CN108390597A - Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer - Google Patents
Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer Download PDFInfo
- Publication number
- CN108390597A CN108390597A CN201810193438.4A CN201810193438A CN108390597A CN 108390597 A CN108390597 A CN 108390597A CN 201810193438 A CN201810193438 A CN 201810193438A CN 108390597 A CN108390597 A CN 108390597A
- Authority
- CN
- China
- Prior art keywords
- disturbance
- design
- model
- nonlinear
- observer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 22
- 230000008859 change Effects 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000013178 mathematical model Methods 0.000 claims abstract description 5
- 230000033228 biological regulation Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 238000011217 control strategy Methods 0.000 description 8
- 238000005457 optimization Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/34—Modelling or simulation for control purposes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明公开了一种带有扰动观测器的永磁同步电机非线性预测控制器的设计,属于高性能电机驱动控制系统的技术领域。首先在dq坐标系下考虑所有模型误差和外部扰动,构建PMSM的非线性数学模型;其次,在此模型基础上,分别进行外环速度环和内环电流环的预测控制器设计,并在存在控制装置限制时进行扰动观测器的设计。本发明通过级联结构的非线性模型预测控制器设计和具有抗饱和的扰动观测器设计,克服了系统存在的对所处理变量的限制和限制电流方面非常依赖于电机的电参数的缺点,且扰动将在预测控制器里被考虑并进行补偿,从而增强了永磁同步电机控制系统的鲁棒性。本发明通过实验验证了该方法能够使系统输出更准确地跟踪参考轨迹,同时考虑到电流限制在模型参数误差和负载变化时能够保持较强鲁棒性。
The invention discloses the design of a nonlinear predictive controller of a permanent magnet synchronous motor with a disturbance observer, and belongs to the technical field of high-performance motor drive control systems. First, considering all model errors and external disturbances in the dq coordinate system, a nonlinear mathematical model of PMSM is constructed; secondly, on the basis of this model, the predictive controllers of the outer loop speed loop and the inner loop current loop are designed separately, and in the presence of The design of the disturbance observer is carried out when the control device is limited. The present invention overcomes the limitation of the processed variables and the limitation of current in the system by designing the nonlinear model predictive controller of the cascaded structure and the disturbance observer with anti-saturation, which is very dependent on the electrical parameters of the motor, and The disturbance will be considered and compensated in the predictive controller, thus enhancing the robustness of the permanent magnet synchronous motor control system. The invention verifies through experiments that the method can make the system output track the reference track more accurately, and at the same time, considering that the current limit can maintain strong robustness when the model parameter error and load change.
Description
技术领域technical field
本发明涉及一种带有扰动观测器的永磁同步电机非线性预测控制器设计,属于高性能电机驱动控制的技术领域。The invention relates to a design of a nonlinear predictive controller for a permanent magnet synchronous motor with a disturbance observer, and belongs to the technical field of high-performance motor drive control.
背景技术Background technique
永磁同步电机具有高效性、高功率密度的特点使其在实际工业应用中占有非常重要的地位;然而,其模型的多变量、非线性、参数时变以及其快速动态使得对它进行控制非常复杂;尽管目前基于现代控制理论提出了多种针对永磁同步电机驱动系统的先进控制方法,如自适应控制、自校正控制、智能控制等,但均因其算法复杂、计算量大、对未建模的动态和扰动的适应能力差,系统的鲁棒性问题尚有待进一步解决,故应用范围受到限制。The characteristics of high efficiency and high power density of permanent magnet synchronous motor make it occupy a very important position in practical industrial applications; however, the multivariable, nonlinear, time-varying parameters of its model and its fast dynamics make its control very difficult. complex; although a variety of advanced control methods for permanent magnet synchronous motor drive systems have been proposed based on modern control theories, such as adaptive control, self-tuning control, intelligent control, etc. The dynamics of modeling and the adaptability to disturbance are poor, and the robustness of the system needs to be further solved, so the application range is limited.
我们研究任务的主要挑战是为永磁同步电机设想一种控制方法,使其能够具有更好的连续轨迹跟踪性能、扰动抑制性能、稳定性和鲁棒性,并且当参数不确定、考虑物理约束和计算时间时,同时要保留系统较强的非线性特性。The main challenge of our research task is to conceive a control method for permanent magnet synchronous motors, which can have better continuous trajectory tracking performance, disturbance rejection performance, stability and robustness, and when parameters are uncertain, considering physical constraints While calculating the time, the strong nonlinear characteristics of the system should be preserved at the same time.
