CN112051389A - 一种重塑煤系泥岩样的制备材料及其批量制备方法 - Google Patents

一种重塑煤系泥岩样的制备材料及其批量制备方法 Download PDF

Info

Publication number
CN112051389A
CN112051389A CN202011085688.XA CN202011085688A CN112051389A CN 112051389 A CN112051389 A CN 112051389A CN 202011085688 A CN202011085688 A CN 202011085688A CN 112051389 A CN112051389 A CN 112051389A
Authority
CN
China
Prior art keywords
coal
rock
samples
bentonite
mudstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011085688.XA
Other languages
English (en)
Other versions
CN112051389B (zh
Inventor
孙中光
罗剑
孙维
贺奎
赵庆川
钟宇
戴书球
张建鑫
薛宗杰
韩麟之
梁帅
周琪森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Smart City Science And Technology Research Institute Co ltd
CCTEG Chongqing Research Institute Co Ltd
Original Assignee
Chongqing Smart City Science And Technology Research Institute Co ltd
CCTEG Chongqing Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Smart City Science And Technology Research Institute Co ltd, CCTEG Chongqing Research Institute Co Ltd filed Critical Chongqing Smart City Science And Technology Research Institute Co ltd
Publication of CN112051389A publication Critical patent/CN112051389A/zh
Application granted granted Critical
Publication of CN112051389B publication Critical patent/CN112051389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00991Uses not provided for elsewhere in C04B2111/00 for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • G01N2001/366Moulds; Demoulding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0866Sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明属于岩石力学实验领域,涉及一种重塑煤系泥岩样的制备材料,包括以下组分:煤粉、膨润土、粘土、石英砂、水泥和水,其中各组分的质量占比为:煤粉占总料比重为5%~15%,膨润土占总料比重为10%~20%,粘土占总料比重为5%~10%,石英砂占总料比重为30%~40%,水泥占总料比重为5%~15%,其余占比为水,在实验室利用钙基膨润土或者钠基膨润土的特性模拟泥岩的吸水特性和膨胀变形特性、利用石英砂和水泥的特性模拟泥岩的砂质成分和强度、再加上一定量的现场煤样、粘土和纯净水,利用专用塑性烘干磨具按照不同配比得到重塑实验岩样进行岩石力学实验,并选取与现场岩样力学性能最接近的配比批量制备炭质泥岩样品进行力学评价。

