to overcome the inertia link existing in the hydraulic system and reduce the system overshoot; the control algorithm model in the final stage of system adjustment is based on the control output of the integral gain part to enhance the control system. stability and anti-interference ability.
总的来说,本发明的变结构控制算法的算法模型能够平滑整个系统控制调节过程。In general, the algorithm model of the variable structure control algorithm of the present invention can smooth the entire system control adjustment process.
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present disclosure, but the protection scope of the present disclosure is not limited to this. Any person skilled in the art who is familiar with the technical scope of the present disclosure can easily think of changes or substitutions. All should be included within the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure should be subject to the protection scope of the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010823421.XA CN112051727A (en) | 2020-08-14 | 2020-08-14 | Variable structure control algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010823421.XA CN112051727A (en) | 2020-08-14 | 2020-08-14 | Variable structure control algorithm |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112051727A true CN112051727A (en) | 2020-12-08 |
Family
ID=73599579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010823421.XA Pending CN112051727A (en) | 2020-08-14 | 2020-08-14 | Variable structure control algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112051727A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113359410A (en) * | 2021-04-29 | 2021-09-07 | 武汉华海通用电气有限公司 | Digital PI controller |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102331712A (en) * | 2011-08-18 | 2012-01-25 | 中国烟草总公司郑州烟草研究院 | Variable-parameter drum control method in tobacco shred drying process |
CN106054616A (en) * | 2016-07-27 | 2016-10-26 | 昆明理工大学 | Titanium tape reel continuous pickling loop sleeve height control method for fuzzy logic optimizing PID controller parameters |
CN107368121A (en) * | 2017-08-01 | 2017-11-21 | 武汉工程大学 | A kind of double helix vegetable seed oil extruder bore temperature Fuzzy PID Control System and method |
CN107577143A (en) * | 2017-09-15 | 2018-01-12 | 北京化工大学 | PID controller parameter setting method, cooling water return line control method and device |
CN108803310A (en) * | 2018-07-23 | 2018-11-13 | 广东工业大学 | A kind of PID control method, device and equipment |
CN110824907A (en) * | 2019-11-29 | 2020-02-21 | 陕西中节能环保科技有限公司 | Boiler flue gas denitration control method based on self-adaptive fuzzy PID algorithm |
-
2020
- 2020-08-14 CN CN202010823421.XA patent/CN112051727A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102331712A (en) * | 2011-08-18 | 2012-01-25 | 中国烟草总公司郑州烟草研究院 | Variable-parameter drum control method in tobacco shred drying process |
CN106054616A (en) * | 2016-07-27 | 2016-10-26 | 昆明理工大学 | Titanium tape reel continuous pickling loop sleeve height control method for fuzzy logic optimizing PID controller parameters |
CN107368121A (en) * | 2017-08-01 | 2017-11-21 | 武汉工程大学 | A kind of double helix vegetable seed oil extruder bore temperature Fuzzy PID Control System and method |
CN107577143A (en) * | 2017-09-15 | 2018-01-12 | 北京化工大学 | PID controller parameter setting method, cooling water return line control method and device |
CN108803310A (en) * | 2018-07-23 | 2018-11-13 | 广东工业大学 | A kind of PID control method, device and equipment |
CN110824907A (en) * | 2019-11-29 | 2020-02-21 | 陕西中节能环保科技有限公司 | Boiler flue gas denitration control method based on self-adaptive fuzzy PID algorithm |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113359410A (en) * | 2021-04-29 | 2021-09-07 | 武汉华海通用电气有限公司 | Digital PI controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104252134B (en) | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer | |
JP7448692B2 (en) | Low complexity control method for asymmetric servohydraulic position tracking system | |
CN107121932B (en) | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System | |
CN104638999B (en) | Dual-servo-motor system control method based on segmentation neutral net friction model | |
CN105515492B (en) | Motor servo system progressive tracking control method when a kind of input-bound | |
CN109100935B (en) | Damping Smart PI Control Method for Large Time Delay Systems | |
WO2024124799A1 (en) | Adaptive control method, apparatus and device | |
CN108873698B (en) | An anti-disturbance two-stage fixed-point servo control method | |
CN112051727A (en) | Variable structure control algorithm | |
CN118502500A (en) | Pressure adaptive control method, device and related equipment | |
CN105759616A (en) | Servo system finite time control method considering dead zone characteristic | |
CN109736870A (en) | The wind speed adjustment method of underground local fan based on improved active disturbance rejection technology | |
CN112476439A (en) | Self-adaptive feedback linearization control method and system for robot valve control cylinder driver | |
CN111077771A (en) | Self-tuning fuzzy PID control method | |
CN110209122A (en) | A kind of control method, device, medium and the equipment of multiaxial motion platform | |
CN108549207A (en) | A kind of method of Adaptive System of Water-Turbine Engine control parameter | |
JPS62143103A (en) | Plant control device | |
CN110217222B (en) | A switching control method and system for a hybrid electric vehicle | |
CN107102555A (en) | A kind of calm one order inertia adds the linear active disturbance rejection controller design method of dead-time system | |
CN115524973A (en) | A fuzzy sliding mode control method for electro-hydraulic servo system integrating potential-like functions | |
CN105929691A (en) | Internal mode compensation control method based on fuzzy control | |
CN117514375A (en) | Steam flow determining method and device for steam turbine steam inlet valve | |
CN116442223A (en) | A Design Method of Nonlinear Dynamic Controller for Trajectory Tracking of Manipulator System | |
CN112486019B (en) | Maximum power tracking fuzzy control method of uncertain wind driven generator system | |
CN115017449A (en) | A frequency deviation calculation method and system suitable for different damping ratios of second-order systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201208 |