在此框架下,模型预测控制被提出作为一种理想的解决方式;然而,构想的基于离散时间模型的非线性预测控制器需要较长的计算时间,这将非线性系统限制在动态过程较慢的工业应用过程中,如冶金、炼油、化工以造纸等应用领域,这是由于进行非线性问题最优化时需要较长的计算时间,特别是如果考虑约束影响时;正是这个原因,使得在大多数情况下,研究者们将非线性系统的预测行为在一个工作点上进行线性化处理,避免求解非线性约束优化问题,降低在线计算量,但没有充分考虑由此带来的近似和约束非线性问题;随着基于连续时间模型的非线性预测控制新技术的发展,使得系统计算时间大大减少;在这些新技术中,应用泰勒级数展开设计基于连续时间模型的预测模型,然后在数字信号处理器上对获得的控制器进行分析和建模取得了较好的效果;然而,我们知道这种控制策略当考虑外部扰动和所建模型不精确时,系统的鲁棒性较差;为此,我们提出了增加扰动观测器能够估计所有影响输出调节的扰动。将非线性预测控制和扰动观测结合起来,使得系统当电机参数变化和外部扰动影响下仍然能保持较高的鲁棒性。 另一方面,通常我们所处理的变量受到饱和模块的限制。实际应用中,通常在设计扰动观测器时在控制环中加入抗饱和模块。Under this framework, model predictive control is proposed as an ideal solution; however, the conceived discrete-time model-based nonlinear predictive controller requires long computation time, which limits nonlinear systems to dynamic processes with slower In the process of industrial application, such as metallurgy, oil refining, chemical industry and paper making, etc., this is due to the long calculation time required for the optimization of nonlinear problems, especially when considering the influence of constraints; it is for this reason that in In most cases, researchers linearize the predicted behavior of the nonlinear system at a working point to avoid solving nonlinear constrained optimization problems and reduce the amount of online calculations, but they do not fully consider the resulting approximation and constraints Nonlinear problems; with the development of new technologies of nonlinear predictive control based on continuous time models, the calculation time of the system is greatly reduced; in these new technologies, Taylor series expansion is used to design predictive models based on continuous time models, and then in the digital The analysis and modeling of the obtained controller on the signal processor has achieved good results; however, we know that the robustness of the system is poor when this control strategy considers external disturbances and the built model is inaccurate; for Therefore, we propose the addition of a disturbance observer capable of estimating all disturbances affecting output regulation. Combining nonlinear predictive control and disturbance observation, the system can still maintain high robustness under the influence of motor parameter changes and external disturbances. On the other hand, usually the variables we deal with are limited by the saturation module. In practical applications, an anti-saturation module is usually added to the control loop when designing a disturbance observer.
发明内容Contents of the invention
本发明针对高性能电机驱动控制场合要求永磁同步电机具有快速动态响应过程、高精度稳定转速跟踪性能以及较强鲁棒性,提供一种带有扰动观测器的永磁同步电机非线性预测控制器的设计方法,该方法是建立在考虑所有模型误差和外部扰动的永磁同步电机非线性模型基础之上,基于广义预测控制理论,将非线性模型预测控制和扰动观测器设计紧密结合起来,所设立的一种滚动时域的优化控制策略;该控制策略能够使系统输出更准确地跟踪参考轨迹,同时考虑到电流限制的影响,在模型参数误差和负载变化时能够保持较强鲁棒性。The invention provides a non-linear predictive control of a permanent magnet synchronous motor with a disturbance observer for high-performance motor drive control applications that require a permanent magnet synchronous motor to have a fast dynamic response process, high precision and stable speed tracking performance, and strong robustness The design method of the controller is based on the nonlinear model of permanent magnet synchronous motor considering all model errors and external disturbances. Based on the generalized predictive control theory, the nonlinear model predictive control and disturbance observer design are closely combined. A rolling time-domain optimization control strategy is established; this control strategy can make the system output more accurately track the reference trajectory, while taking into account the influence of the current limit, it can maintain strong robustness when the model parameter error and load change .
本发明的方法包括以下步骤:Method of the present invention comprises the following steps:
步骤一:在dq坐标系下考虑所有模型误差和外部扰动,构建PMSM的非线性数学模型Step 1: Consider all model errors and external disturbances in the dq coordinate system, and construct a nonlinear mathematical model of PMSM
(25) (25)
式中,、和表示模型误差和外部负载扰动。In the formula, , and Indicates model errors and external load disturbances.
步骤二:在所建立的扰动模型基础上,分别进行外环速度环和内环电流环的预测控制器设计,根据广义预测控制理论,选取代价函数,在滚动时域中通过使其最小化寻找最优控制率,从而使系统在预测时间内的输出能够跟踪给定的参考轨迹,以达到预测控制的目的;同时考虑在存在控制装置限制时进行扰动观测器的设计,使系统在模型参数误差和负载变化时能够保持较强鲁棒性。Step 2: On the basis of the established disturbance model, design the predictive controllers of the outer loop speed loop and the inner loop current loop respectively. According to the generalized predictive control theory, select the cost function, and find it by minimizing it in the rolling time domain. Optimal control rate, so that the output of the system within the prediction time can track the given reference trajectory, so as to achieve the purpose of predictive control; at the same time, consider the design of the disturbance observer when there is a control device limitation, so that the system can be controlled when the model parameter error It can maintain strong robustness when the load changes.
首先,进行外环速度环预测控制器的设计;Firstly, the design of the predictive controller of the outer loop speed loop is carried out;
永磁同步电机速度环的状态空间模型以转速为状态变量,交轴电流分量为输入,转速为输出。非线性模型预测控制的目的是为了找到合适的交轴电流分量,使得所选取的代价函数最小。State space model of speed loop of permanent magnet synchronous motor is the state variable, the quadrature axis current component is the input, the speed for output. The purpose of nonlinear model predictive control is to find the appropriate quadrature axis current component , so that the chosen cost function minimum.
应用泰勒级数展开表示输出的预测和输出参考值的预测,并使得:成立,得到使代价函数最小的交轴电流分量最小值最终为:Applying a Taylor series expansion expresses the prediction of the output and the prediction of the output reference value such that: is established, the minimum value of the quadrature axis current component that minimizes the cost function is finally obtained as:
(26) (26)
其中, (27)。in, (27).