Description

一种重塑煤系泥岩样的制备材料及其批量制备方法
技术领域
本发明属于岩石力学实验领域,涉及一种重塑煤系泥岩样的制备材料及其批量制备方法,尤其涉及一种还原煤系泥岩力学性质的重塑煤系泥岩样的制备材料及其批量制备方法。
背景技术
煤系炭质泥岩是一种与煤层伴生沉积岩系,岩性变化较大。现场取岩样研究,必会出现所取得的岩样本身力学特性不一样,难以通过实验室实验得到较为统一的力学参数对比数据。
公开号为CN110482988A的发明专利公开了一种弱膨胀泥岩相似材料及其制备方法,包括以下组分,膨润土、重晶石粉、松香酒精溶液以及石膏、石英砂。其中,各组分的占总料质量比为:膨润土5%-20%,重晶石粉10%-40%,松香酒精溶液7%,石膏占0-3%,石英砂为以上材料占比之和不足1时的填充。制备方法,粉状松香用乙醇溶解得到松香酒精溶液,按照预先设计的质量配比称量所述膨润土、重晶石粉、石膏及石英砂,并混合均匀得到干材料,将按质量配比的松香酒精溶液加入干材料中,再混合均匀,得到湿材料;将湿材料制样、烘干。有益效果:本发明主要保证了相似材料的膨胀性、高强度性、易粘结性,同时具有稳定的力学性质。各组分原料易得,成本较低。
公开号为CN106153423B的发明专利公开了一种泥岩样品、利用岩屑重塑泥岩样品的装置及方法,属于深部油气藏钻探及枯竭气藏利用技术领域。该泥岩样品经由泥岩钻井碎屑制备得到。该装置包括套筒、底板、压板和施力机构。该方法包括:获取泥岩层钻井碎屑;对泥岩层钻井碎屑进行研磨,得到经过研磨的泥岩层钻井碎屑;向经过研磨的泥岩层钻井碎屑中加入水并搅拌,得到手捏可成团的泥岩层钻井碎屑;将手捏可成团的泥岩层钻井碎屑容置于该装置中压制成型并取出,得到该泥岩样品。通过对重塑得到的泥岩样品进行力学评价,能够对报废井的密封性能进行评价,进一步为是否进行修井作业提供参考。
上述现有相关专利侧重单个泥岩岩样的重塑,但是不能批量制备实验岩样且批量重塑后的泥岩岩样不能高度还原现场炭质泥岩力学性能。
发明内容
有鉴于此,本发明为了解决上述泥岩岩样重塑过程所存在的不能批量制备实验岩样且批量重塑后的泥岩岩样不能高度还原现场炭质泥岩力学性能的问题,提供一种重塑煤系泥岩样的制备材料及其批量制备方法。
为达到上述目的,本发明提供一种重塑煤系泥岩样的制备材料,包括以下组分:煤粉、膨润土、粘土、石英砂、水泥和水,其中各组分的质量占比为:煤粉占总料比重为5%~15%,膨润土占总料比重为10%~20%,粘土占总料比重为5%~10%,石英砂占总料比重为30%~40%,水泥占总料比重为5%~15%,其余占比为水。
进一步,膨润土为钙基膨润土或钠基膨润土中的一种或者两种。
进一步,经研磨后煤粉的粒径小于0.5mm,钙基膨润土或钠基膨润土的粒径均小于0.5mm,筛选石英砂的粒径小于0.5mm。
进一步,钙基膨润土或钠基膨润土的蒙脱石含量达到85%以上。
一种重塑煤系泥岩样的批量制备方法,包括以下步骤:
S1、现场采集岩样,测定现场煤系泥岩岩样在常温下(25℃)主要力学参数(单轴抗压强度、轴向膨胀应变)和矿物组分;
S2、选择煤、膨润土、粘土、石英砂、水泥和水作为原料进行研磨,根据现场采集岩样矿物组分和强度,按照不同实验分组配比制备煤系泥岩测试用岩样,若现场采集岩样单轴抗压强度较高,则适当提高石英砂和水泥占比;若现场采集岩样吸水膨胀变形量较大,则适当提高膨润土和粘土占比;
S3、通过专用塑性烘干磨具制备测试煤系泥岩样并烘干制样;
S4、对各组测试泥岩岩样开展常温下岩石力学实验(25℃),测定其单轴抗压强度、轴向膨胀应变;
S5、选取测试岩样与现场岩样单轴抗压强度和轴向膨胀应变最接近的一组作为标准配比;
S6、按照标准配比通过专用塑性烘干磨具批量制备实验用岩样;
S7、用岩石磨平机将实验岩样打磨成标准φ50mm×100mm标准圆柱体试件,进行称重和分组编号。
进一步,步骤S3和S6中塑性烘干磨具包括保温箱、放置在保温箱内的若干塑形试件保护套、扣合在塑形试件保护套上的塑形试件保护盖和放置在保温箱底部的加热管,塑形试件保护套上均匀开设有透气孔。
进一步,保温箱上安装有温控器,塑形试件保护套为两块均匀开设有透气孔的弧形板拼装而成。
进一步,步骤S3和S6原料置于塑性烘干磨具后,滩涂均匀平整,并采用振动和反复压实排除砂浆内空隙,最后抹平样板表面。
