CN105388764A - Electro-hydraulic servo PID control method and system based on dynamic matrix feed-forward prediction - Google Patents
Electro-hydraulic servo PID control method and system based on dynamic matrix feed-forward prediction Download PDFInfo
- Publication number
- CN105388764A CN105388764A CN201510934230.XA CN201510934230A CN105388764A CN 105388764 A CN105388764 A CN 105388764A CN 201510934230 A CN201510934230 A CN 201510934230A CN 105388764 A CN105388764 A CN 105388764A
- Authority
- CN
- China
- Prior art keywords
- control
- electro
- pid
- hydraulic servo
- dmc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005096 rolling process Methods 0.000 claims abstract description 20
- 238000005457 optimization Methods 0.000 claims description 31
- 230000004044 response Effects 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 230000001629 suppression Effects 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 abstract description 6
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供一种基于动态矩阵前馈预测的电液伺服PID控制方法及系统,其中的方法包括:通过DMC前馈控制器和PID负反馈控制器相结合对电液伺服系统输入量进行优化,具体步骤如下:建立DMC前馈控制器;通过DMC前馈控制器优化电液伺服系统的性能指标,以及滚动优化电液伺服系统的控制输入值;建立PID负反馈控制器,获取优化电液伺服系统的控制输入值;根据DMC前馈控制器获取的电液伺服系统的滚动优化的控制输入值和根据PID负反馈控制器获取的电液伺服系统的优化的控制输入值,获取电液伺服系统总的优化的控制输入值。上述发明,能够解决不依赖对象的数学模型和外界带来的干扰问题。
The present invention provides an electro-hydraulic servo PID control method and system based on dynamic matrix feedforward prediction, wherein the method includes: optimizing the input volume of the electro-hydraulic servo system by combining a DMC feedforward controller and a PID negative feedback controller, The specific steps are as follows: establish a DMC feed-forward controller; optimize the performance index of the electro-hydraulic servo system through the DMC feed-forward controller, and optimize the control input value of the electro-hydraulic servo system by rolling; establish a PID negative feedback controller to obtain the optimized electro-hydraulic servo The control input value of the system; the optimized control input value of the electro-hydraulic servo system obtained by the DMC feed-forward controller and the optimized control input value of the electro-hydraulic servo system obtained by the PID negative feedback controller are obtained to obtain the electro-hydraulic servo system Total optimized control input values. The above invention can solve the problem of not relying on the mathematical model of the object and the interference caused by the outside world.
Description
技术领域technical field
本发明涉及PID控制技术领域,更为具体地,涉及一种基于动态矩阵前馈预测的电液伺服PID控制方法及系统。The present invention relates to the technical field of PID control, and more specifically, relates to an electro-hydraulic servo PID control method and system based on dynamic matrix feedforward prediction.
背景技术Background technique
目前,电液伺服系统广泛应用于航空、航天、武器、大型机械、冶金等工业部门。电液伺服控制系统的作用是根据预先的参数设定将系统负载的参数控制在一定的范围内,防止负载出现故障,所以电液伺服系统的精度与决定负载正常运转的参数密切相关。随着现代工业的发展,对电液伺服系统的性能提出了更高的要求,同时要求系统对恶劣环境有较强的适应能力。At present, electro-hydraulic servo systems are widely used in aviation, aerospace, weapons, large machinery, metallurgy and other industrial sectors. The function of the electro-hydraulic servo control system is to control the parameters of the system load within a certain range according to the pre-set parameters to prevent the load from malfunctioning. Therefore, the accuracy of the electro-hydraulic servo system is closely related to the parameters that determine the normal operation of the load. With the development of modern industry, higher requirements are put forward for the performance of the electro-hydraulic servo system, and at the same time, the system is required to have a strong adaptability to harsh environments.
电液伺服系统是典型的机电液耦合系统,其特征是非线性、不确定性、时变性、外界干扰和交叉耦合干扰,另外液压伺服系统还受到如油液粘度、温度、现场工况等多种“软”参量因素的影响,因此建立系统精确的数学模型存在一定的困难。目前电液伺服系统通常用PID(Proportion比例、Integration积分、Differentiation微分)进行控制,PID控制原理简单、易于整定,使用方便且调节性能指标对于受控对象的稍许变化不很敏感。但PID控制器只有在参数得到良好整定的前提下才能达到令人满意的效果。为了满足电液伺服系统控制性能的要求,就需要寻求一种与PID控制相结合的新的控制策略。Smith预估控制方法可以使调节器提前动作,从而抵消掉时滞特性造成的影响,减小超调量,提高系统的稳定性,加速调节过程,提高系统的快速性;但是Smith预估控制有两个主要的缺点:(1)随着对象特性变化的鲁棒性得不到保证;(2)当存在外界干扰时,不能得到很好的克服。The electro-hydraulic servo system is a typical electro-hydraulic coupling system, which is characterized by nonlinearity, uncertainty, time-varying, external interference and cross-coupling interference. In addition, the hydraulic servo system is also affected by various factors such as oil viscosity, temperature, and field conditions. Due to the influence of "soft" parameter factors, it is difficult to establish an accurate mathematical model of the system. At present, the electro-hydraulic servo system is usually controlled by PID (Proportion, Integration, and Differentiation). The PID control principle is simple, easy to tune, easy to use, and the adjustment performance index is not very sensitive to slight changes in the controlled object. However, the PID controller can only achieve satisfactory results if the parameters are well tuned. In order to meet the requirements of electro-hydraulic servo system control performance, it is necessary to seek a new control strategy combined with PID control. The Smith predictive control method can make the regulator act in advance, thereby offsetting the influence caused by the time-lag characteristic, reducing the overshoot, improving the stability of the system, accelerating the adjustment process, and improving the rapidity of the system; but the Smith predictive control has Two main drawbacks: (1) the robustness to changes in object characteristics cannot be guaranteed; (2) it cannot be well overcome when there are external disturbances.
因此,为解决上述问题,需要提供一种新的电液伺服PID控制技术。Therefore, in order to solve the above problems, it is necessary to provide a new electro-hydraulic servo PID control technology.