扰动信号通常作为未知变量,必须被估计出来并在控制器中被取代以确保扰动抑制和参考信号连续的准确性;因此,控制率(26)可改写为:The disturbance signal is usually an unknown variable that must be estimated and replaced in the controller to ensure the accuracy of disturbance suppression and reference signal continuity; therefore, the control rate (26) can be rewritten as:
(28) (28)
其中,表示估计的扰动。in, represents the estimated perturbation.
其次,当存在交轴电流分量限制时设计速度环扰动观测器;Secondly, the velocity loop disturbance observer is designed when the quadrature axis current component is limited;
为了限制交轴电流分量,在控制环外环中引入了饱和模块;扰动观测器可以写为:In order to limit the quadrature axis current component, a saturation block is introduced in the outer loop of the control loop; the disturbance observer can be written as:
(29) (29)
其中,,,且是观测器调节的参数,in, , ,and is the parameter adjusted by the observer,
考虑到(25),得到:Considering (25), we get:
(30) (30)
将和展开,并和(28)共同代入到(29)中,得:Will and Expand, and substitute (28) into (29), get:
(31) (31)
其中,。in, .
现在,如果我们将(31)代入到控制器(28)中,确保速度调节的交轴电流参考值写成下面的关系:Now, if we substitute (31) into the controller (28), the quadrature axis current reference that ensures speed regulation is written as the following relation:
(32) (32)
其中,in,
(33) (33)
(34)。 (34).
再次,进行内环电流环控制器的设计;Thirdly, design the inner loop current loop controller;
内环电流环设计的目标是为了当电机参数发生变化时设计一个鲁棒预测型调节器;电流环非线性形式的动态方程以和为状态变量,和为输入,和为输出;广义预测控制的目标是找到使下述代价函数最小的控制器变量:The goal of the inner loop current loop design is to design a robust predictive regulator when the motor parameters change; the dynamic equations in the nonlinear form of the current loop are given by and is a state variable, and for input, and is the output; the goal of generalized predictive control is to find the controller variables that minimize the following cost function:
(35) (35)
输出和将来的参考值通过泰勒级数展开进行预测,将代价函数对控制率进行微分,最优控制率使得代价函数最小,即满足,最终得到:The output and future reference values are predicted by Taylor series expansion, and the cost function is differentiated from the control rate. The optimal control rate minimizes the cost function, that is, satisfies , and end up with:
(36) (36)
其中,;;;in, ; ; ;
; ;
在实际系统中,扰动被观测并进行补偿,因此式(36)可以改写为:In the actual system, the disturbance is observed and compensated, so equation (36) can be rewritten as:
(37)。 (37).
最后,当存在控制装置限制时设计内环扰动观测器Finally, the inner-loop disturbance observer is designed when there are control device constraints
和在外环进行扰动观测器设计一样,允许扰动估计的初始观测器的形式为:As with perturbation observer design in the outer loop, the initial observer that allows perturbation estimation is of the form:
(38) (38)
其中,,,且是一个常系数矩阵;in, , ,and is a constant coefficient matrix;
在进行观测器设计时对调节器输出和饱和模块输出间的误差可以进行积分:The error between the regulator output and the saturation block output can be integrated for observer design:
(39) (39)
因此:therefore:
(40) (40)
最终,我们得到存在限制装置模块的扰动观测器为:In the end, we get the disturbance observer of the presence restriction device module as:
(41) (41)
和前面一样,控制器里观测器用(37)定义的来代替,得到As before, the observer in the controller is replaced by the one defined in (37), yielding
(42) (42)
其中,in,
(43) (43)
(44)。 (44).
本发明的优点:首先,和传统的控制模式相比,控制器的主要缺点在于对模型误差和负载扰动变化缺乏鲁棒性;本发明在建立电机的非线性模型时充分考虑了模型误差和负载变化的影响,将它们看作是在有限的时间内的未知而不可测的扰动,因此设计了基于一个新设计的函数的扰动观测器,扰动将在预测控制器里予以考虑并进行补偿;其次,和直接结构的模型预测控制相比,直接结构模式对所处理变量的限制和电流限制方面非常依赖于电机的电参数;本发明构建了一种级联结构的控制策略,系统外环应用预测控制确保速度调节,内环为电流调节构成了多变量预测控制;电流通过饱和模块直接被限制,由于外环包含积分和饱和模块,速度响应在每次限制装置起作用的时候将不可避免地出现超调;为了消除限制装置的影响,在控制环中引入一个抗饱和模块;通过本发明所实施的控制策略,能够使输出更准确地跟踪参考轨迹,同时在模型参数误差和负载变化时保持鲁棒性。Advantages of the present invention: first, compared with the traditional control mode, the main disadvantage of the controller is the lack of robustness to model errors and load disturbance changes; the present invention fully considers model errors and loads when establishing the nonlinear model of the motor changing effects, considering them as unknown and unmeasurable disturbances in a finite time, so a new design based on the function Disturbance observer, the disturbance will be considered and compensated in the predictive controller; secondly, compared with the model predictive control of the direct structure, the limitation of the processed variables and the current limitation of the direct structure mode are very dependent on the electrical parameters of the motor ; The present invention constructs a control strategy of a cascaded structure, the outer loop of the system uses predictive control to ensure speed regulation, and the inner loop constitutes a multivariable predictive control for current regulation; the current is directly limited by the saturation module, because the outer loop contains integral and Saturation module, the speed response will inevitably overshoot every time the limiting device works; in order to eliminate the influence of the limiting device, an anti-saturation module is introduced in the control loop; through the control strategy implemented by the present invention, it can make The output more accurately tracks the reference trajectory while remaining robust to model parameter errors and load variations.