进一步,步骤S5选取测试岩样单轴抗压强度平均值与现场岩样单轴抗压强度平均值相差不超过5%,选取测试岩样轴向膨胀应变平均值与现场岩样轴向膨胀应变平均值相差不超过10%。
本发明的有益效果在于:
1、本发明所公开的还原煤系泥岩力学性质的重塑样批量制备方法,通过现场取样测定煤系泥岩岩样常温下的单轴抗压强度、膨胀变形特性,然后在实验室利用钙基膨润土或者钠基膨润土的特性模拟泥岩的吸水特性和膨胀变形特性、利用石英砂和水泥的特性模拟泥岩的砂质成分和强度、再加上一定量的现场煤样、粘土和纯净水,利用专用塑性烘干磨具按照不同配比得到重塑实验岩样并进行岩石力学实验,从中选出一组单轴抗压强度和膨胀变形特性与现场采集岩样最接近的一组作为标准配比,并进行批量制备实验岩样。由此得到的重塑岩样能够高度还原现场炭质泥岩的吸水性和基本力学性质,材料简单易得;同时通过对重塑得到的炭质泥岩样品进行力学评价,可以通过控制单一变量,如温度、压力、含水率等,用大批量和现场力学性质类似的均质试件进行分组交叉试验,定量分析单一因素对煤系炭质泥岩的影响程度。
2、本发明所公开的还原煤系泥岩力学性质的重塑样批量制备方法,选取煤粉、钙基膨润土(钠基膨润土)、粘土、石英砂、水泥和水作为原料,按照配比试验结果得到与煤系炭质泥岩岩样的膨胀性、吸水性和基本力学性质高度一致的重塑样。用较低的成本批量制备实验均质岩样,方便开展岩石力学实验。
3、本发明所公开的还原煤系泥岩力学性质的重塑样批量制备方法,可批量制备均质的炭质泥岩重塑样品,并能够高度还原炭质泥岩的吸水性、膨胀性和基本力学性质,而且造作价格便宜,具有明显的实用性和创新性。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明还原煤系泥岩力学性质的重塑样批量制备方法的流程图;
图2为本发明还原煤系泥岩力学性质的重塑样批量制备方法中塑性烘干磨具的结构示意图。
附图标记:保温箱1、塑形试件保护盖2、试件3、塑形试件保护套4、加热管5、温控器6、铁框架7。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如图1所示的一种还原煤系泥岩力学性质的重塑样批量制备方法,包括以下步骤:
S1:根据需要研究的煤系炭质泥岩对象,在煤矿现场采集一组岩样,并研磨至粉状,按照《工程岩体试验方法标准(GB/T50266-99)》和《煤和岩石物理力学性质测定方法(GB/T23561.1-2009)》要求,测定常温下岩体的全应力-应变曲线、单轴抗压强度、弹性模量E、泊松比μ、矿物组分,并观测岩样浸泡12h、24h和36h后的膨胀变形量。
S2:选择煤、钙基膨润土或者钠基膨润土、粘土、石英砂、水泥和水作为原料进行研磨,根据现场采集岩样矿物组分和强度,按照不同实验分组配比制备煤系泥岩测试用岩样,若现场采集岩样单轴抗压强度较高,则适当提高石英砂和水泥占比;若现场采集岩样吸水膨胀变形量较大,则适当提高膨润土和粘土占比。
其中:钙基膨润土或者钠基膨润土具有积水膨胀特性,其蒙脱石含量应达到85%以上,主要用于模拟煤系泥岩的吸水特性和膨胀变形特性;煤和石英砂可还原泥岩中所含的煤和砂质;水泥主要起塑形和硬度强化的作用。石英砂需按照《GB/T14684-2001》建筑用砂标准规定,选择细砂(Mf=2.2-1.6),主要用于塑形和模拟煤系泥岩中的砂质成分;水泥按照《通用硅酸盐水泥》(GB175-2007)规定选用强度等级P.O 42.5和P.S 32.5/42.5均可,主要起塑形和硬度强化的作用;水选用纯净水。
按照不同的配比方案,分组制备,并记录。
S3:通过如图2所示专用塑形烘干磨具制备测试岩样并烘干制样,塑性烘干磨具包括保温箱1、放置在保温箱内的六组塑形试件保护套4、扣合在对应塑形试件保护套上的塑形试件保护盖2和放置在保温箱底部的加热管5,保温箱上还安装用于监控保温箱内温度变化的温控器6。塑形试件保护套为两块均匀开设有透气孔的弧形板拼装而成,方便塑形和加工。
