CN112051384B - 一种原位生物炭-土壤矿物复合样品采集方法 - Google Patents

一种原位生物炭-土壤矿物复合样品采集方法 Download PDF

Info

Publication number
CN112051384B
CN112051384B CN202010908006.4A CN202010908006A CN112051384B CN 112051384 B CN112051384 B CN 112051384B CN 202010908006 A CN202010908006 A CN 202010908006A CN 112051384 B CN112051384 B CN 112051384B
Authority
CN
China
Prior art keywords
soil
biochar
situ
carbon
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010908006.4A
Other languages
English (en)
Other versions
CN112051384A (zh
Inventor
严金龙
全桂香
王慧
崔立强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202010908006.4A priority Critical patent/CN112051384B/zh
Publication of CN112051384A publication Critical patent/CN112051384A/zh
Application granted granted Critical
Publication of CN112051384B publication Critical patent/CN112051384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

本发明公开了一种原位生物炭‑土壤矿物复合样品采集方法,涉及农业土壤改良与修复技术领域,针对现有生物炭农田施用土壤质量原位跟踪和解析的不方便,以及生物炭‑土壤矿物复合物异位分离困难等技术问题,制备石墨纸载生物炭膜并置于土壤中,自然土壤生态系统中实现生物炭与土壤矿物的复合,短期或长期时间后取出并卸下生物炭膜,无需任何处理而得到原位样品,即可用于后续表征。本发明方法简单,能够快速和准确模拟田间环境生物炭效应,并为直观展示其空间异质性提供便利。