附图说明Description of drawings
图1为本发明永磁同步电机级联式非线性模型预测控制系统结构图。Fig. 1 is a structural diagram of a cascaded nonlinear model predictive control system for a permanent magnet synchronous motor of the present invention.
图2为本发明级联结构系统的速度和速度误差曲线:不带抗饱和且给定信号具有快速动态。Figure 2 is the speed and speed error curves of the cascade structure system of the present invention: without anti-saturation and with fast dynamics for a given signal.
图3为本发明级联结构系统的速度和速度误差曲线:带抗饱和且给定信号具有快速动态。Figure 3 is the speed and speed error curves of the cascade structure system of the present invention: with anti-saturation and fast dynamics for a given signal.
图4为本发明级联结构系统的速度和速度误差曲线:在T = 0.5s 时电参数变化。Fig. 4 is the speed and speed error curve of the cascade structure system of the present invention: the change of electrical parameters at T = 0.5s.
图5为本发明级联结构系统的交直轴电流曲线:在T = 0.5s 时电参数变化。Fig. 5 is the arc-direct axis current curve of the cascade structure system of the present invention: the change of electrical parameters at T = 0.5s.
图6为本发明级联结构系统的速度和速度误差曲线:在T = 0.5s时负载突变。Fig. 6 is the speed and speed error curve of the cascaded structure system of the present invention: the load changes suddenly at T=0.5s.
图7为本发明级联结构系统的交直轴电流曲线:在T = 0.5s时负载突变。Fig. 7 is the arc-direction axis current curve of the cascade structure system of the present invention: the load changes suddenly at T = 0.5s.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做进一步的详细说明;Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail;
图1为本发明所需的电机控制系统总框图,如图1所示, 永磁同步电机控制系统的转子位置信号通过光电编码器获得。Fig. 1 is the general block diagram of the required motor control system of the present invention, as shown in Fig. 1, the rotor position signal of permanent magnet synchronous motor control system Obtained by photoelectric encoder.
第一步,利用电流传感器采样得到永磁同步电机的定子三相电流、和,然后经过Clark变换(3s/2s)和Park变换(2s/2r)转换为两相旋转坐标系下的d轴电流和q轴电流;在坐标系下考虑所有模型误差和外部扰动,构建PMSM的非线性数学模型的为:In the first step, the stator three-phase current of the permanent magnet synchronous motor is obtained by sampling the current sensor , and , and then converted to the d -axis current in the two-phase rotating coordinate system through Clark transformation (3s/2s) and Park transformation (2s/2r) and q- axis current ;exist Considering all model errors and external disturbances in the coordinate system, the nonlinear mathematical model of PMSM is constructed as follows:
(45) (45)
式中,、和表示模型误差和外部负载扰动,并且定义:In the formula, , and represents the model error and external load disturbance, and defines:
(46) (46)
当各种不确定性的动态未知时,我们假设它们与系统时间常数的动态相比的变化很慢,因此,有:When the dynamics of various uncertainties are unknown, we assume that they change slowly compared to the dynamics of the system time constants, so, there are:
;; (47)。 ; ; (47).
第二步,在所构建的永磁同步电机非线性扰动模型基础上,分别进行外环速度环和内环电流环的预测控制器设计,同时考虑在存在控制装置限制时进行扰动观测器的设计,使系统在模型参数误差和负载变化时能够保持较强鲁棒性。In the second step, on the basis of the nonlinear disturbance model of the permanent magnet synchronous motor, the predictive controllers of the outer loop speed loop and the inner loop current loop are designed respectively, and the disturbance observer is designed when there are control device constraints , so that the system can maintain strong robustness when the model parameter error and load change.