先将拼装的两块弧形板一端通过塑形试件保护盖固定,然后按照配比方案,将煤、钙基膨润土、石英砂、水泥和水按照一定比例搅拌均匀后作为试件3注入塑形试件保护套中滩涂均匀平整,并采用振动和反复压实排除砂浆内空隙,并经过多次人工加料和加压排除孔隙后,通过塑形试件保护盖2将塑形试件保护套4封闭加固,并放入保温箱中自然风干。一周后将测试岩样通过密封铁框架7取出,打磨成标准φ50mm×100mm标准圆柱体试件,以备试验。塑形烘干磨具具有温度控制功能,保证环境温度可控。塑形试件尺寸φ60mm×110mm,略大于标准试件尺寸,便于打磨加工。
S4、对各组测试泥岩岩样开展常温下岩石力学实验(25℃),测定其单轴抗压强度、轴向膨胀应变;
S5、选取测试岩样与现场岩样单轴抗压强度和轴向膨胀应变最接近的一组作为标准配比,选取测试岩样单轴抗压强度平均值与现场岩样单轴抗压强度平均值相差不超过5%,选取测试岩样轴向膨胀应变平均值与现场岩样轴向膨胀应变平均值相差不超过10%;
S6、按照标准配比通过专用塑性烘干磨具批量制备实验用岩样(重复S3步骤);
S7、用岩石磨平机将实验岩样打磨成标准φ50mm×100mm标准圆柱体试件,进行称重和分组编号。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种重塑煤系泥岩样的制备材料,其特征在于,包括以下组分:煤粉、膨润土、粘土、石英砂、水泥和水,其中各组分的质量占比为:煤粉占总料比重为5%~15%,膨润土占总料比重为10%~20%,粘土占总料比重为5%~10%,石英砂占总料比重为30%~40%,水泥占总料比重为5%~15%,其余占比为水。
2.如权利要求1所述的重塑煤系泥岩样的制备材料,其特征在于,所述膨润土为钙基膨润土或钠基膨润土中的一种或者两种。
3.如权利要求2所述的重塑煤系泥岩样的制备材料,其特征在于,经研磨后煤粉的粒径小于0.5mm,钙基膨润土或钠基膨润土的粒径均小于0.5mm,筛选石英砂的粒径小于0.5mm。
4.如权利要求2所述的重塑煤系泥岩样的制备材料,其特征在于:钙基膨润土或钠基膨润土的蒙脱石含量达到85%以上。
5.一种重塑煤系泥岩样的批量制备方法,其特征在于,包括以下步骤:
S1、现场采集岩样,测定现场煤系泥岩岩样在常温下(25℃)主要力学参数(单轴抗压强度、轴向膨胀应变)和矿物组分;
S2、选择煤、膨润土、粘土、石英砂、水泥和水作为原料进行研磨,根据现场采集岩样矿物组分和强度,按照不同实验分组配比制备煤系泥岩测试用岩样;
S3、通过专用塑性烘干磨具制备测试煤系泥岩样并烘干制样;
S4、对各组测试泥岩岩样开展常温下岩石力学实验(25℃),测定其单轴抗压强度、轴向膨胀应变;
S5、选取测试岩样与现场岩样单轴抗压强度和轴向膨胀应变最接近的一组作为标准配比;
S6、按照标准配比通过专用塑性烘干磨具批量制备实验用岩样;
S7、用岩石磨平机将实验岩样打磨成标准φ50mm×100mm标准圆柱体试件,进行称重和分组编号。
6.如权利要求5所述的重塑煤系泥岩样的批量制备方法,其特征在于,步骤S3和S6中塑性烘干磨具包括保温箱、放置在保温箱内的若干塑形试件保护套、扣合在塑形试件保护套上的塑形试件保护盖和放置在保温箱底部的加热管,塑形试件保护套上均匀开设有透气孔。
7.如权利要求6所述的重塑煤系泥岩样的批量制备方法,其特征在于,所述保温箱上安装有温控器,塑形试件保护套为两块均匀开设有透气孔的弧形板拼装而成。
8.如权利要求7所述的重塑煤系泥岩样的批量制备方法,其特征在于,步骤S3和S6原料置于塑性烘干磨具后,滩涂均匀平整,并采用振动和反复压实排除砂浆内空隙,最后抹平样板表面。
9.如权利要求8所述的重塑煤系泥岩样的批量制备方法,其特征在于,步骤S5选取测试岩样单轴抗压强度平均值与现场岩样单轴抗压强度平均值相差不超过5%,选取测试岩样轴向膨胀应变平均值与现场岩样轴向膨胀应变平均值相差不超过10%。
CN202011085688.XA 2020-07-21 2020-10-12 一种重塑煤系泥岩样的制备材料及其批量制备方法 Active CN112051389B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020107055509 2020-07-21
CN202010705550.9A CN111812300A (zh) 2020-07-21 2020-07-21 一种重塑煤系泥岩样的制备材料及其批量制备方法