Description

一种原位生物炭-土壤矿物复合样品采集方法
技术领域
本申请涉及生物炭领域,特别是一种原位生物炭-土壤矿物复合样品采集方法。
背景技术
当前,我国土壤环境总体状况堪忧,特别是农田土壤污染问题已经引起社会各界的广泛关注,部分地区的农田污染已十分严重,学者与研究人员提出多种土壤修复与治理方案,如原位修复,异位修复,热修复,施加土壤改良剂等。其中生物质炭是由生物质在高温低氧或无氧条件下裂解而成的固体物质,具有发达的孔隙结构,表面积比较大,具有亲水和疏水双重特性,表面有多种官能团,带有大量的正负电荷,具有吸附极性和非极性分子及阴阳离子的能力,生物质炭富含芳香碳,化学性质十分稳定,由于生物质炭这一特性,故作为土壤改良剂广泛应用于修复土壤中的重金属与有机污染物。但目前有关生物质炭对土壤物理性质的影响及其机理的研究尚不充分。实践中多选择一种或几种生物质炭,一个或几个用量,施用到某一个或几个不同类型的土壤,再定期检测土壤相关性质的变化,从而说明生物质炭对土壤某些物理性质的影响,这些研究仅关注土壤变化,而忽略了与土壤相关物理参数之间的定量关系的研究,不能为生物质炭安全的使用提供全面的指导;同时现有研究以短期研究为主,缺乏长期定位试验研究。
生物质炭十分稳定,在土壤可保存数百甚至上千年,施入土壤后,生物质炭必然发生很多变化,与土壤矿物质、有机质的相互作用也可能改变,短期实验难以研究生物质炭对土壤性质的影响;目前仅集中在室内研究为主,也有学者采用大田实验,但大田实验中主要观察土壤的相关性质的变化,很少研究生物质炭在土壤环境中引起的本身变化,对土壤有机无机组分与生物质炭复合作用、田间生物质炭表面微生物群落结构效应等更难涉及,究其原因主要是生物质炭施加到土壤后与土壤混合,难以分离,试验难度增大。目前将生物质炭与土壤分离的方法有三种:人工挑选、化学分离法和密度分离法。人工分离法需人工筛选,生物炭与土壤均颗粒小,故该方法效率低且工作量大;化学分离法步骤复杂繁琐,特别是某些化学物质可能会杀死部分微生物,改变生物质炭的某些性能,影响实验结果的准确性,比如采用化学分离方法分离会用酸进行预处理,对土壤中的碳酸盐形成破坏,影响实验结果。目前常用的密度分离介质有四溴乙烷、三乙基正磷酸盐稀释的二碘甲烷和聚钨酸钠等,前者有毒且有难闻气味,操作对设备要求非常高,聚钨酸钠则需要配置不同密度溶液,Basile-Doelsch等采用密度分离法(配制1700-2600kg/m3等10个不同密度等级的聚钨酸钠以实现精确分离)提取火山附近土壤中密度大于1900kg/m3的重物质,据此证明了矿物质对火山附近土壤中碳的固定的影响;Kramer等研究了聚钨酸钠中偏高含量的C和N对土壤密度分离的化学性质影响,结果表明:当聚钨酸钠中C、N的含量低于0.06mg/g时不会对土壤密度分离产生污染;当高于0.06mg/g时,则推荐使用传统测试手段以检测可能存在的污染效应;当C/N含量大于0.5mg/g时不得使用;聚钨酸钠同样有其局限性:1)需要配置多种不同高浓度浓度溶液,工作量大,成本高;2)实验过程易产生污染,结果准确性不够。因此如何快速简便的分离生物炭与土壤,已成为生物炭修复技术研究的关键。
发明内容
基于以上问题,本申请提出一种原位生物炭-土壤矿物复合样品采集方法从而从土壤中分离出用于修复土壤的生物质炭,其方法方便快捷,操作简便。
具体而言,本申请是通过如下技术方案实现的:
一种原位生物炭-土壤矿物复合样品采集方法,其具体步骤如下:
1)制备炭膜:将炭粉中加入PVDF(聚偏氟乙烯)及N-甲基吡咯烷酮,研磨成粘稠状均匀地涂抹在石墨纸表面,在石墨纸表面形成涂层;120℃干燥3h,取出冷却至室温即获得;
2)将步骤1)获得的若干炭膜垂直插入田间自然土壤中,同时确保炭膜涂层的表面与土壤完全接触,且土壤完全盖过炭膜表面,使石墨纸上的炭膜完全被土壤覆盖;待试验结束后,取出炭膜,刮下涂层及/或涂层表面附着的土壤颗粒,即完成原位生物炭-土壤矿物复合样品采集。
进一步,本申请上述原位生物炭-土壤矿物复合样品采集方法中,步骤1)中炭粉、PVDF、N-甲基吡咯烷酮的质量体积比(g/μL/μL)依次为:0.2:100:200;所述PVDF的浓度优选2%。
进一步,本申请上述原位生物炭-土壤矿物复合样品采集方法中,步骤1)中涂层厚度为0.2-0.8mm;较薄的涂层有利于炭于土壤更多接触,接触面大。
进一步,本申请上述原位生物炭-土壤矿物复合样品采集方法中,步骤1)中,石墨纸长12cm宽6cm。
进一步,本申请上述原位生物炭-土壤矿物复合样品采集方法中,步骤2)中,每个炭膜之间的距离优选10cm。
本申请中,术语“炭粉”是指由常规方法制备的生物炭(优选秸秆炭)粉碎后过筛获得,优选过280目筛。
与现有生物炭研究方法相比,本申请利用石墨纸载生物炭膜并置于土壤中,自然土壤生态系统中实现生物炭与土壤矿物的复合,一段时间后取出炭膜,将涂层及涂层表面附着的颗粒刮下,无需任何化学处理而得到原位样品,进而用于后续表征。本申请中检测的样品为生物炭-土壤矿物复合物,即生物炭涂层及/或附着在炭膜涂层表面的土壤颗粒,该炭膜可应用于较长的时间内的大田实验,同时测生物质炭与土壤的变化。本申请制备方法简单,工作量小,能够快速和准确模拟田间环境生物炭效应,并为直观展示其空间异质性提供便利。
附图说明
图1为实施例获得的不同炭膜图片。
图2为实施例大田试验中炭膜图片。
图3为实施例不同粘结剂粘结强度检测结果示意图。
具体实施方式
以下实施例中,石墨纸为购自北京晶龙特碳石墨厂柔性石墨纸,厚度0.2mm;
牛皮纸购自合肥恒元纸业,厚度0.2mm,180g/m3
其他试剂及材料,除非特殊说明,均为市售途径购买。
实施例1制备炭膜
将烧制好的小麦秸秆炭(生物炭制备方法参见文献“鲍磊等,生物质炭材料的制备及应用研究进展,化工新型材料[J],2019,47(7):54-59”)在研钵研磨均匀粉碎,研磨粉碎,过280目筛,得小麦秸秆生物炭粉(以下简称“炭粉”)。
取0.2g炭粉于研钵中加入100μL浓度为2%的粘结剂PVDF及200μL的溶剂N-甲基吡咯烷酮,混合后获得粘稠状的涂料,将该涂料均匀地涂抹在长12cm、宽6cm的石墨纸(基底)的一侧表面;涂抹完成后,将石墨纸放在85℃的烘箱中干燥1h,然后再将石墨纸放入120℃的烘箱中干燥3h,取出后冷却至室温,涂料干燥后在基底表面形成涂层,获得纯炭炭膜。涂层过厚炭与土壤交换频率会减少,影响实验效果。本实施例中,最终所获得的涂层厚度约0.2-0.8mm。
同时,分别以含Fe炭粉、含Mn炭粉、含Fe-Mn炭粉按照上述方法制备获得含Fe炭膜、含Mn炭膜、含Fe-Mn炭膜。
含Fe炭粉(含铁5%)制备方法如下:取1g三氧化二铁(Fe2O3)固体颗粒于研钵中研磨粉碎,过280目检验筛制得三氧化二铁粉末;取0.2g炭粉和0.038g三氧化二铁粉末混合后,即获得含Fe炭粉。
含Mn炭粉制备方法如下:取1g二氧化锰(MnO2)固体颗粒于研钵中研磨粉碎,过280目检验筛制得二氧化锰粉末;取0.2g炭粉和0.02g二氧化锰粉末混合后,即获得含Mn炭粉。
含Fe-Mn炭粉制备方法如下:取1g三氧化二铁(Fe2O3)固体颗粒和1g二氧化锰(MnO2)固体颗粒于研钵中分别研磨粉碎,取0.2g炭粉,0.038g三氧化二铁粉末和0.02g二氧化锰粉末混合后,即获得含Fe-Mn炭粉。
本实施例获得的四种炭膜照片如图1所示,其中图1a为纯炭炭膜,图1b为含Fe炭膜,图1c为含Mn炭膜,图1d为含Fe-Mn炭膜。
实施例2土壤原位试验
本实施例采用土壤原位采集方法,具体操作步骤如下:用铲子或铁锹根据炭膜放置深度要求挖一长方形小沟(略大于炭膜,如果在埋深超过炭膜的高度,可在土层表面做标志)。
将制备好的炭膜分别垂直插入田间自然土壤中,同时确保炭膜涂层的表面与土壤完全接触,必须让土壤完全盖过炭膜表面,使石墨纸上的炭膜完全被土壤覆盖。每个炭膜之间的距离大约为10cm(如图2所示)。
在安装15d和30d,分别通过在炭膜附近挖一个凹坑同时将其推向侧面而不旋转它们,小心地将炭膜取出,将炭膜涂层及其上附着的土壤颗粒刮下(作为样品),干燥并保存,以检测样品中有机质和微生物群落的变化。
本实施例样品检测方法如下:
1)按国家标准土壤水分测定法(GB7172-1987)测定土壤的含水量。
2)土壤微生物数量的测定方法为:用稀释平板法测定土壤中微生物的数量。在32℃的培养箱中培养24h。培养完成后取出,计数培养皿中微生物的菌落数量。以上操作均需在超净工作台中进行。(参见《微生物学实验指导》,李顺鹏,主编,中国农业出版社,2003,北京)
3)按国家标准土壤有机质测定法(GB9834-1988)测定土壤中有机质的含量。
4)按国家标准土壤全磷测定法(GB9837-1988)测定土壤中的磷含量。
检测结果如表1-3所示:
表1放置不同时间炭膜样品中微生物数量变化
Figure GDA0003780504390000051
表2放置不同时间炭膜P的含量
Figure GDA0003780504390000052
表3放置不同时间炭膜上有机质的含量变化
Figure GDA0003780504390000053
由表1-3可见,生物炭和生物炭/负载的铁锰氧化物增加了土壤中微生物的数量,促进了微生物的分解和转化为有机物,吸附土壤中的磷元素,对污染土壤的修复具有非常重要的作用;炭膜提高土壤有机质的含量,吸附土壤中的磷元素,综合可知,Fe-Mn炭膜对土壤污染的修复效果最佳,这与目前的研究结果是一致的,证明了本实施例炭膜样品采集方法的准确性。
在具体实施中,可以按实验方案设置或大田要求选择设置相邻炭膜直接的距离与炭膜插入土壤的深度;选择将炭膜垂直(不同剖面)或水平(指定土层、置入土壤,已检测目标土壤的生物炭交换情况。
在具体实施中,可以根据实际研究需要,选择将炭膜涂层或涂层上附着的土壤颗粒作为下一步研究的样本。本实施例中,因炭膜置入土壤时间较短(30天),炭膜涂层与土壤较易分离,故以涂层及附着于涂层表面的土壤颗粒作为检测样品。而在长期试验中(5年以上),涂层中的炭与土壤颗粒将形成紧密结合的复合物而难以分离,此时采用实施例方法刮下涂层,可以直接获得生物炭-土壤复合物,这无疑较现有分离方法节省大量的人工劳动及化学试剂。
实施例3粘结剂筛选试验
本实施例采用粘结剂酚醛树脂PF代替实施例1中使用的PVDF制备纯炭炭膜,其余制备步骤同实施例1。
分别检测15天及30天后涂层与石墨纸的粘结强度,粘结强度检测方法参见文献(张锋等2017,成分和热处理温度对酚醛树脂基粘结剂粘结性能的影响,陶瓷学报[J],38(5),688-691)。检测结果如图3所示。
由图3可见,随着时间延长,酚醛树脂PF粘结强度降低,30天后有小部分炭粒脱落,不宜于进行大田长期检测,而PVDF具有较强的粘附力,可在较长的时间内防止炭粒脱落。
实施例4基底筛选试验
本实施例采用牛皮纸代替实施例1中使用的石墨纸作为基底制备纯炭炭膜,其余制备步骤同实施例1。
本实施例采用不同的基底,在15天、30天、检测炭膜性质的变化,检测结果如表4、表5所示。
表4不同基底炭膜分离程度、完整性随时间变化
Figure GDA0003780504390000061
表5不同基底炭膜经过不同时间在田间的撕裂强度和抗拉指数
Figure GDA0003780504390000071
由表4、表5检测结果可见,从炭膜的性能考虑,以石墨纸做基底,炭粉(涂层)固定强度更高,更适宜于长时间使用。

Claims (5)

1.一种原位生物炭-土壤矿物复合样品采集方法,其特征在于,具体步骤如下:
1)制备炭膜:将涂料涂抹在石墨纸表面,干燥后获得炭膜,备用;所述涂料干燥后在石墨纸表面形成厚度为0.2-0.8mm涂层,该涂料由炭粉、PVDF和N-甲基吡咯烷酮混合后获得;
所述炭粉、PVDF、N-甲基吡咯烷酮三者的质量体积比为0.2 : 100 : 200,质量体积比单位为g/μL/μL;
2)将步骤1)获得的若干炭膜垂直插入田间自然土壤中,同时确保炭膜涂层的表面与土壤完全接触,且土壤完全盖过炭膜表面,使石墨纸上的炭膜完全被土壤覆盖;待试验结束后,取出炭膜,刮下涂层及涂层表面附着的土壤颗粒,即完成原位生物炭-土壤矿物复合样品采集。
2.根据权利要求1所述原位生物炭-土壤矿物复合样品采集方法,其特征在于,步骤1)中所述干燥是指120℃干燥3h。
3.根据权利要求1所述原位生物炭-土壤矿物复合样品采集方法,其特征在于,步骤1)中所述炭粉是将生物炭粉碎后过280目筛获得的。
4.根据权利要求1所述原位生物炭-土壤矿物复合样品采集方法,其特征在于,
步骤1)中石墨纸长12cm宽6cm。
5.根据权利要求1所述原位生物炭-土壤矿物复合样品采集方法,其特征在于,炭膜之间的距离为10cm。
CN202010908006.4A 2020-09-02 2020-09-02 一种原位生物炭-土壤矿物复合样品采集方法 Active CN112051384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010908006.4A CN112051384B (zh) 2020-09-02 2020-09-02 一种原位生物炭-土壤矿物复合样品采集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010908006.4A CN112051384B (zh) 2020-09-02 2020-09-02 一种原位生物炭-土壤矿物复合样品采集方法

Publications (2)

Publication Number Publication Date
CN112051384A CN112051384A (zh) 2020-12-08
CN112051384B true CN112051384B (zh) 2022-09-09

Family

ID=73606952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010908006.4A Active CN112051384B (zh) 2020-09-02 2020-09-02 一种原位生物炭-土壤矿物复合样品采集方法

Country Status (1)

Country Link
CN (1) CN112051384B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335341A (zh) * 2017-04-26 2017-11-10 浙江大学 一种生物炭膜的制备方法
CN109399601A (zh) * 2018-09-14 2019-03-01 江苏大学 一种氮磷共掺杂生物炭材料的制备方法和用途
CN110217792A (zh) * 2019-06-06 2019-09-10 中山大学 一种氮硫掺杂的多级孔炭材料及其制备方法和应用
CN110422914A (zh) * 2019-08-02 2019-11-08 重庆大学 一种生物炭基电容式电极材料和采用其制备的电容式电极
CN210403935U (zh) * 2019-09-23 2020-04-24 深圳市泽塔电源系统有限公司 电化学储能装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335341A (zh) * 2017-04-26 2017-11-10 浙江大学 一种生物炭膜的制备方法
CN109399601A (zh) * 2018-09-14 2019-03-01 江苏大学 一种氮磷共掺杂生物炭材料的制备方法和用途
CN110217792A (zh) * 2019-06-06 2019-09-10 中山大学 一种氮硫掺杂的多级孔炭材料及其制备方法和应用
CN110422914A (zh) * 2019-08-02 2019-11-08 重庆大学 一种生物炭基电容式电极材料和采用其制备的电容式电极
CN210403935U (zh) * 2019-09-23 2020-04-24 深圳市泽塔电源系统有限公司 电化学储能装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pt/生物炭电极反应器处理水中腐殖酸的研究;丁文川等;《环境科学》;20160831;第37卷(第8期);第3074页1.1生物炭阴极制作 *

Also Published As

Publication number Publication date
CN112051384A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Yargicoglu et al. Physical and chemical characterization of waste wood derived biochars
Hassan et al. Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer
Li et al. Molecular chemodiversity of dissolved organic matter in paddy soils
Omoregie et al. Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method
Kratz The bait-lamina test: general aspects, applications and perspectives
Wei et al. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary
Hale et al. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates
Lin et al. A novel thermoanalytical method for quantifying microplastics in marine sediments
Gutierrez-Zamora et al. An appraisal of methods for linking environmental processes to specific microbial taxa
Pen-Mouratov et al. Soil microbial activity and a free-living nematode community in the playa and in the sandy biological crust of the Negev Desert
Mrozik et al. Microbial diversity in waters, sediments and microbial mats evaluated using fatty acid-based methods
Huang et al. Characterization of depth-related changes in bacterial community compositions and functions of a paddy soil profile
Nasser et al. Use of Arcellinida (testate lobose amoebae) arsenic tolerance limits as a novel tool for biomonitoring arsenic contamination in lakes
CN112051384B (zh) 一种原位生物炭-土壤矿物复合样品采集方法
Leppard Nanoparticles in the environment as revealed by transmission electron microscopy: Detection, characterisation and activities
Lin et al. The toxicity of exogenous arsenic to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time
Smith et al. Passive sampling and dosing of aquatic organic contaminant mixtures for ecotoxicological analyses
Beardsley et al. Method for analysis of environmental lead contamination in soils
Cyprowski et al. Occupational exposure to anaerobic bacteria in a waste sorting plant
Yuan et al. Distinct and dynamic distributions of multiple elements and their species in the rice rhizosphere
Naser-Sadrabadi et al. A highly-sensitive electrocatalytic measurement of nitrate ions in soil and different fruit vegetables at the surface of palladium nanoparticles modified DVD using the open bipolar system
Magnet et al. Isolation and identification of bacteria and fungi from soil samples of different industry side in Dhaka city, Bangladesh
Prasad et al. Design and Development of Imprinted Polymer Inclusion Membrane‐Based Field Monitoring Device for Trace Determination of Phorate (O, O‐Diethyl S‐Ethyl Thiomethyl Phophorodithioate) in Natural Waters
Almeida et al. Assessing fate and bioavailability of trace elements in soils after digestate application
Yargicoglu Biotic and abiotic characterization of biochar-amended landfill covers based on column and field studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20201208

Assignee: DONGTAI GAOKE TECHNOLOGY INNOVATION PARK Co.,Ltd.

Assignor: YANCHENG INSTITUTE OF TECHNOLOGY

Contract record no.: X2024980001230

Denomination of invention: A method for collecting in-situ biochar soil mineral composite samples

Granted publication date: 20220909

License type: Common License

Record date: 20240122

EC01 Cancellation of recordation of patent licensing contract

Assignee: DONGTAI GAOKE TECHNOLOGY INNOVATION PARK Co.,Ltd.

Assignor: YANCHENG INSTITUTE OF TECHNOLOGY

Contract record no.: X2024980001230

Date of cancellation: 20240327