发明内容Contents of the invention
鉴于上述问题,本发明的目的是提供一种基于动态矩阵前馈预测的电液伺服PID控制方法及系统,以解决不依赖对象的数学模型和外界带来的干扰问题。In view of the above problems, the object of the present invention is to provide an electro-hydraulic servo PID control method and system based on dynamic matrix feedforward prediction, so as to solve the problem of not relying on the mathematical model of the object and the interference caused by the outside world.
本发明提供一种基于动态矩阵前馈预测的电液伺服PID控制方法,包括:通过DMC前馈控制器和PID负反馈控制器相结合对电液伺服系统输入量进行优化,具体步骤如下:The present invention provides an electro-hydraulic servo PID control method based on dynamic matrix feed-forward prediction, including: optimizing the input volume of the electro-hydraulic servo system by combining a DMC feed-forward controller and a PID negative feedback controller, and the specific steps are as follows:
建立所述DMC前馈控制器;Set up the DMC feed-forward controller;
通过所述DMC前馈控制器优化电液伺服系统的性能指标,以及滚动优化所述电液伺服系统的控制输入值;Optimizing the performance index of the electro-hydraulic servo system through the DMC feedforward controller, and scrolling optimizing the control input value of the electro-hydraulic servo system;
建立所述PID负反馈控制器,获取优化所述电液伺服系统的控制输入值;其中,对所述PID负反馈控制器的参数进行整定;Establishing the PID negative feedback controller, obtaining and optimizing the control input value of the electro-hydraulic servo system; wherein, tuning the parameters of the PID negative feedback controller;
根据所述DMC前馈控制器获取的所述电液伺服系统的滚动优化的控制输入值和根据所述PID负反馈控制器获取的所述电液伺服系统的优化的控制输入值,获取所述电液伺服系统总的优化的控制输入值。According to the rolling optimized control input value of the electro-hydraulic servo system obtained by the DMC feedforward controller and the optimized control input value of the electro-hydraulic servo system obtained by the PID negative feedback controller, the Overall optimized control input values for electro-hydraulic servo systems.
本发明还提供另一种基于动态矩阵前馈预测的电液伺服PID控制系统,包括:The present invention also provides another electro-hydraulic servo PID control system based on dynamic matrix feedforward prediction, including:
DMC前馈控制器建立单元,用于建立所述DMC前馈控制器;DMC feedforward controller establishment unit, for establishing described DMC feedforward controller;
性能指标优化单元,用于通过所述DMC前馈控制器优化电液伺服系统的性能指标;A performance index optimization unit is used to optimize the performance index of the electro-hydraulic servo system through the DMC feedforward controller;
控制输入值滚动优化单元,用于通过所述DMC前馈控制器滚动优化所述电液伺服系统的控制输入值;A control input value rolling optimization unit is used to scroll and optimize the control input value of the electro-hydraulic servo system through the DMC feedforward controller;
PID负反馈控制器建立单元,用于建立所述PID负反馈控制器,获取优化所述电液伺服系统的控制输入值;A PID negative feedback controller establishment unit is used to establish the PID negative feedback controller to obtain and optimize the control input value of the electro-hydraulic servo system;
PID负反馈控制器的参数整定单元,用于对所述PID负反馈控制器的参数进行整定;A parameter tuning unit of the PID negative feedback controller, used for tuning the parameters of the PID negative feedback controller;
总的优化的控制输入值获取单元,用于根据所述DMC前馈控制器获取的所述电液伺服系统的滚动优化的控制输入值和根据所述PID负反馈控制器获取的所述电液伺服系统的优化的控制输入值,获取所述电液伺服系统总的优化的控制输入值。The overall optimized control input value acquisition unit is used for the rolling optimized control input value of the electro-hydraulic servo system obtained according to the DMC feedforward controller and the electro-hydraulic servo system obtained according to the PID negative feedback controller. The optimized control input value of the servo system is used to obtain the overall optimized control input value of the electro-hydraulic servo system.
从上面的技术方案可知,本发明提供基于动态矩阵前馈预测的电液伺服PID控制方法及系统,采用基于前馈DMC(动态矩阵控制)的PID控制器对电液伺服系统进行控制设计和分析。DMC算法采用对象的单位阶跃响应系数建立预测模型,不依赖对象的精确数学模型,能够利用较小时域内的控制输出序列,通过滚动优化实现当前时刻控制输入量的优化。另一方面,DMC算法通过在优化性能指标中引入正则化项,能够有效地抑制外界带来的干扰,使得整个电液伺服系统具有较好的快速性、准确性和稳定性。It can be seen from the above technical scheme that the present invention provides an electro-hydraulic servo PID control method and system based on dynamic matrix feedforward prediction, and adopts a PID controller based on feedforward DMC (dynamic matrix control) to carry out control design and analysis on the electro-hydraulic servo system . The DMC algorithm uses the unit step response coefficient of the object to establish a prediction model, does not rely on the precise mathematical model of the object, and can use the control output sequence in a small time domain to realize the optimization of the control input at the current moment through rolling optimization. On the other hand, the DMC algorithm can effectively suppress the interference brought by the outside world by introducing a regularization term in the optimized performance index, so that the entire electro-hydraulic servo system has better speed, accuracy and stability.
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。To the accomplishment of the above and related ends, one or more aspects of the invention comprise the features hereinafter described in detail and particularly pointed out in the claims. The following description and accompanying drawings detail certain exemplary aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Furthermore, the invention is intended to include all such aspects and their equivalents.
附图说明Description of drawings
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:By referring to the following description combined with the accompanying drawings and the contents of the claims, and with a more comprehensive understanding of the present invention, other objectives and results of the present invention will be more clear and easy to understand. In the attached picture:
图1为根据本发明实施例的基于动态矩阵前馈预测的电液伺服PID控制方法流程示意图;Fig. 1 is a schematic flow chart of an electro-hydraulic servo PID control method based on dynamic matrix feedforward prediction according to an embodiment of the present invention;
图2为根据本发明实施例的电液伺服系统的控制结构框图;2 is a block diagram of a control structure of an electro-hydraulic servo system according to an embodiment of the present invention;
图3为根据本发明实施例的基于动态矩阵前馈预测的电液伺服PID控制系统结构框图。Fig. 3 is a structural block diagram of an electro-hydraulic servo PID control system based on dynamic matrix feedforward prediction according to an embodiment of the present invention.