Publications (2)

Publication Number Publication Date
CN112051389A true CN112051389A (zh) 2020-12-08
CN112051389B CN112051389B (zh) 2022-12-27

Family

ID=72861782

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010705550.9A Pending CN111812300A (zh) 2020-07-21 2020-07-21 一种重塑煤系泥岩样的制备材料及其批量制备方法
CN202011085688.XA Active CN112051389B (zh) 2020-07-21 2020-10-12 一种重塑煤系泥岩样的制备材料及其批量制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010705550.9A Pending CN111812300A (zh) 2020-07-21 2020-07-21 一种重塑煤系泥岩样的制备材料及其批量制备方法

Country Status (1)

Country Link
CN (2) CN111812300A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514313A (zh) * 2021-04-22 2021-10-19 中煤科工集团重庆研究院有限公司 一种泥岩样本批量制备装置及方法
CN113916886A (zh) * 2021-10-11 2022-01-11 合肥工业大学 一种基于微观形貌图像分析的泥岩重塑方法
CN114047040A (zh) * 2021-10-22 2022-02-15 北京中煤矿山工程有限公司 一种钻井法凿井滚刀破碎弱胶结岩石试验重塑大体积岩样的制备方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1332955C (en) * 1989-08-11 1994-11-08 David J. Legare Method of forming cellular ceramic material and related products
KR100415178B1 (ko) * 2002-10-22 2004-01-16 김은주 폐석분을 이용한 폐기물 처리용 차수재층 및 그 형성 방법
CN103130459A (zh) * 2011-11-29 2013-06-05 同济大学 一种模拟软土地基的高压缩性相似模型土
CN103242029A (zh) * 2013-05-07 2013-08-14 山东大学 一种用于模型试验中模拟膨胀土隧道围岩的相似材料及其制备方法
CN103934261A (zh) * 2014-04-22 2014-07-23 浙江大学 一种场地修复中污染土暂存区地面防渗及硬化的方法
CN104535744A (zh) * 2015-01-29 2015-04-22 西安科技大学 粘土类地层固液耦合相似模拟水理性相似材料的确定方法
CN104891873A (zh) * 2015-05-26 2015-09-09 山东大学 一种用于模拟胀缩性隧道围岩的相似材料及其制备方法
CN104944903A (zh) * 2015-05-25 2015-09-30 中国地质大学(武汉) 一种人造煤心、其制备方法及其应用
CN105527403A (zh) * 2016-01-20 2016-04-27 安徽理工大学 一种应用于煤岩体的相似模拟试验装置及试验方法
CN107796679A (zh) * 2017-12-06 2018-03-13 山东科技大学 基于相似材料的非标准煤或非标准岩石试件制作方法
CN107831073A (zh) * 2017-11-02 2018-03-23 中山大学 盾构施工同步注浆试验装置及试验方法
CN107840629A (zh) * 2017-11-14 2018-03-27 中南大学 一种适用于水力压裂的煤岩相似材料及制备方法
CN108164223A (zh) * 2018-02-05 2018-06-15 中煤科工集团重庆研究院有限公司 一种具有弱冲击倾向性的突出煤相似材料及其制备方法
CN108518209A (zh) * 2018-02-14 2018-09-11 中联煤层气有限责任公司 考虑过渡带的煤系产层组合采井眼轨迹方位角的设计方法
CN108593385A (zh) * 2018-06-11 2018-09-28 李战伟 一种人造泥岩岩心及其制备方法和应用
CN109238804A (zh) * 2018-10-26 2019-01-18 中国矿业大学 一种具有导电特性的膨胀性相似模型试验材料及使用方法
CN109946147A (zh) * 2019-04-03 2019-06-28 中国矿业大学 一种煤系复合储层压裂物理模拟试件制备方法
CN110194611A (zh) * 2019-06-28 2019-09-03 长沙理工大学 粉砂质泥岩相似材料及其制备方法
CN110220756A (zh) * 2019-05-20 2019-09-10 中国石油大学(北京) 煤系页岩物模试件以及煤系页岩物模试件的制备方法
CN110482988A (zh) * 2019-09-18 2019-11-22 兰州交通大学 一种弱膨胀泥岩相似材料及其制备方法
CN110986531A (zh) * 2019-12-09 2020-04-10 华北理工大学 一种烘箱及其烘干方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1332955C (en) * 1989-08-11 1994-11-08 David J. Legare Method of forming cellular ceramic material and related products