(1)外环速度环控制器的设计(1) Design of outer loop speed loop controller
永磁同步电机的状态空间模型为:The state space model of permanent magnet synchronous motor is:
(48) (48)
其中,;;;in, ; ; ;
因此: (49)therefore: (49)
输出为可控:The output is controllable:
(50) (50)
所处理的变量由交轴电流分量表示;因此,直接应用饱和进行限制;广义预测控制的目的是为了找到合适的交轴电流分量使得所选取的代价函数最小;在这里,选取代价函数:The processed variable is represented by the quadrature axis current component; therefore, the saturation is directly applied to limit; the purpose of generalized predictive control is to find the appropriate quadrature axis current component to minimize the selected cost function; here, the cost function is selected:
(51) (51)
应用泰勒级数展开表示输出的预测和输出参考值的预测:Apply a Taylor series expansion to express the prediction of the output and the prediction of the output reference value:
; (52) ; (52)
将(52)代入到(51)中得:Substitute (52) into (51) to get:
(53) (53)
此方程等价于:This equation is equivalent to:
(54) (54)
其中, in,
(55) (55)
另一方面,速度的微分为:On the other hand, the differential of velocity is:
(56) (56)
由此,代价函数对交轴电流分量的微分能够得到: Thus, the differential of the cost function to the quadrature axis current component can be obtained as:
(57) (57)
必要条件是使:The necessary condition is to make:
(58) (58)
由方程(57),我们可以推导出使代价函数最小的交轴电流最小值,即:From equation (57), we can derive the minimum value of the quadrature axis current that minimizes the cost function, namely:
(59) (59)
其中,in,
(60) (60)
将(59)代入到 (56)中,动态误差为:Substituting (59) into (56), the dynamic error is:
(61) (61)
由于预测时间为正,因此,连续系统的动态是稳定的;Since the prediction time is positive, the dynamics of the continuous system are stable;
扰动被视为未知的变量,因此,它必须被估计出来并在控制器中被取代以确保扰动抑制和参考信号连续的准确幅值;因此,控制率改写为以下的形式:The disturbance is considered as an unknown variable, therefore, it must be estimated and substituted in the controller to ensure disturbance rejection and a continuous accurate magnitude of the reference signal; therefore, the control rate is rewritten as:
(62) (62)
其中, 表示估计的扰动。in, represents the estimated perturbation.
(2)当存在交轴电流分量限制时的扰动观测器的设计(2) The design of the disturbance observer when there is a limitation of the quadrature axis current component
为了限制交轴电流分量,在控制环外环中引入了饱和模块;扰动观测器可以如下估计:To limit the quadrature axis current component, a saturation block is introduced in the outer loop of the control loop; the disturbance observer can be estimated as follows:
(63) (63)
其中,in,
(64) (64)
(65) (65)
其中,是观测器调节的参数in, is the parameter adjusted by the observer
将 (64) 和 (65)展开,得到:Expand (64) and (65) to get:
(66) (66)
考虑到 (48),得到:Considering (48), we get:
(67) (67)
将 (67) 代入到 (63) 并考虑到扰动的微分为零,我们得到扰动观测器的误差方程:Substituting (67) into (63) and taking into account that the differential of the disturbance is zero, we obtain the error equation for the disturbance observer:
(68) (68)
此方程当下式成立时是稳定的:This equation is stable when:
(69) (69)
注意到(63)定义的初始观测可以写成下面的形式:Note that the initial observation defined in (63) can be written in the following form:
(70) (70)
其中,in,
(71) (71)
将(62) 和 (66) 代入到(70),我们得到:Substituting (62) and (66) into (70), we get:
(72) (72)
其中,in,
(73) 。 (73).
现在,如果我们将(72)代入到控制器(62)中,确保速度调节的交轴电流参考值写成下面的关系:Now, if we substitute (72) into the controller (62), the quadrature axis current reference that ensures speed regulation is written as the following relationship:
(74) (74)
其中,in,
(75) (75)
(76) (76)
相电流幅值的限制值可以转化成交轴电流分量幅值的限制如下:The limit value of the phase current amplitude can be transformed into the limit value of the axial current component amplitude as follows:
(77) (77)
其中,项作为抗饱和补偿,可以弥补电流限制装置的不利影响。in, The term acts as an anti-saturation compensation, which can compensate for the adverse effects of the current limiting device.
(3)内环电流环控制器的设计(3) Design of the inner loop current loop controller
内环电流环设计的目标是为了当电机参数发生变化时设计一个鲁棒预测型调节器。非线性形式的动态方程为:The goal of the inner current loop design is to design a robust predictive regulator when the motor parameters change. The dynamic equation in nonlinear form is:
(78) (78)
其中,;;;;;;in, ; ; ; ; ; ;
被控输出量是电流的交直轴分量:The controlled output is the direct-axis component of the current:
(79) (79)
广义预测控制的目标是找到使下述代价函数最小的控制器变量:The goal of generalized predictive control is to find the controller variables that minimize the following cost function:
(80) (80)
其中,in,
(81) (81)
交轴电流参考值由(74)式计算得到;为了计算控制率,我们采用和外环相同的步骤;The reference value of the quadrature axis current is calculated by formula (74); in order to calculate the control rate, we use the same steps as the outer loop;
(82) (82)
输出经泰勒级数展开:The output is expanded by Taylor series:
(83) (83)
同理,将来的参考值通过泰勒级数展开进行预测:In the same way, future reference values are predicted by Taylor series expansion:
(84) (84)
将(83) 和 (84) 代入到(80), 我们得到:Substituting (83) and (84) into (80), we get:
(85) (85)
其中, (86)in, (86)
其中, 为二维单位矩阵;in, is a two-dimensional identity matrix;
结合(82) 和 (85),代价函数对控制率的微分可以写为:Combining (82) and (85), the differential of the cost function with respect to the control rate can be written as:
(87) (87)
最优控制率使得代价函数最小,The optimal control rate minimizes the cost function,
(88) (88)
解方程(88)得Solve equation (88) to get
(89) (89)
其中,;;;in, ; ; ;
; ;
在实际系统中,扰动被观测并进行补偿,因此式(4.52)可以改写为:In the actual system, the disturbance is observed and compensated, so equation (4.52) can be rewritten as:
(90)。 (90).