在所有附图中相同的标号指示相似或相应的特征或功能。The same reference numerals indicate similar or corresponding features or functions throughout the drawings.
具体实施方式detailed description
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be evident, however, that these embodiments may be practiced without these specific details.
针对前述提出的随着对象特性变化的鲁棒性得不到保证,以及当存在外界干扰时,不能得到很好的克服等问题,本发明提出了一种基于动态矩阵前馈预测的电液伺服PID控制方法及系统,本发明采用基于前馈DMC的PID控制器对电液伺服系统进行控制设计和分析,以解决上述问题。Aiming at the above-mentioned problems that the robustness with the change of object characteristics cannot be guaranteed, and when there is external interference, it cannot be well overcome. The present invention proposes an electro-hydraulic servo servo system based on dynamic matrix feedforward prediction. A PID control method and system, the present invention adopts a feed-forward DMC-based PID controller to carry out control design and analysis on an electro-hydraulic servo system to solve the above problems.
以下将结合附图对本发明的具体实施例进行详细描述。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
为了说明本发明提供的基于动态矩阵前馈预测的电液伺服PID控制方法,图1示出了根据本发明实施例的于动态矩阵前馈预测的电液伺服PID控制方法流程。In order to illustrate the electrohydraulic servo PID control method based on dynamic matrix feedforward prediction provided by the present invention, FIG. 1 shows the flow of the electrohydraulic servo PID control method based on dynamic matrix feedforward prediction according to an embodiment of the present invention.
如图1所示,本发明提供的基于动态矩阵前馈预测的电液伺服PID控制方法包括:通过DMC前馈控制器和PID负反馈控制器相结合对电液伺服系统输入量进行优化,具体步骤如下:As shown in Figure 1, the electro-hydraulic servo PID control method based on dynamic matrix feed-forward prediction provided by the present invention includes: optimizing the input quantity of the electro-hydraulic servo system by combining a DMC feed-forward controller and a PID negative feedback controller, specifically Proceed as follows:
S110:建立DMC前馈控制器;S110: establishing a DMC feedforward controller;
S120:通过DMC前馈控制器优化电液伺服系统的性能指标,以及滚动优化电液伺服系统的控制输入值;S120: optimize the performance index of the electro-hydraulic servo system through the DMC feed-forward controller, and optimize the control input value of the electro-hydraulic servo system by scrolling;
S130:建立PID负反馈控制器,获取优化电液伺服系统的控制输入值;其中,对PID负反馈控制器的参数进行整定;S130: Establishing a PID negative feedback controller to obtain control input values for optimizing the electro-hydraulic servo system; wherein, tuning parameters of the PID negative feedback controller;
S140:根据DMC前馈控制器获取的电液伺服系统的滚动优化的控制输入值和根据PID负反馈控制器获取的电液伺服系统的优化的控制输入值,获取电液伺服系统总的优化的控制输入值。S140: According to the optimized control input value of the rolling of the electro-hydraulic servo system obtained by the DMC feedforward controller and the optimized control input value of the electro-hydraulic servo system obtained by the PID negative feedback controller, obtain the total optimized value of the electro-hydraulic servo system Control input value.
在本发明中,采用基于前馈DMC的PID控制器对电液伺服系统进行控制设计和分析,其中,DMC(动态矩阵控制)是一种先进的预测控制算法,DMC算法采用对象的单位阶跃响应系数建立预测模型,不依赖对象的精确数学模型,能够利用较小时域内的控制输出序列,通过滚动优化实现当前时刻控制输入量的优化。In the present invention, a PID controller based on feed-forward DMC is used to control design and analysis of the electro-hydraulic servo system, wherein DMC (Dynamic Matrix Control) is an advanced predictive control algorithm, and the DMC algorithm uses the unit step of the object The prediction model established by the response coefficient does not depend on the precise mathematical model of the object, and can use the control output sequence in a small time domain to realize the optimization of the control input at the current moment through rolling optimization.
也就是说,在本发明中,DMC作为系统的前馈控制器,与PID负反馈控制器相结合来提前优化电液伺服系统中输入值。That is to say, in the present invention, DMC is used as the feed-forward controller of the system, and is combined with the PID negative feedback controller to optimize the input value in the electro-hydraulic servo system in advance.
在步骤S110中,建立DMC前馈控制器,也就是建立DMC算法的预测模型。In step S110, a DMC feed-forward controller is established, that is, a prediction model of the DMC algorithm is established.
DMC算法采用对象的单位阶跃响应系数建立预测模型,在电液伺服系统的输入端加上一单位阶跃信号后,在各个采样时间的动态阶跃响应系数分别为ai=a(iT),i=1,2,...,N,N是模型的时域长度;The DMC algorithm uses the unit step response coefficient of the object to establish a prediction model. After adding a unit step signal to the input end of the electro-hydraulic servo system, the dynamic step response coefficients at each sampling time are respectively a i = a(iT) , i=1,2,..., N, N is the time domain length of the model;
根据线性系统的比例和叠加性质,从k时刻起对系统施加M个输入控制增量Δu(k+j),j=0,1,…M-1后,则系统在未来p个时刻的预测输出等于不施加任何控制增量时系统的输出与单独施加这M个输入控制增量引起的系统输出的叠加,即:According to the proportional and superposition properties of the linear system, after applying M input control increments Δu(k+j) to the system from time k, j=0,1,...M-1, the prediction of the system at p times in the future The output is equal to the superposition of the output of the system when no control increment is applied and the system output caused by applying these M input control increments alone, that is:
yM(k+1|k)=y0(k+1|k)+a1Δu(k)(1a)y M (k+1|k)=y 0 (k+1|k)+a 1 Δu(k)(1a)
yM(k+2|k)=y0(k+2|k)+a2Δu(k)+a1Δu(k+1)(1b)y M (k+2|k)=y 0 (k+2|k)+a 2 Δu(k)+a 1 Δu(k+1)(1b)
..
..
..
yM(k+P|k)=y0(k+P|k)+aPΔu(k)+…+aP-M+1Δu(k+M-1)(1c)将公式(1a)至(1c)写成矢量形式为:y M (k+P|k)=y 0 (k+P|k)+a P Δu(k)+…+a P-M+1 Δu(k+M-1) (1c) to formula (1a ) to (1c) are written in vector form as:
YM(k+1)=Y0(k+1)+AΔU(k)(2)Y M (k+1)=Y 0 (k+1)+AΔU(k)(2)
其中,ΔU(k)=[Δu(k),Δu(k+1),…,Δu(k+M-1)]T,P为滚动优化时域长度,M为控制时域长度(M≤P≤N),A为由阶跃响应系数组成的P×M矩阵,如下所示:Among them, ΔU(k)=[Δu(k),Δu(k+1),…,Δu(k+M-1)] T , P is the length of the rolling optimization time domain, M is the length of the control time domain (M≤ P≤N), A is a P×M matrix composed of step response coefficients, as follows:
在步骤S12中,通过DMC前馈控制器优化电液伺服系统的性能指标,以及滚动优化电液伺服系统的输入量,也就是优化性能指标及滚动优化控制器的输入。In step S12, the performance index of the electro-hydraulic servo system is optimized by the DMC feedforward controller, and the input quantity of the electro-hydraulic servo system is optimized for scrolling, that is, the optimized performance index and the input of the scroll optimization controller.
其中,DMC采用滚动优化目标函数,选择未来控制时域M内的控制增量序列,使系统在其作用下未来优化时域P内的预测输出值尽可能接近期望输出值,最优控制律由以下二次型性能指标确定:Among them, DMC adopts the rolling optimization objective function, selects the control increment sequence in the future control time domain M, so that the predicted output value in the future optimization time domain P of the system under its influence is as close as possible to the expected output value, and the optimal control law is given by The following quadratic performance metrics are determined:
其中,qi和rj为权系数,分别表示对跟踪误差及控制量变化的抑制;Among them, q i and r j are weight coefficients, which respectively represent the suppression of tracking error and control variable change;
公式(4)成矢量的形式为:The vector form of formula (4) is:
其中,Yr(k+1)=[yr(k+1),...,yr(k+P)]T为未来P个采样时刻系统的期望输出值;Q为误差系数矩阵,R为控制权矩阵,分别表示为:Among them, Y r (k+1)=[y r (k+1),...,y r (k+P)] T is the expected output value of the system at P sampling moments in the future; Q is the error coefficient matrix, R is the control right matrix, expressed as:
Q=diag[q1,q2,...,qP],R=diag[r1,r2,...,rM]Q=diag[q 1 ,q 2 ,...,q P ], R=diag[r 1 ,r 2 ,...,r M ]
将公式(2)带入公式(5)中,令dJ(k)/dΔU(k)=0,得到最优控制律如下:Bring formula (2) into formula (5), set dJ(k)/dΔU(k)=0, and obtain the optimal control law as follows:
ΔU(k)=(ATQA+R)-1ATQ[Yr(k+1)-Y0(k+1)](6)ΔU(k)=(A T QA+R) -1 A T Q[Y r (k+1)-Y 0 (k+1)](6)
公式(6)给出的是ΔU(k)=[Δu(k),Δu(k+1),…,Δu(k+M-1)]T的最优解,而所述DMC前馈控制器将其中的即时控制增量Δu(k)构成实际控制作用于对象:Formula (6) provides the optimal solution of ΔU(k)=[Δu(k), Δu(k+1),...,Δu(k+M-1)] T , and the DMC feedforward control The controller uses the real-time control increment Δu(k) to act on the object as actual control:
u(k)=u(k-1)+Δu(k)(7)u(k)=u(k-1)+Δu(k)(7)
其中,在公式(7)中,Among them, in formula (7),
Δu(k)=[1,0,…,0](ATQA+R)-1ATQ[Yr(k+1)-Y0(k+1)](8)Δu(k)=[1,0,…,0](A T QA+R) -1 A T Q[Y r (k+1)-Y 0 (k+1)](8)
在上述步骤S130中,建立PID负反馈控制器。In the above step S130, a PID negative feedback controller is established.
本发明采用增量式PID控制器对电液伺服系统进行在线控制,其控制律可以描述为如下形式:The present invention uses an incremental PID controller to control the electro-hydraulic servo system online, and its control law can be described as the following form:
uPID(k)=uPID(k-1)+Kp(e(k)-e(k-1))+Kie(k)u PID (k)=u PID (k-1)+K p (e(k)-e(k-1))+K i e(k)
(9)(9)
+Kd(e(k)-2e(k-1)+e(k-2))+K d (e(k)-2e(k-1)+e(k-2))
其中,Kp,Ki和Kd分别为比例系数,积分时间常数和微分时间常数;e(k)为k时刻系统的真实输出值与给定的期望值之差。Among them, K p , K i and K d are proportional coefficients, integral time constants and differential time constants respectively; e(k) is the difference between the actual output value of the system at time k and the given expected value.
在建立PID负反馈控制器的过程中,需要对PID控制器的参数进行整定。其中,PID控制器参数整定的含义实际上是通过调整Kp、KI和KD三个参数,使得控制器特性与被控对象的特性匹配,满足控制系统所要达到的控制效果。对于纯滞后的工业过程控制,常用的PID参数的工业整定方法是:稳定边界(临界比例带法)。其中,它的视线是在系统闭环的情况下,去除积分和微分作用,让系统在纯比例器的作用下产生等幅振荡,利用此时的临界增益Kp和临界震荡周期T,根据Ziegler和Nichols提出的如下表所示的经验公式和校正类型,查表1得到PID的三个参数。In the process of establishing the PID negative feedback controller, it is necessary to tune the parameters of the PID controller. Among them, the meaning of PID controller parameter tuning is actually to adjust the three parameters of K p , KI and K D to match the characteristics of the controller with the characteristics of the controlled object to meet the control effect to be achieved by the control system. For pure lag industrial process control, the commonly used industrial tuning method of PID parameters is: stable boundary (critical proportional band method). Among them, its line of sight is to remove the integral and differential effects in the case of a closed-loop system, so that the system can generate equal-amplitude oscillations under the action of a pure proportioner. Using the critical gain K p and the critical oscillation period T at this time, according to Ziegler and The empirical formula and correction type proposed by Nichols are shown in the following table, and the three parameters of PID are obtained by looking up Table 1.
表1临界比例带法参数整定公式Table 1 Parameter tuning formula of critical proportional band method
由以上可知,由前馈DMC算法和PID负反馈控制器相结合,建立如图2所示的根据本发明实施例的电液伺服系统的控制结构,那么,在k时刻系统总的优化控制输入值为As can be seen from the above, by combining the feed-forward DMC algorithm and the PID negative feedback controller, the control structure of the electro-hydraulic servo system according to the embodiment of the present invention as shown in Figure 2 is established. Then, the total optimal control input of the system at time k value is
usum(k)=uPID(k)+u(k)(10)u sum (k) = u PID (k) + u(k) (10)
其中,uPID(k)为PID负反馈控制器获取的控制律;u(k)为DMC前馈控制器获取的控制律。Among them, u PID (k) is the control law obtained by the PID negative feedback controller; u(k) is the control law obtained by the DMC feedforward controller.
与上述方法相对应,本发明还提供一种基于动态矩阵前馈预测的电液伺服PID控制系统,图3示出了根据本发明实施例的基于动态矩阵前馈预测的电液伺服PID控制系统逻辑结构。Corresponding to the above method, the present invention also provides an electro-hydraulic servo PID control system based on dynamic matrix feed-forward prediction, and Fig. 3 shows an electro-hydraulic servo PID control system based on dynamic matrix feed-forward prediction according to an embodiment of the present invention logical structure.
如图3所示,本发明提供的一种基于动态矩阵前馈预测的电液伺服PID控制系统300包括:DMC前馈控制器建立单元310、性能指标优化单元320、控制输入值滚动优化单元330、PID负反馈控制器建立单元340、PID负反馈控制器的参数整定单元350和总的优化的控制输入值获取单元360。As shown in Figure 3, an electro-hydraulic servo PID control system 300 based on dynamic matrix feedforward prediction provided by the present invention includes: a DMC feedforward controller establishment unit 310, a performance index optimization unit 320, and a control input value rolling optimization unit 330 , a PID negative feedback controller establishment unit 340 , a parameter tuning unit 350 of the PID negative feedback controller and an overall optimized control input value acquisition unit 360 .
其中,DMC前馈控制器建立单元310用于建立DMC前馈控制器;Wherein, the DMC feedforward controller establishment unit 310 is used to establish the DMC feedforward controller;
性能指标优化单元320用于通过DMC前馈控制器优化电液伺服系统的性能指标;The performance index optimization unit 320 is used to optimize the performance index of the electro-hydraulic servo system through the DMC feedforward controller;
控制输入值滚动优化单元330用于通过DMC前馈控制器滚动优化电液伺服系统的控制输入值;The control input value rolling optimization unit 330 is used to scroll and optimize the control input value of the electro-hydraulic servo system through the DMC feedforward controller;
PID负反馈控制器建立单元340用于建立PID负反馈控制器,获取优化电液伺服系统的控制输入值;The PID negative feedback controller establishment unit 340 is used to establish the PID negative feedback controller to obtain the control input value of the optimized electro-hydraulic servo system;
PID负反馈控制器的参数整定单元350用于对PID负反馈控制器的参数进行整定;The parameter tuning unit 350 of the PID negative feedback controller is used for tuning the parameters of the PID negative feedback controller;
总的优化的控制输入值获取单元360用于根据DMC前馈控制器获取的电液伺服系统的滚动优化的控制输入值和根据PID负反馈控制器获取的电液伺服系统的优化的控制输入值,获取电液伺服系统总的优化的控制输入值。The total optimized control input value acquisition unit 360 is used to obtain the optimized control input value of the electro-hydraulic servo system obtained according to the DMC feedforward controller and the optimized control input value of the electro-hydraulic servo system obtained according to the PID negative feedback controller , to obtain the total optimized control input value of the electro-hydraulic servo system.
其中,DMC前馈控制器建立单元310在建立所述DMC前馈控制器的过程中,DMC算法采用对象的单位阶跃响应系数建立预测模型,在电液伺服系统的输入端加上一单位阶跃信号后,在各个采样时间的动态阶跃响应系数ai=a(iT),i=1,2,...,N,N是模型的时域长度;Wherein, in the process of establishing the DMC feedforward controller by the DMC feedforward controller establishment unit 310, the DMC algorithm adopts the unit step response coefficient of the object to establish a prediction model, and adds a unit step response coefficient at the input end of the electro-hydraulic servo system After the jump signal, the dynamic step response coefficient a i =a(iT) at each sampling time, i=1,2,...,N, N is the time domain length of the model;
根据线性系统的比例和叠加性质,从k时刻起对系统施加M个输入控制增量Δu(k+j),j=0,1,…M-1后,则系统在未来p个时刻的预测输出等于不施加任何控制增量时系统的输出与单独施加这M个输入控制增量引起的系统输出的叠加,即:According to the proportional and superposition properties of the linear system, after applying M input control increments Δu(k+j) to the system from time k, j=0,1,...M-1, the prediction of the system at p times in the future The output is equal to the superposition of the output of the system when no control increment is applied and the system output caused by applying these M input control increments alone, that is:
yM(k+1|k)=y0(k+1|k)+a1Δu(k)(1a)y M (k+1|k)=y 0 (k+1|k)+a 1 Δu(k)(1a)
yM(k+2|k)=y0(k+2|k)+a2Δu(k)+a1Δu(k+1)(1b)y M (k+2|k)=y 0 (k+2|k)+a 2 Δu(k)+a 1 Δu(k+1)(1b)
..
..
..
yM(k+P|k)=y0(k+P|k)+aPΔu(k)+…+aP-M+1Δu(k+M-1)(1c)将公式(1a)至(1c)写成矢量形式为:y M (k+P|k)=y 0 (k+P|k)+a P Δu(k)+…+a P-M+1 Δu(k+M-1) (1c) to formula (1a ) to (1c) are written in vector form as:
YM(k+1)=Y0(k+1)+AΔU(k)(2)Y M (k+1)=Y 0 (k+1)+AΔU(k)(2)
其中,ΔU(k)=[Δu(k),Δu(k+1),…,Δu(k+M-1)]T,P为滚动优化时域长度,M为控制时域长度(M≤P≤N),A为由阶跃响应系数组成的P×M矩阵,如下所示:Among them, ΔU(k)=[Δu(k),Δu(k+1),…,Δu(k+M-1)] T , P is the length of the rolling optimization time domain, M is the length of the control time domain (M≤ P≤N), A is a P×M matrix composed of step response coefficients, as follows:
其中,性能指标优化单元320和控制输入值滚动优化单元330在通过DMC前馈控制器优化电液伺服系统的性能指标,以及在优化电液伺服系统的输入量的过程中,Wherein, the performance index optimization unit 320 and the control input value rolling optimization unit 330 optimize the performance index of the electro-hydraulic servo system through the DMC feedforward controller, and in the process of optimizing the input quantity of the electro-hydraulic servo system,
DMC前馈控制器滚动优化目标函数,选择未来控制时域M内的控制增量序列,使系统在其作用下未来优化时域P内的预测输出值尽可能接近期望输出值,最优控制律由以下二次型性能指标确定:The DMC feedforward controller scrolls to optimize the objective function, selects the control increment sequence in the future control time domain M, and makes the predicted output value of the system in the future optimization time domain P as close as possible to the expected output value under its action, the optimal control law Determined by the following quadratic performance metrics:
其中,qi和rj为权系数,分别表示对跟踪误差及控制量变化的抑制;Among them, q i and r j are weight coefficients, which respectively represent the suppression of tracking error and control variable change;
公式(4)成矢量的形式为:The vector form of formula (4) is:
其中,Yr(k+1)=[yr(k+1),...,yr(k+P)]T为未来P个采样时刻系统的期望输出值;Q为误差系数矩阵,R为控制权矩阵,分别表示为:Among them, Y r (k+1)=[y r (k+1),...,y r (k+P)] T is the expected output value of the system at P sampling moments in the future; Q is the error coefficient matrix, R is the control right matrix, expressed as:
Q=diag[q1,q2,...,qP],R=diag[r1,r2,...,rM]Q=diag[q 1 ,q 2 ,...,q P ], R=diag[r 1 ,r 2 ,...,r M ]
将公式(2)带入公式(5)中,令dJ(k)/dΔU(k)=0,得到最优控制律如下:Bring formula (2) into formula (5), set dJ(k)/dΔU(k)=0, and obtain the optimal control law as follows:
ΔU(k)=(ATQA+R)-1ATQ[Yr(k+1)-Y0(k+1)](6)ΔU(k)=(A T QA+R) -1 A T Q[Y r (k+1)-Y 0 (k+1)](6)
公式(6)给出的是ΔU(k)=[Δu(k),Δu(k+1),…,Δu(k+M-1)]T的最优解,而所述DMC前馈控制器将其中的即时控制增量Δu(k)构成实际控制作用于对象:Formula (6) provides the optimal solution of ΔU(k)=[Δu(k), Δu(k+1),...,Δu(k+M-1)] T , and the DMC feedforward control The controller uses the real-time control increment Δu(k) to act on the object as actual control:
u(k)=u(k-1)+Δu(k)(7)u(k)=u(k-1)+Δu(k)(7)
其中,在公式(7)中,Among them, in formula (7),
Δu(k)=[1,0,…,0](ATQA+R)-1ATQ[Yr(k+1)-Y0(k+1)](8)Δu(k)=[1,0,…,0](A T QA+R) -1 A T Q[Y r (k+1)-Y 0 (k+1)](8)
其中,PID负反馈控制器建立单元340在建立PID负反馈控制器的过程中,PID控制器对电液伺服系统进行在线控制,其控制律为:Wherein, the PID negative feedback controller establishment unit 340 is in the process of establishing the PID negative feedback controller, and the PID controller performs online control on the electro-hydraulic servo system, and its control law is:
uPID(k)=uPID(k-1)+Kp(e(k)-e(k-1))+Kie(k)u PID (k)=u PID (k-1)+K p (e(k)-e(k-1))+K i e(k)
(9)(9)
+Kd(e(k)-2e(k-1)+e(k-2))+K d (e(k)-2e(k-1)+e(k-2))
其中,Kp,Ki和Kd分别为比例系数,积分时间常数和微分时间常数;Among them, K p , K i and K d are proportional coefficient, integral time constant and differential time constant respectively;
e(k)为k时刻系统的真实输出值与给定的期望值之差。e(k) is the difference between the actual output value of the system at time k and the given expected value.
其中,总的优化的控制输入值获取单元360在获取电液伺服系统总的优化的控制输入值的过程中,DMC前馈控制器和PID负反馈控制器相结合,在K时刻系统总的优化的控制输入值为:Wherein, the overall optimized control input value acquisition unit 360 is in the process of acquiring the overall optimized control input value of the electro-hydraulic servo system, the DMC feedforward controller and the PID negative feedback controller are combined, and at K time the overall optimization of the system is The control input values for are:
usum(k)=uPID(k)+u(k)(10)u sum (k) = u PID (k) + u(k) (10)
其中,uPID(k)为PID负反馈控制器获取的控制律;u(k)为DMC前馈控制器获取的控制律。Among them, u PID (k) is the control law obtained by the PID negative feedback controller; u(k) is the control law obtained by the DMC feedforward controller.
通过上述实施方式可以看出,本发明提供的基于动态矩阵前馈预测的电液伺服PID控制方法及系统,DMC算法采用对象的单位阶跃响应系数建立预测模型,不依赖对象的精确数学模型,能够利用较小时域内的控制输出序列,通过滚动优化实现当前时刻控制输入量的优化。另一方面,DMC算法通过在优化性能指标中引入正则化项,能够有效地抑制外界带来的干扰,使得整个电液伺服系统具有较好的快速性、准确性和稳定性。It can be seen from the above embodiments that in the electro-hydraulic servo PID control method and system based on dynamic matrix feedforward prediction provided by the present invention, the DMC algorithm uses the unit step response coefficient of the object to establish a prediction model, and does not rely on the precise mathematical model of the object. The control output sequence in a small time domain can be used to realize the optimization of the control input quantity at the current moment through rolling optimization. On the other hand, the DMC algorithm can effectively suppress the interference brought by the outside world by introducing a regularization term in the optimized performance index, so that the entire electro-hydraulic servo system has better speed, accuracy and stability.
如上参照附图以示例的方式描述了根据本发明提出的基于动态矩阵前馈预测的电液伺服PID控制方法及系统。但是,本领域技术人员应当理解,对于上述本发明所提出的基于动态矩阵前馈预测的电液伺服PID控制方法及系统,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。The electro-hydraulic servo PID control method and system based on dynamic matrix feed-forward prediction according to the present invention have been described by way of example with reference to the accompanying drawings. However, those skilled in the art should understand that for the electro-hydraulic servo PID control method and system based on dynamic matrix feedforward prediction proposed by the present invention, various improvements can be made without departing from the content of the present invention. Therefore, the protection scope of the present invention should be determined by the contents of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510934230.XA CN105388764B (en) | 2015-12-15 | 2015-12-15 | Electro-hydraulic servo PID control method and system based on dynamic matrix feed forward prediction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510934230.XA CN105388764B (en) | 2015-12-15 | 2015-12-15 | Electro-hydraulic servo PID control method and system based on dynamic matrix feed forward prediction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105388764A true CN105388764A (en) | 2016-03-09 |
CN105388764B CN105388764B (en) | 2017-12-08 |
Family
ID=55421156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510934230.XA Active CN105388764B (en) | 2015-12-15 | 2015-12-15 | Electro-hydraulic servo PID control method and system based on dynamic matrix feed forward prediction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105388764B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106444388A (en) * | 2016-12-06 | 2017-02-22 | 杭州电子科技大学 | Distributed PID type dynamic matrix control method for furnace pressure of coke furnace |
CN107165892A (en) * | 2017-06-14 | 2017-09-15 | 武汉科技大学 | A kind of sliding-mode control of electrohydraulic servo system |
CN107272413A (en) * | 2017-07-19 | 2017-10-20 | 华北电力大学(保定) | A kind of multi-model Adaptive Control method for denitration control system |
CN108508934A (en) * | 2017-02-27 | 2018-09-07 | 中国科学院沈阳自动化研究所 | A kind of differential scanning calorimeter temperature programmed control method with ambient temperature compensation |
CN109004878A (en) * | 2018-08-21 | 2018-12-14 | 上海应用技术大学 | Asynchronous motor dynamic matrix control method |
CN109298631A (en) * | 2018-11-16 | 2019-02-01 | 楚天智能机器人(长沙)有限公司 | A kind of auto-adaptive parameter setting method adding secondary proportionality coefficient based on conventional PID controllers |
CN111506037A (en) * | 2020-05-26 | 2020-08-07 | 杭州电子科技大学 | Distributed Control Method of Industrial Heating Furnace System Based on Dynamic Matrix Optimization |
CN111781832A (en) * | 2020-07-10 | 2020-10-16 | 国网湖南省电力有限公司 | An optimization method for ammonia injection control based on dynamic matrix improvement algorithm |
CN112286043A (en) * | 2020-10-13 | 2021-01-29 | 国网浙江省电力有限公司电力科学研究院 | PID parameter tuning method based on the step response characteristic data of the controlled object |
CN113625547A (en) * | 2021-08-11 | 2021-11-09 | 宁波宇洲液压设备有限公司 | Main valve position control method of controller |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070078529A1 (en) * | 2005-09-30 | 2007-04-05 | Fisher-Rosemount Systems, Inc. | On-line adaptive model predictive control in a process control system |
CN102540897A (en) * | 2012-03-14 | 2012-07-04 | 黑龙江盛大环保建筑工程有限责任公司 | Method for carrying out composite predictive control on coagulant dosage of water treatment |
CN102841540A (en) * | 2012-09-10 | 2012-12-26 | 广东电网公司电力科学研究院 | MMPC-based supercritical unit coordination and control method |
CN104898428A (en) * | 2015-05-20 | 2015-09-09 | 南京理工大学 | Interference estimation-based self-adaption robustness control method of electro-hydraulic servo system |
CN104932565A (en) * | 2015-06-04 | 2015-09-23 | 中国空气动力研究与发展中心高速空气动力研究所 | High-precision temporary punching type injecting transonic speed wind tunnel flow field control structure |
-
2015
- 2015-12-15 CN CN201510934230.XA patent/CN105388764B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070078529A1 (en) * | 2005-09-30 | 2007-04-05 | Fisher-Rosemount Systems, Inc. | On-line adaptive model predictive control in a process control system |
CN102540897A (en) * | 2012-03-14 | 2012-07-04 | 黑龙江盛大环保建筑工程有限责任公司 | Method for carrying out composite predictive control on coagulant dosage of water treatment |
CN102841540A (en) * | 2012-09-10 | 2012-12-26 | 广东电网公司电力科学研究院 | MMPC-based supercritical unit coordination and control method |
CN104898428A (en) * | 2015-05-20 | 2015-09-09 | 南京理工大学 | Interference estimation-based self-adaption robustness control method of electro-hydraulic servo system |
CN104932565A (en) * | 2015-06-04 | 2015-09-23 | 中国空气动力研究与发展中心高速空气动力研究所 | High-precision temporary punching type injecting transonic speed wind tunnel flow field control structure |
Non-Patent Citations (3)
Title |
---|
叶凤华 等: "卷取机EPC电液伺服系统动态矩阵控制策略研究", 《机械与电子》 * |
杨彦波 等: "《带前馈补偿的主汽温DMC-PID串级控制策略》", 《宁夏电力》 * |
杨逢瑜 等: "动态矩阵控制在电液位置伺服系统中的应用", 《液压与气动》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106444388A (en) * | 2016-12-06 | 2017-02-22 | 杭州电子科技大学 | Distributed PID type dynamic matrix control method for furnace pressure of coke furnace |
CN108508934A (en) * | 2017-02-27 | 2018-09-07 | 中国科学院沈阳自动化研究所 | A kind of differential scanning calorimeter temperature programmed control method with ambient temperature compensation |
CN107165892A (en) * | 2017-06-14 | 2017-09-15 | 武汉科技大学 | A kind of sliding-mode control of electrohydraulic servo system |
CN107165892B (en) * | 2017-06-14 | 2018-05-29 | 武汉科技大学 | A kind of sliding-mode control of electrohydraulic servo system |
CN107272413A (en) * | 2017-07-19 | 2017-10-20 | 华北电力大学(保定) | A kind of multi-model Adaptive Control method for denitration control system |
CN109004878B (en) * | 2018-08-21 | 2022-05-27 | 上海应用技术大学 | Dynamic Matrix Control Method of Asynchronous Motor |
CN109004878A (en) * | 2018-08-21 | 2018-12-14 | 上海应用技术大学 | Asynchronous motor dynamic matrix control method |
CN109298631A (en) * | 2018-11-16 | 2019-02-01 | 楚天智能机器人(长沙)有限公司 | A kind of auto-adaptive parameter setting method adding secondary proportionality coefficient based on conventional PID controllers |
CN111506037A (en) * | 2020-05-26 | 2020-08-07 | 杭州电子科技大学 | Distributed Control Method of Industrial Heating Furnace System Based on Dynamic Matrix Optimization |
CN111781832A (en) * | 2020-07-10 | 2020-10-16 | 国网湖南省电力有限公司 | An optimization method for ammonia injection control based on dynamic matrix improvement algorithm |
CN111781832B (en) * | 2020-07-10 | 2023-03-03 | 国网湖南省电力有限公司 | Ammonia injection control optimization method based on dynamic matrix improvement algorithm |
CN112286043A (en) * | 2020-10-13 | 2021-01-29 | 国网浙江省电力有限公司电力科学研究院 | PID parameter tuning method based on the step response characteristic data of the controlled object |
CN112286043B (en) * | 2020-10-13 | 2022-04-19 | 国网浙江省电力有限公司电力科学研究院 | PID parameter setting method based on controlled object step response characteristic data |
CN113625547A (en) * | 2021-08-11 | 2021-11-09 | 宁波宇洲液压设备有限公司 | Main valve position control method of controller |
CN113625547B (en) * | 2021-08-11 | 2023-08-08 | 宁波宇洲液压设备有限公司 | Main valve position control method of controller |
Also Published As
Publication number | Publication date |
---|---|
CN105388764B (en) | 2017-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105388764B (en) | Electro-hydraulic servo PID control method and system based on dynamic matrix feed forward prediction | |
CN104252134B (en) | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer | |
CN110376886B (en) | Model prediction control algorithm based on expansion state Kalman filter | |
CN104698844B (en) | Uncertainty compensatory sliding-mode control method of hydraulic position servo system | |
CN113138552B (en) | PID Parameter Tuning Method Based on Step Response Data and Critical Proportionality Method | |
CN105045233B (en) | The Optimization Design of PID controller based on time metric in Power Plant Thermal system | |
CN113960923B (en) | Model-free self-adaptive sliding mode control method based on discrete extended state observer | |
CN108489015B (en) | Air conditioning system temperature control method based on pole allocation and Pade approximation | |
CN108268071A (en) | A kind of heating boiler temprature control method based on Smith-PID | |
CN108508870A (en) | A kind of method of Drum Water Level Control System for Boiler Performance Evaluation and parameter optimization | |
CN108828954B (en) | Climate wind tunnel self-adaptive prediction control system and control method thereof | |
CN113110048B (en) | Nonlinear system output feedback adaptive control system and method adopting HOSM observer | |
CN110687800A (en) | Data-driven adaptive anti-interference controller structure and estimation method thereof | |
CN108390597A (en) | Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer | |
CN108828950A (en) | A kind of adaptive Auto-disturbance-rejection Control, device and equipment | |
CN111413865A (en) | Disturbance compensation single-loop superheated steam temperature active disturbance rejection control method | |
CN115981159B (en) | Generalized improved active disturbance rejection control method based on model-assisted and Smith-like prediction | |
CN114859732A (en) | A Feedforward Compensation Active Disturbance Rejection Controller Based on Scheduling Signal and Its Design Method | |
CN107102555B (en) | A Design Method of Linear Active Disturbance Rejection Controller for Stabilized First-Order Inertia Plus Pure Lag System | |
CN108873698A (en) | A kind of disturbance rejection two stages fixed point method of servo-controlling | |
CN104155876B (en) | A Separate Realization Method of PID Controller | |
CN110347038B (en) | A two-degree-of-freedom Smith prediction control method for the cooling process of cement clinker | |
CN207198565U (en) | A kind of Active Disturbance Rejection Control system | |
Kurien et al. | Overview of different approaches of pid controller tuning | |
CN113900376B (en) | A power frequency adjustment control method and device for a gas turbine unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221228 Address after: 264000 South 2nd Floor, No. 1, Hanjiang Road, Yantai Economic and Technological Development Zone, Shandong Province Patentee after: Yantai Zhongyi Transmission Technology Co.,Ltd. Address before: 401331 Huxi University Town, Shapingba District, Chongqing Patentee before: Chongqing University of Science & Technology |
|
TR01 | Transfer of patent right |