KR100415178B1 (ko) * 2002-10-22 2004-01-16 김은주 폐석분을 이용한 폐기물 처리용 차수재층 및 그 형성 방법
CN103130459A (zh) * 2011-11-29 2013-06-05 同济大学 一种模拟软土地基的高压缩性相似模型土
CN103242029A (zh) * 2013-05-07 2013-08-14 山东大学 一种用于模型试验中模拟膨胀土隧道围岩的相似材料及其制备方法
CN103934261A (zh) * 2014-04-22 2014-07-23 浙江大学 一种场地修复中污染土暂存区地面防渗及硬化的方法
CN104535744A (zh) * 2015-01-29 2015-04-22 西安科技大学 粘土类地层固液耦合相似模拟水理性相似材料的确定方法
CN104944903A (zh) * 2015-05-25 2015-09-30 中国地质大学(武汉) 一种人造煤心、其制备方法及其应用
CN104891873A (zh) * 2015-05-26 2015-09-09 山东大学 一种用于模拟胀缩性隧道围岩的相似材料及其制备方法
CN105527403A (zh) * 2016-01-20 2016-04-27 安徽理工大学 一种应用于煤岩体的相似模拟试验装置及试验方法
CN107831073A (zh) * 2017-11-02 2018-03-23 中山大学 盾构施工同步注浆试验装置及试验方法
CN107840629A (zh) * 2017-11-14 2018-03-27 中南大学 一种适用于水力压裂的煤岩相似材料及制备方法
CN107796679A (zh) * 2017-12-06 2018-03-13 山东科技大学 基于相似材料的非标准煤或非标准岩石试件制作方法
CN108164223A (zh) * 2018-02-05 2018-06-15 中煤科工集团重庆研究院有限公司 一种具有弱冲击倾向性的突出煤相似材料及其制备方法
CN108518209A (zh) * 2018-02-14 2018-09-11 中联煤层气有限责任公司 考虑过渡带的煤系产层组合采井眼轨迹方位角的设计方法
CN108593385A (zh) * 2018-06-11 2018-09-28 李战伟 一种人造泥岩岩心及其制备方法和应用
CN109238804A (zh) * 2018-10-26 2019-01-18 中国矿业大学 一种具有导电特性的膨胀性相似模型试验材料及使用方法
CN109946147A (zh) * 2019-04-03 2019-06-28 中国矿业大学 一种煤系复合储层压裂物理模拟试件制备方法
CN110220756A (zh) * 2019-05-20 2019-09-10 中国石油大学(北京) 煤系页岩物模试件以及煤系页岩物模试件的制备方法
CN110194611A (zh) * 2019-06-28 2019-09-03 长沙理工大学 粉砂质泥岩相似材料及其制备方法
CN110482988A (zh) * 2019-09-18 2019-11-22 兰州交通大学 一种弱膨胀泥岩相似材料及其制备方法
CN110986531A (zh) * 2019-12-09 2020-04-10 华北理工大学 一种烘箱及其烘干方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
E.E. ALONSO等: "Expansive bentonite–sand mixtures in cyclic controlled-suction drying and wetting", 《ENGINEERING GEOLOGY》 *
刁心宏等: "膨胀岩相似材料的配比试验研究", 《铁道建筑》 *
吴应明等: "膨胀性围岩隧道施工及病害整治", 《现代隧道技术》 *
张改玲等: "开采覆岩破坏工程地质力学模型实验研究", 《中国煤田地质》 *
杨军平等: "Ⅳ级弱膨胀围岩相似材料的试验研究", 《广西大学学报(自然科学版)》 *
杨军平等: "基于正交设计的Ⅳ级弱膨胀性围岩相似材料试验研究", 《科学技术与工程》 *
汪海涛: "膨胀岩的膨胀特性与工程治理研究", 《资源环境与工程》 *
煤炭科学研究总院北京开采研究所等: "《地下开采现代技术理论与实践新进展 煤炭科学研究总院北京开采研究所建所五十周年论文集》", 31 May 2007 *
王军辉等: "物理模型中膨胀岩相似材料湿度迁移规律研究", 《公路与汽运》 *
胡树根: "多水源环境下膨胀岩巷道围岩湿度场相似材料模型试验研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
贾泽钰等: "膨胀岩边坡的危害及其防护措施", 《山西建筑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514313A (zh) * 2021-04-22 2021-10-19 中煤科工集团重庆研究院有限公司 一种泥岩样本批量制备装置及方法
CN113514313B (zh) * 2021-04-22 2024-01-26 中煤科工集团重庆研究院有限公司 一种泥岩样本批量制备装置及方法
CN113916886A (zh) * 2021-10-11 2022-01-11 合肥工业大学 一种基于微观形貌图像分析的泥岩重塑方法
CN113916886B (zh) * 2021-10-11 2023-06-23 合肥工业大学 一种基于微观形貌图像分析的泥岩重塑方法
CN114047040A (zh) * 2021-10-22 2022-02-15 北京中煤矿山工程有限公司 一种钻井法凿井滚刀破碎弱胶结岩石试验重塑大体积岩样的制备方法
CN114047040B (zh) * 2021-10-22 2024-03-26 北京中煤矿山工程有限公司 一种钻井法凿井滚刀破碎弱胶结岩石试验重塑大体积岩样的制备方法