(4)当存在控制装置限制时的扰动观测器的设计(4) Design of disturbance observer when there are control device constraints
和在外环进行扰动观测器设计一样,允许扰动估计的初始观测器的形式为:As with perturbation observer design in the outer loop, the initial observer that allows perturbation estimation is of the form:
(91) (91)
其中,in,
(92) (92)
(93) (93)
其中,是一个常系数矩阵;in, is a constant coefficient matrix;
方程 (78)写为: (94)Equation (78) is written as: (94)
此关系代入到初始观测器的表达式(91)中得:Substituting this relationship into the expression (91) for the initial observer yields:
(95) (95)
我们注意到当矩阵的特征值具有负实部时,观测器的动态误差稳定;We notice that when the matrix When the eigenvalue of has a negative real part, the dynamic error of the observer is stable;
然而,我们知道:However, we know that:
(96) (96)
因此,为了简化观测器稳定性的研究,选择矩阵为:Therefore, to simplify the study of observer stability, the choice matrix for:
(97) (97)
联合这些方程,我们能得出观测器的稳定性由下面的条件确保:Combining these equations, we can conclude that the stability of the observer is ensured by the following conditions:
; (98) ; (98)
我们注意到:We have noticed:
(99) (99)
在进行观测器设计时对调节器输出和饱和模块输出间的误差可以进行积分:The error between the regulator output and the saturation block output can be integrated for observer design:
(100) (100)
因此:therefore:
(101) (101)
将(90)、(96) 和 (99) 代入到 (101),我们得到存在限制装置模块的扰动观测器为:Substituting (90), (96) and (99) into (101), we get the perturbation observer for the presence-limited device module as:
(102) (102)
其中,in,
(103) (103)
和前面一样,控制器里观测器用(90)定义的来代替,得到As before, the observer in the controller is replaced by the one defined in (90), giving
(104) (104)
其中,in,
(105) (105)
(106) (106)
关于所处理变量的限制,由下式给出:The restriction on the variables handled is given by:
(107)。 (107).
对本发明方法进行了实验验证,为验证带有扰动观测器的永磁同步电机非线性预测控制系统的性能,搭建以英飞凌公司XMC4500芯片为核心的电机驱动系统实验平台,主要包括待测电机控制系统和负载系统两部分。The method of the present invention has been experimentally verified. In order to verify the performance of the nonlinear predictive control system for permanent magnet synchronous motors with disturbance observers, an experimental platform for motor drive systems with Infineon's XMC4500 chip as the core is built, which mainly includes the motor to be tested. There are two parts of the control system and the load system.
有益效果:为验证系统的转速跟踪性能,级联结构的非线性预测控制器的实验参数:模型离散时间,控制器采样时间,内环预测时间T=1.85ms,外环预测时间T=18.5ms。图2为本发明当不带抗饱和且给定信号具有快速动态时,级联结构系统的速度和速度误差曲线。图3为本发明带有抗饱和且给定信号具有快速动态时,级联结构系统的速度和速度误差曲线。从图2和图3中可以看出,级联结构的预测控制系统由于扰动观测器的引入而减小了静态误差。然而,由于在估计器中包含了积分动作,饱和模块使得速度响应超调了约50%。在控制策略中引入了抗饱和模块,使得系统能够消除超调且提高了速度响应时间。图4为本发明在T = 0.5s 时电参数变化时,级联结构系统的速度和速度误差曲线。图5为本发明在T = 0.5s 时电参数变化时,级联结构系统的交直轴电流曲线。从图4和图5中可以看出电机参数的变化对控制器鲁棒性产生的影响,当在控制器中加入扰动观测器后,将会使得速度误差快速减为零,即使电机的参数不确定。这是由于估计器补偿了所有参数的不确定性和负载扰动产生的影响。而且我们注意到,尽管电机所有参数都在变化,直轴电流分量一直和参考值保持相等。图6为本发明在T = 0.5s ()负载突变时,级联结构系统的速度和速度误差曲线。图7为本发明在T = 0.5s ()负载突变时,级联结构系统的交直轴电流曲线。从图6和图7中可以看出,当负载变化时,最大速度误差取决于扰动观测器的设计,并且误差在很短的时间内就会被完全消除,系统具有很好的扰动抑制能力。Beneficial effects: In order to verify the speed tracking performance of the system, the experimental parameters of the nonlinear predictive controller of the cascaded structure: model discrete time , the controller sampling time , the prediction time of the inner loop is T = 1.85ms, and the prediction time of the outer loop is T = 18.5ms. Fig. 2 is the speed and speed error curves of the cascaded structure system of the present invention when there is no anti-saturation and the given signal has fast dynamics. Fig. 3 is the speed and speed error curves of the cascaded structure system when the present invention has anti-saturation and the given signal has fast dynamics. It can be seen from Figure 2 and Figure 3 that the predictive control system with cascaded structure reduces the static error due to the introduction of the disturbance observer. However, due to the integration action included in the estimator, the saturation module overshoots the velocity response by about 50%. An anti-saturation module is introduced in the control strategy, which enables the system to eliminate overshoot and improve the speed response time. Fig. 4 is the speed and speed error curve of the cascaded structure system when the electrical parameters change at T = 0.5s according to the present invention. Fig. 5 is the arc-direct axis current curve of the cascade structure system when the electrical parameters change at T = 0.5s according to the present invention. It can be seen from Figure 4 and Figure 5 that the change of motor parameters has an impact on the robustness of the controller. When a disturbance observer is added to the controller, the speed error will be quickly reduced to zero, even if the parameters of the motor are not Sure. This is due to the fact that the estimator compensates for all parameter uncertainties and the effects of load disturbances. And we notice that, although all the parameters of the motor are changing, the direct axis current component remains equal to the reference value. Fig. 6 is that the present invention is at T=0.5s ( ) When the load changes suddenly, the speed and speed error curve of the cascaded structure system. Fig. 7 is that the present invention is at T=0.5s ( ) when the load changes suddenly, the arc-direct axis current curve of the cascaded structure system. It can be seen from Figure 6 and Figure 7 that when the load changes, the maximum speed error depends on the design of the disturbance observer, and the error will be completely eliminated in a short time, and the system has a good disturbance suppression ability.
本发明所提一种带有扰动观测器的永磁同步电机级联结构的非线性预测控制器的设计方法,将非线性模型预测控制的滚动时域优化控制策略和扰动观测器设计结合起来,并且考虑到饱和限制的影响,不仅提高了系统的跟踪精度,又增强了系统的鲁棒性。实验结果表明该控制策略有效的增强了系统在模型参数误差和负载变化时的动态控制性能。The present invention proposes a method for designing a nonlinear predictive controller with a permanent magnet synchronous motor cascaded structure with a disturbance observer, which combines the rolling time-domain optimization control strategy of the nonlinear model predictive control with the design of the disturbance observer, And considering the influence of the saturation limit, not only the tracking accuracy of the system is improved, but also the robustness of the system is enhanced. The experimental results show that the control strategy effectively enhances the dynamic control performance of the system when the model parameter error and load change.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810193438.4A CN108390597A (en) | 2018-03-09 | 2018-03-09 | Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810193438.4A CN108390597A (en) | 2018-03-09 | 2018-03-09 | Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108390597A true CN108390597A (en) | 2018-08-10 |
Family
ID=63067138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810193438.4A Pending CN108390597A (en) | 2018-03-09 | 2018-03-09 | Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108390597A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109639192A (en) * | 2018-12-12 | 2019-04-16 | 西安交通大学 | A kind of durface mounted permanent magnet synchronous motor time-sharing control system and Time-sharing control method |
CN110378057A (en) * | 2019-07-26 | 2019-10-25 | 大连海事大学 | A kind of internal permanent magnet synchronous motor anti-interference controller and its design method |
CN110649845A (en) * | 2019-09-19 | 2020-01-03 | 中国科学院长春光学精密机械与物理研究所 | Photoelectric turntable position tracking control method based on robust generalized predictive control |
CN111103905A (en) * | 2019-12-26 | 2020-05-05 | 南京航空航天大学 | Refueling hose vibration suppression method based on motor integral robust control drive |
CN111404432A (en) * | 2020-03-13 | 2020-07-10 | 天津工业大学 | Finite set model prediction direct speed control method of permanent magnet synchronous motor |
CN112217435A (en) * | 2020-09-16 | 2021-01-12 | 昆明理工大学 | Permanent magnet synchronous motor cascade control method based on generalized predictive control |
CN113746392A (en) * | 2021-09-17 | 2021-12-03 | 广州市香港科大霍英东研究院 | Servo motor current control method and control system based on two-dimensional system |
WO2022087799A1 (en) * | 2020-10-27 | 2022-05-05 | 大连理工大学 | Permanent magnet synchronous motor speed control method considering current saturation and interference suppression |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090005886A1 (en) * | 2002-04-18 | 2009-01-01 | Cleveland State University | Extended Active Disturbance Rejection Controller |
CN104283478A (en) * | 2014-10-28 | 2015-01-14 | 山东大学 | A permanent magnet synchronous motor current control system and control method for electric vehicles |
KR101527446B1 (en) * | 2013-11-27 | 2015-06-10 | 서울과학기술대학교 산학협력단 | An apparatus and a method for model predictive control of an uninterruptible power supply |
CN105790253A (en) * | 2016-03-29 | 2016-07-20 | 上海电气集团股份有限公司 | Double-loop control method |
CN106505909A (en) * | 2016-11-17 | 2017-03-15 | 闽江学院 | Nonlinear Dead Zone Compensation Control System and Method for Ultrasonic Motor Based on Generalized Regression Neural Network |
CN107659237A (en) * | 2017-11-09 | 2018-02-02 | 合肥工业大学 | A kind of model-free dead beat predictive current control devices and methods therefor of permagnetic synchronous motor |
-
2018
- 2018-03-09 CN CN201810193438.4A patent/CN108390597A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090005886A1 (en) * | 2002-04-18 | 2009-01-01 | Cleveland State University | Extended Active Disturbance Rejection Controller |
KR101527446B1 (en) * | 2013-11-27 | 2015-06-10 | 서울과학기술대학교 산학협력단 | An apparatus and a method for model predictive control of an uninterruptible power supply |
CN104283478A (en) * | 2014-10-28 | 2015-01-14 | 山东大学 | A permanent magnet synchronous motor current control system and control method for electric vehicles |
CN105790253A (en) * | 2016-03-29 | 2016-07-20 | 上海电气集团股份有限公司 | Double-loop control method |
CN106505909A (en) * | 2016-11-17 | 2017-03-15 | 闽江学院 | Nonlinear Dead Zone Compensation Control System and Method for Ultrasonic Motor Based on Generalized Regression Neural Network |
CN107659237A (en) * | 2017-11-09 | 2018-02-02 | 合肥工业大学 | A kind of model-free dead beat predictive current control devices and methods therefor of permagnetic synchronous motor |
Non-Patent Citations (1)
Title |
---|
RACHID ERROUISSI ET AL.: "Robust Cascaded Nonlinear Predictive Control of a Permanent Magnet Synchronous Motor With Antiwindup Compensator", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109639192A (en) * | 2018-12-12 | 2019-04-16 | 西安交通大学 | A kind of durface mounted permanent magnet synchronous motor time-sharing control system and Time-sharing control method |
CN109639192B (en) * | 2018-12-12 | 2021-08-13 | 西安交通大学 | A surface-mounted permanent magnet synchronous motor time-sharing control system and time-sharing control method |
CN110378057A (en) * | 2019-07-26 | 2019-10-25 | 大连海事大学 | A kind of internal permanent magnet synchronous motor anti-interference controller and its design method |
CN110378057B (en) * | 2019-07-26 | 2023-10-27 | 大连海事大学 | A built-in permanent magnet synchronous motor anti-interference controller and its design method |
CN110649845A (en) * | 2019-09-19 | 2020-01-03 | 中国科学院长春光学精密机械与物理研究所 | Photoelectric turntable position tracking control method based on robust generalized predictive control |
CN111103905B (en) * | 2019-12-26 | 2021-08-10 | 南京航空航天大学 | Refueling hose vibration suppression method based on motor integral robust control drive |
CN111103905A (en) * | 2019-12-26 | 2020-05-05 | 南京航空航天大学 | Refueling hose vibration suppression method based on motor integral robust control drive |
CN111404432A (en) * | 2020-03-13 | 2020-07-10 | 天津工业大学 | Finite set model prediction direct speed control method of permanent magnet synchronous motor |
CN111404432B (en) * | 2020-03-13 | 2023-04-07 | 天津工业大学 | Finite set model prediction direct speed control method of permanent magnet synchronous motor |
CN112217435A (en) * | 2020-09-16 | 2021-01-12 | 昆明理工大学 | Permanent magnet synchronous motor cascade control method based on generalized predictive control |
WO2022087799A1 (en) * | 2020-10-27 | 2022-05-05 | 大连理工大学 | Permanent magnet synchronous motor speed control method considering current saturation and interference suppression |
US11695358B2 (en) | 2020-10-27 | 2023-07-04 | Dalian University Of Technology | Speed control method for permanent magnet synchronous motor considering current saturation and disturbance suppression |
CN113746392A (en) * | 2021-09-17 | 2021-12-03 | 广州市香港科大霍英东研究院 | Servo motor current control method and control system based on two-dimensional system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108390597A (en) | Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer | |
Yu et al. | Approximation-based discrete-time adaptive position tracking control for interior permanent magnet synchronous motors | |
CN112701968B (en) | A Robust Performance Improvement Method for Model Predictive Control of Permanent Magnet Synchronous Motors | |
Chen et al. | Backstepping control of speed sensorless permanent magnet synchronous motor based on slide model observer | |
CN104614984B (en) | High-precision control method of motor position servo system | |
CN104242769A (en) | Permanent magnet synchronous motor speed composite control method based on continuous terminal slip form technology | |
CN108155833B (en) | Asymptotic Stability Control Method of Motor Servo System Considering Electrical Characteristics | |
CN104730922B (en) | Servo-drive system linear Feedback Control and POLE PLACEMENT USING based on extended state observer determine parametric technique | |
Ben Regaya et al. | Electric drive control with rotor resistance and rotor speed observers based on fuzzy logic | |
CN104779873B (en) | A kind of predictive functional control algorithm for PMSM servo-drive systems | |
Morales et al. | Adaptive control based on fast online algebraic identification and GPI control for magnetic levitation systems with time-varying input gain | |
Zhao et al. | Neuroadaptive dynamic surface control for induction motors stochastic system based on reduced-order observer | |
CN114665780A (en) | Control method, device and equipment of permanent magnet synchronous motor and storage medium | |
Zhu et al. | Double vibration suppression of pmsm servo system based on strong tracking of reference trajectory | |
CN115102443A (en) | Control method and device for permanent magnet synchronous linear motor and storage medium | |
Liu et al. | Single‐loop model prediction control of PMSM with moment of inertia identification | |
Liu et al. | Speed estimation with parameters identification of PMSM based on MRAS | |
Suhail et al. | Active disturbance rejection control applied to a DC motor for position control | |
Lu et al. | Gpc‐based self‐tuning PI controller for speed servo system of PMSLM | |
Hammoudi et al. | New state observer based on Takagi-Sugeno fuzzy controller of induction motor | |
CN105871277A (en) | Minimum variance-based nonlinear model prediction controller design method for permanent magnet servo system | |
Li et al. | Nonsingular fast terminal sliding mode control with extended state observer and disturbance compensation for position tracking of electric cylinder | |
Wang et al. | A high performance permanent magnet synchronous motor servo system using predictive functional control and Kalman filter | |
Zhao et al. | Design of MRAC and Modified MRAC for the Turntable | |
Panchade et al. | Quasi continuous sliding mode control with fuzzy switching gain for an induction motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180810 |
|
RJ01 | Rejection of invention patent application after publication |