Also Published As

Publication number Publication date
CN111812300A (zh) 2020-10-23
CN112051389B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN112051389B (zh) 一种重塑煤系泥岩样的制备材料及其批量制备方法
Geng et al. Effects of high temperature treatment on physical-thermal properties of clay
CN112240847A (zh) 一种定量分析环境因素对煤系泥岩力学性质影响的方法
Franzoni et al. Artificial weathering of stone by heating
Güneyisi et al. Durability aspect of concretes composed of cold bonded and sintered fly ash lightweight aggregates
Fırat et al. Utilization of marble dust, fly ash and waste sand (Silt-Quartz) in road subbase filling materials
Liu et al. Mechanism of stabilized/solidified heavy metal contaminated soils with cement-fly ash based on electrical resistivity measurements
Arsène et al. Improvement of lifetime of compressed earth blocks by adding limestone, sandstone and porphyry aggregates
Moutinho et al. Geopolymers and polymers in the conservation of tile facades
Kasinikota et al. Prediction of physical-mechanical properties of hollow interlocking compressed unstabilized and stabilized earth blocks at different moisture conditions using ultrasonic pulse velocity
CN103454127A (zh) 用于中小型固流耦合模型试验的相似材料及其制备方法
Rajakumaran An experimental analysis on stabilization of expansive soil with steel slag and fly ash
RAZLI et al. The influence of different waste additions to clay-product mixtures
Zhang et al. Experimental study on the preparation method of coal-like materials based on similarity of material properties and drilling parameters
Ding et al. Combined effect of rice husk ash and cementitious capillary crystalline waterproofing materials on the performance of mortar
Zarasvand et al. Thermal insulation enhancement of rammed earth using wood fly ash and calcium bentonite
Sun et al. Effect of chemical shrinkage and temperature shrinkage on early cracking of recycled concrete
Wang et al. Mechanical sandstone deterioration due to cement binder material materials under dry-wet cycling
CN115432981B (zh) 一种碱渣-固废混凝土制备矸石基胶结充填材料的方法
WO2020069590A1 (pt) Composição para revestimento cerâmico, método de obtenção de uma massa base para revestimento cerâmico, uso da composição para revestimento cerâmico e placa cerâmica.
Phillips et al. Evaluation of processed bottom ash for use as lightweight aggregate in the production of concrete masonry units
Chu et al. Study on mechanical properties of the expansive soil treated with iron tailings sand
Kouonang et al. Assessment of Ceramic Properties of Fired Clayey Brick Materials from Bamessing in North-West Cameroon (Central Africa)
Leiva et al. Effect of carbonaceous matter contents on the fire resistance and mechanical properties of coal fly ash enriched mortars
Wang et al. The Effect of Acid Mine Drainage Corrosion on the Creep Deformation of Cemented Gangue Backfill

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant