CN112050685B - 一种激光目标模拟器 - Google Patents

一种激光目标模拟器 Download PDF

Info

Publication number
CN112050685B
CN112050685B CN202010695144.9A CN202010695144A CN112050685B CN 112050685 B CN112050685 B CN 112050685B CN 202010695144 A CN202010695144 A CN 202010695144A CN 112050685 B CN112050685 B CN 112050685B
Authority
CN
China
Prior art keywords
laser
energy
optical wedge
target
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010695144.9A
Other languages
English (en)
Other versions
CN112050685A (zh
Inventor
王竹萍
范小康
周康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Optical Valley Aerospace Sanjiang Laser Industry Technology Research Institute Co Ltd
Original Assignee
Wuhan Optical Valley Aerospace Sanjiang Laser Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Optical Valley Aerospace Sanjiang Laser Industry Technology Research Institute Co Ltd filed Critical Wuhan Optical Valley Aerospace Sanjiang Laser Industry Technology Research Institute Co Ltd
Priority to CN202010695144.9A priority Critical patent/CN112050685B/zh
Publication of CN112050685A publication Critical patent/CN112050685A/zh
Application granted granted Critical
Publication of CN112050685B publication Critical patent/CN112050685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种激光目标模拟器,包括包括供电单元、电缆、总控单元、激光驱动电路、激光器、激光能量模拟控制单元、能量衰减器。本发明的激光目标模拟器克服以往激光目标模拟器产生的激光脉冲能量密度只能匀速衰减或者衰减过程极易出现能量跳变以及经衰减后光斑能量呈梯度变化等缺陷,提出的激光能量衰减的方式可实时的连续调节模拟器输出能量的变化,实现激光能量均匀衰减同时保持激光光斑能量整体均匀衰减,同时保证模拟器的输出能量衰减程度与导弹实际飞行过程中的情况一致。

Description

一种激光目标模拟器
技术领域
本发明属于高精度大范围激光目标模拟技术领域技术领域,具体涉及一种激光目标模拟器。
背景技术
在激光制导武器传统的型号研制流程中,存在新技术研制周期长和传统实验室测试非常局限这两个阻碍激光制导武器发展的严重问题。为了解决这两大问题,需要建立激光目标模拟系统或激光目标模拟器,为导引头研制开发以及性能测试提供可靠的测试平台,对于加快产品的研制与定型,在系统的设计、样机研制和交付使用等不同阶段都有很大的作用。激光目标模拟系统作为半实物仿真系统的核心,其精度直接关系到被测设备的可靠性和结果的准确性。随着科技的进步和国家军事实力的提升,战场环境也越来越复杂;所以实战环境下的激光光学特性指标越来越高,对激光目标模拟系统的性能指标要求也越来越高。
目前国内搭建的激光目标模拟系统(器)产生的激光脉冲能量密度只能匀速衰减或者衰减过程极易出现不规律能量跳变等缺陷,不能实现激光能量均匀衰减同时保持激光光斑能量整体均匀衰减,而且激光目标模拟器输出能量衰减程度与导弹实际飞行过程中的情况不一致,具体地即是:激光目标模拟器输出能量衰减程度与导弹实际飞行过程中目标反射激光目标指示器发出的激光最终到达激光导引头的激光能量衰减程度,进行匹配模拟,两者激光能量衰减程度的情况不一致。通常激光目标模拟器包括供电单元、电缆、总控单元、激光驱动电路、激光器、激光能量模拟控制单元、能量衰减器,所述供电单元、电缆用于供电,电缆用于供电单元与总控单元、激光驱动电路、激光能量模拟控制单元、能量衰减器的供电电路连接;所述总控单元包括总控硬件电路和信号处理软件,是整个模拟器的信息处理和交换的中枢;激光能量模拟控制单元包括激光能量模拟控制电路和软件,接收并保存总控单元发送的数据,根据此数据控制所述能量衰减器模拟导引头能量衰减过程。CN201811546213专利“一种激光运动目标模拟器”中,能量衰减结构为四孔旋转靶轮结构设计,衰减片切换过程中易导致光在系统内部被结构反射导致能量发生突变。CN201110360472专利“基于双光楔的双波段模拟器”中,随着光楔左右移动将导致光在吸收体内传输光路发生改变,进而经衰减后的激光输出位置不固定,导致后端光学系统复杂,整体实现困难。
发明内容
为解决上述问题,实现激光能量均匀衰减同时保持激光光斑能量整体均匀衰减,从而实现激光目标模拟器输出能量衰减程度与导弹实际飞行过程中的情况一致,本发明提供一种激光目标模拟器,用于导引头性能测试,其特征在于包括供电单元、电缆、总控单元、激光驱动电路、激光器、激光能量模拟控制单元、能量衰减器,
所述供电单元、电缆用于供电,电缆用于供电单元与总控单元、激光驱动电路、激光能量模拟控制单元、能量衰减器的供电电路连接;
所述总控单元包括总控硬件电路和信号处理软件,是整个模拟器的信息处理和交换的中枢;
激光能量模拟控制单元包括激光能量模拟控制电路和软件,接收并保存总控单元发送的数据,根据此数据控制所述能量衰减器模拟导引头能量衰减过程;
所述能量衰减器包括匀速运动平移台、第一光楔、第二光楔和第三光楔组成,其中,第一光楔和第三光楔形状大小以及材料均一致,均由中性暗色玻璃(也称AB2材料)制成且均为等腰直角三角形,以腰边平行的方式相对固定在同一个平面上;第二光楔与第三光楔和第一光楔的材料一致,等腰直角三角形的腰边长度等于第三光楔和第一光楔斜边长度;第二光楔放置在第一光楔和第三光楔之间的同一个平面上;第二光楔的腰边分别与第一光楔和第三光楔的斜边平行,中间留下一定空气间隔;所述第二光楔固定设置在匀速运动平移台上,使得所述第二光楔沿其斜边的垂直方向移动;
所述激光器由激光驱动电路驱动发出激光,所述激光射入所述第一光楔的一条腰边,经过第一光楔的斜边后出射,进入第二光楔的一条腰边后从另一条腰边出射,再进入第三光楔的斜边,最后从第三光楔的一条腰边出射,实现激光能量的衰减,输出能量衰减后的激光;
所述激光能量模拟控制单元根据接收总控单元发送来的运动速度值控制匀速运动平移台沿第二光楔斜边的垂直方向水平匀速运动,带动第二光楔也水平匀速运动;使传输的激光经过能量衰减器后能量连续衰减,实现所述激光目标模拟器输出激光能量衰减程度,与导弹实际飞行过程中目标反射的激光目标指示器发出的激光最终到达激光导引头的激光能量衰减程度,进行匹配模拟,使两者激光能量衰减程度的情况一致;
所述匀速运动平移台为精密二维位移平移台,一般市购。
进一步地,还包括激光器输出尾纤和能量衰减器出射光纤,所述的激光器输出尾纤垂直固定在第一光楔腰边附近,能量衰减器出射光纤通过光纤夹具和底座垂直固定所述的激定在第三光楔腰边,并与激光器输出尾纤保持平行;所述激光器输出尾纤用于输出激光器发出的激光,然后将激光射入所述第一光楔的一条腰边;所述能量衰减器出射光纤用于输出从所述第三光楔一条腰边出射的能量衰减后的激光;使经尾纤传输的激光经过能量衰减器后能量连续衰减。
进一步地,还包括人机交互控制器,所述供电单元、电缆用于为其供电;所述人机交互控制器、总控单元与所述激光能量模拟控制单元之间互相通讯连接;所述人机交互控制器中输入指示环境、速度、能量和距离值,总控单元计算出匀速运动平移台的运动速度,将运动速度值送至激光能量模拟控制单元,激光模拟控制单元接收并保存总控单元发送的运动速度数据,根据此运动速度数据控制匀速运动平移台带动所述第二光楔水平匀速运动。通过第二光楔水平运动,使得激光经过第二光楔的距离产生变化,衰减程度同时发生变化,以实现激光能量连续衰减,即连续可调的要求。
进一步地,还包括光学准直扩束镜,所述激光出射光纤输出能量衰减后的激光进入所述光学准直扩束镜,出射光纤的光出射端面位于光学准直扩束镜的前焦点上,所述光学准直扩束镜用于能量衰减后的激光平行出射,用于导引头仿真。
进一步地,还包括激光均化器,所述激光出射光纤输出能量衰减后的激光进入所述激光均化器,所述激光均化器用于激光平顶化处理(即激光光斑能量均匀化处理),然后输出平顶化处理的激光,使得激光能量均匀,所述平顶化处理的激光进入所述光学准直扩束镜后平行出射。
具体地,所述激光均化器为毛玻璃。
进一步地,还包括指示光激光器驱动电源、指示光激光器,所述指示光激光器由指示光激光器驱动电源驱动发出指示光激光,所述指示光激光器发射出的指示光需与经光学准直扩束镜发射的光共轴,用于导引头对准。
具体地,所述指示光激光器驱动电源、指示光激光器为红光激光器驱动电源、红光激光器。
本发明的激光目标模拟器克服以往激光目标模拟器产生的激光脉冲能量密度只能匀速衰减或者衰减过程极易出现能量跳变以及经衰减后光斑能量呈梯度变化等缺陷,提出的激光能量衰减的方式可实时的连续调节模拟器输出能量的变化,实现激光能量均匀衰减同时保持激光光斑能量整体均匀衰减,同时保证模拟器的输出能量衰减程度与导弹实际飞行过程中的情况一致。本模拟器的衰减装置可适当简化后端光学系统的复杂程度。
附图说明
图1是实施例6的激光目标模拟器的系统总框图;
图2是激光能量模拟控制单元和能量衰减器组成情况图;
图3是能量衰减原理图;
图4激光光程随第二光楔移动的变化图;
图5实际激光半主动寻的制导过程中激光传输光路图;
图6能量衰减dB数随吸收体(第二光楔)运动距离的变化图;
图7激光在能量衰减器中的传输图。
图中,1-总控单元,2-红光指示光源驱动电路,3-红光激光器,4-激光驱动电路(1064nm激光驱动电路),5-激光器(1064nm激光器),6-激光能量模拟控制单元(电路),7-能量衰减器,8-激光匀化器,9-光学准直扩束镜导引头,10-供电单元,11-人机交互控制器,12-线缆,13-尾纤,14-出射光纤,15-固定台,16-匀速运动平移台,17-第三光楔,18-第二光楔,19-第一光楔,1a-第一光路,2a-第二光路。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明的具体实施方式作进一步说明。应当理解,此处所描述的具体实施例仅仅用于帮助理解本发明,并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
本发明提供一种激光目标模拟器,用于导引头性能测试,包括供电单元、电缆、总控单元、激光驱动电路、激光器、激光能量模拟控制单元、能量衰减器,
所述供电单元、电缆用于供电,电缆用于供电单元与总控单元、激光驱动电路、激光能量模拟控制单元、能量衰减器的供电电路连接;
所述总控单元包括总控硬件电路和信号处理软件,是整个模拟器的信息处理和交换的中枢;
激光能量模拟控制单元包括激光能量模拟控制电路和软件,接收并保存总控单元发送的数据,根据此数据控制所述能量衰减器模拟导引头能量衰减过程;
所述能量衰减器包括匀速运动平移台、第一光楔、第二光楔和第三光楔组成,其中,第一光楔和第三光楔形状大小以及材料均一致,均由中性暗色玻璃(也称AB2材料)制成且均为等腰直角三角形,以腰边平行的方式相对固定在同一个平面上;第二光楔与第三光楔和第一光楔的材料一致,等腰直角三角形的腰边长度等于第三光楔和第一光楔斜边长度;第二光楔放置在第一光楔和第三光楔之间的同一个平面上,本实施例中设有一固定台,固定台的台面即为所述的同一个平面;第二光楔的腰边分别与第一光楔和第三光楔的斜边平行,中间留下一定空气间隔,本实施例中的空气间隔为1cm,另一个实施例中为0.5cm,又一个实施例中为1.5cm,因距离较短,大气衰减较小,对能量I2影响可忽略不计;所述第二光楔固定设置在匀速运动平移台上,使得所述第二光楔沿其斜边的垂直方向移动;
所述激光器由激光驱动电路驱动发出激光,所述激光射入所述第一光楔的一条腰边,经过第一光楔的斜边后出射,进入第二光楔的一条腰边后从另一条腰边出射,再进入第三光楔的斜边,最后从第三光楔的一条腰边出射,实现激光能量的衰减,输出能量衰减后的激光;
所述激光能量模拟控制单元根据接收总控单元发送来的运动速度值控制匀速运动平移台沿第二光楔斜边的垂直方向水平匀速运动,带动第二光楔也水平匀速运动;使传输的激光经过能量衰减器后能量连续衰减,实现所述激光目标模拟器输出激光能量衰减程度,与导弹实际飞行过程中目标反射的激光目标指示器发出的激光最终到达激光导引头的激光能量衰减程度,进行匹配模拟,使两者激光能量衰减程度的情况一致;
所述匀速运动平移台为精密二维位移平移台,一般市购。
实施例2
与实施例1不同之处在于,本发明的一种激光目标模拟器还包括激光器输出尾纤和能量衰减器出射光纤,所述的激光器输出尾纤垂直固定在第一光楔腰边附近,能量衰减器出射光纤通过光纤夹具和底座垂直固定所述的激定在第三光楔腰边,并与激光器输出尾纤保持平行;所述激光器输出尾纤用于输出激光器发出的激光,然后将激光射入所述第一光楔的一条腰边;所述能量衰减器出射光纤用于输出从所述第三光楔一条腰边出射的能量衰减后的激光;使经尾纤传输的激光经过能量衰减器后能量连续衰减。
如图7所示的激光在能量衰减器中的传输图,三个光楔均为等腰直角三角形,材料相同。摆放位置如图7所示,光楔19和光楔18的腰边均与光楔17直角边平行。激光尾纤垂直于光楔19的直角边入射,光斑直径为200μm,经光楔折射后,平行于透射光出射。光线传输如图7所示,光斑的边缘光线a,b垂直入射,经三个光楔折射后,光线平行出射,a,b光线在吸收材料中的总光程相等,光束经三个光楔衰减后,光线a,b的能量调节程度一致,因此,具备一定直径的光束经能量衰减器后,出射光斑的能量并没有出现阶梯性变化光斑能量均匀衰减。
其余同实施例1。
实施例3
与实施例2不同之处在于,本发明的一种激光目标模拟器还包括人机交互控制器,所述供电单元、电缆用于为其供电;所述人机交互控制器、总控单元与所述激光能量模拟控制单元之间互相通讯连接;所述人机交互控制器中输入指示环境、速度、能量和距离值,总控单元计算出匀速运动平移台的运动速度,将运动速度值送至激光能量模拟控制单元,激光模拟控制单元接收并保存总控单元发送的运动速度数据,根据此运动速度数据控制匀速运动平移台带动所述第二光楔水平匀速运动;通过第二光楔水平运动,使得激光经过光楔的距离产生变化,衰减程度同时发生变化,以实现激光能量连续衰减,即连续可调的要求;
还包括计算能量衰减器的第二光楔的移动速度的软件,所述软件通过输入指示环境、导引头的实际飞行速度、能量和距离值,以及输入目标能量衰减曲线值,计算匹配出匀速运动平移台的移动速度即第二光楔的移动速度,实现对激光目标模拟器能量连续衰减匹配模拟;具体计算匹配方法如下:
首先计算出目标能量衰减曲线,方法为:
如图5所示,在实际的激光半主动寻制导过程中,包括有目标、激光导引头和激光目标指示器,激光目标指示器发出的光射到目标上再反射到导引头的光束,就相当于激光目标模拟器中的激光器发出的光经过目标模拟器光路的光束,该光束要求跟导引头对准;实际制导过程中,激光目标指示器发出的激光通过第一光路到达目标,目标反射激光通过第二光路最终到达激光导引头,当假定目标为朗伯型时,即目标反射能量在各个方向上亮度值相等,对于有效反射截面比激光光斑尺寸大的目标而言,导引头探测到的激光能量密度与激光目标指示器发出的激光能量之间的关系可以用下面的方程来表示:
Figure BDA0002590754570000091
Figure BDA0002590754570000092
Figure BDA0002590754570000093
式中:
P-导引头探测到的目标回波信号能量密度;
P0-激光目标指示器发射的激光能量;
σS-地面目标的漫反射系数;
l-导引头与目标之间的距离;
τ1-第一光路中大气对激光的透射率,见公式(2)
τ2-第二光路中大气对激光的透射率,见公式(2)
ERF-误差函数
Wi-水蒸气含量;
V-大气能见度;
λ0-参考波长
λ-激光目标指示器发射的激光波长
q-经验常数
L1-激光目标指示器距离目标的距离
L2-导引头距离目标的距离
Figure BDA0002590754570000107
(与公式(1)相同,R就是l)
Figure BDA0002590754570000102
假设前后输入的两个距离值分别为r1、r2(R取值为r1和r2),(r1>r2)则
Figure BDA0002590754570000103
Figure BDA0002590754570000104
则导引头飞行过程中接收的能量变化倍率β与前后距离r1、r2,(r1>r2)的关系式为
Figure BDA0002590754570000105
则导引头飞行过程中接收的能量变化dB数与前后距离r1、r2,(r1>r2)的关系式为
Figure BDA0002590754570000106
Figure BDA0002590754570000111
此关系式就是目标能量衰减曲线,即目标距离导引头的距离为r1、r2(r1>r2)时的导引头飞行过程中接收的能量变化dB数。
然后,计算匹配出匀速运动平移台的移动速度,方法如下:
基于朗伯定律:
I=I0exp(γR) (9)
I0为入射前光能量值,I为经过衰减后的能量值,γ为材料特有的衰减系数,R为光在物质中通过的路程。
如图3所示能量衰减原理,三个光楔材料相同,为中性暗色玻璃(也称AB2材料),均为等腰直角三角形,三者摆放成矩形。投射光垂直第一光楔直角边射入第一光楔,由于三个光楔的材料和角度均相同,且光楔相对的边两两平行,则光经各个面折射后,将垂直于第三光楔射出,光在第一光楔和第三光楔中传输的路程相同,保持入射位置固定,则出射位置相对固定。
已知投射光能量为I0,垂直射入第一光楔,在第一光楔中经历的路程为L1,则出射第一光楔的能量I1为:
Figure BDA0002590754570000112
出射能量为I1的光从第一光楔射入第二光楔时,在第二光楔中经历的路程为S。当第二光楔以速度v向右运动t(s),移动距离为ΔL时,光在第二光楔中经历的路程的变化值为2ΔL,如图4所示,则光出射第二光楔的能量I2为:
I2=I1eγR=I1eγ(s-2ΔL) (11)
出射能量为I2的光从第二光楔射入第三光楔时,在第三光楔中经历的路程为L1,则光出射第三光楔的能量I3为:(第二光楔和第三光楔空气间隙为1cm,另一个实施例中为0.5cm,再另一个实施例中为1.5cm,因距离较短,大气衰减较小,对能量I2影响可忽略不计)
Figure BDA0002590754570000121
综上所述,光垂直于第一光楔射入,垂直第三光楔出射,当第二光楔以速度v向右移动ΔL,能量变化的倍率α随运动距离变化的关系式为:
Figure BDA0002590754570000122
能量变化的dB数随运动距离变化的关系式为:
Figure BDA0002590754570000123
因此,根据公式(8)和(14)得出第二光楔(光楔18)的移动速度v与t时间内导引头和目标之间的前后距离之间的关系如下式所示:
Figure BDA0002590754570000124
即上式具体表达了:t时间内导引头和目标之间的前后距离,与第二光楔(光楔18)的移动速度v之间的关系,其物理意义是:t时间内导引头和目标之间的不同的前后距离就对应第二光楔的移动速度v在t时间内第二光楔的移动前后距离发生的变化值,对应导引头t时间内能量变化的dB数;t时间内第二光楔的移动速度v发生变化,使第二光楔的移动前后距离发生变化,这样就保证了模拟器的输出能量衰减程度(能量变化的dB数)与导弹实际飞行过程中的情况一致;因激光能量与在吸收体(第二光楔)内部通过的距离成自然底数指数衰减,导引头在飞行过程中目标反射的激光目标指示器发出的激光最终到达导引头的激光能量也是随距离成自然底数指数衰减,所以两者可以匹配出吸收体(第二光楔)的运动速度,保证激光目标模拟器的输出能量衰减程度与导弹实际飞行过程中的情况一致,即实现所述激光目标模拟器输出激光能量衰减程度,与导弹实际飞行过程中目标反射的激光目标指示器发出的激光最终到达激光导引头的激光能量衰减程度,进行匹配模拟,使两者的激光能量衰减程度情况一致。
本实施例中,已知R为2mm时,透过率为3%,则衰减系数γ为-1.7533×103。激光输出功率衰减60dB,则光在物质中通过的路程最大为7.9mm。假设L1为0.3mm,S为8mm,则ΔL范围为0-4mm,楔角45°。能量衰减dB数随第二光楔运动距离的变化如图6所示。
由图6可知,能量衰减dB数随运动距离成线性衰减,衰减dB数范围为4.57-65.5dB,其中第一光楔、17产生的固定衰减dB数为4.57。衰减器的起始位置处,光在第二光楔中通过的行程最大,衰减dB数最大,达到65.5dB,向右运动第二光楔时,能量衰减dB数线性下降,输出光的能量成指数逐渐增大。线性规律公式为
dB=-1.523×104L+65.48
导引头飞行速度约为272m/s,脉冲时间间隔为50ms,则在脉冲时间间隔内飞行的距离为13.6m。由于导引头与目标相距越近,衰减变化率越大,取导引头在脉冲时间间隔为50ms内从距目标63.6m处飞向距目标50m,得到最大衰减为2.14dB,取导引头在脉冲时间间隔为50ms内从距目标3013.6m处飞向距目标3000m,得到最小衰减为0.0854dB。
根据激光能量模拟单元衰减dB数随距离的变化关系式可知,衰减2.14dB,位移单元需移动1.41×10-4m,则最大位移速度为2.82mm/s;衰减为0.0854dB,位移单元需移动5.61×10-6m,最小位移速度为0.112mm/s。
其余内容同实施例2。
实施例4
本实施例与实施例3不同之处为:还包括光学准直扩束镜,所述激光出射光纤输出能量衰减后的激光进入所述光学准直扩束镜,出射光纤的光出射端面位于光学准直扩束镜的前焦点上,所述光学准直扩束镜用于能量衰减后的激光平行出射,用于导引头仿真。
其余内容同实施例3。
实施例5
本实施例与实施例4不同之处为:还包括激光均化器,所述激光出射光纤输出能量衰减后的激光进入所述激光均化器,所述激光均化器用于激光平顶化处理(即激光光斑能量均匀化处理),然后输出平顶化处理的激光,使得激光能量均匀,所述平顶化处理的激光进入所述光学准直扩束镜后平行出射。具体地,所述激光均化器为毛玻璃。
其余内容同实施例4。
实施例6
如图1所示,本实施例与实施例5不同之处为:还包括指示光激光器驱动电源、指示光激光器,所述指示光激光器由指示光激光器驱动电源驱动发出指示光激光,所述指示光激光器发射出的指示光需与经光学准直扩束镜发射的光共轴,用于导引头对准。具体地,所述指示光激光器驱动电源、指示光激光器为红光激光器驱动电源、红光激光器。
其余内容同实施例5。

Claims (4)

1.一种激光目标模拟器,用于导引头性能测试,其特征在于包括供电单元、电缆、总控单元、激光驱动电路、激光器、激光能量模拟控制单元、能量衰减器,
所述供电单元、电缆用于供电,电缆用于供电单元与总控单元、激光驱动电路、激光能量模拟控制单元、能量衰减器的供电电路连接;
所述总控单元包括总控硬件电路和信号处理软件,是整个模拟器的信息处理和交换的中枢;
激光能量模拟控制单元包括激光能量模拟控制电路和软件,接收并保存总控单元发送的数据,根据此数据控制所述能量衰减器模拟导引头能量衰减过程;
所述能量衰减器包括匀速运动平移台、第一光楔、第二光楔和第三光楔组成,其中,第一光楔和第三光楔形状大小以及材料均一致,均由中性暗色玻璃制成且均为等腰直角三角形,以腰边平行的方式相对固定在同一个平面上;第二光楔与第三光楔和第一光楔的材料一致,等腰直角三角形的腰边长度等于第三光楔和第一光楔斜边长度;第二光楔放置在第一光楔和第三光楔之间的同一个平面上;第二光楔的腰边分别与第一光楔和第三光楔的斜边平行,中间留下一定空气间隔;所述第二光楔固定设置在匀速运动平移台上,使得所述第二光楔沿其斜边的垂直方向移动;
所述激光器由激光驱动电路驱动发出激光,所述激光射入所述第一光楔的一条腰边,经过第一光楔的斜边后出射,进入第二光楔的一条腰边后从另一条腰边出射,再进入第三光楔的斜边,最后从第三光楔的一条腰边出射,实现激光能量的衰减,输出能量衰减后的激光;
所述激光能量模拟控制单元根据接收总控单元发送来的运动速度值控制匀速运动平移台沿第二光楔斜边的垂直方向水平匀速运动,带动第二光楔也水平匀速运动;使传输的激光经过能量衰减器后能量连续衰减,实现所述激光目标模拟器输出激光能量衰减程度,与导弹实际飞行过程中目标反射的激光目标指示器发出的激光最终到达激光导引头的激光能量衰减程度,进行匹配模拟,使两者激光能量衰减程度的情况一致;
所述匀速运动平移台为精密二维位移平移台,市购;
还包括激光器输出尾纤和能量衰减器出射光纤,所述的激光器输出尾纤垂直固定在第一光楔腰边附近,能量衰减器出射光纤通过光纤夹具和底座垂直固定在所述的第三光楔腰边,并与激光器输出尾纤保持平行;所述激光器输出尾纤用于输出激光器发出的激光,然后将激光射入所述第一光楔的一条腰边;所述能量衰减器出射光纤用于输出从所述第三光楔一条腰边出射的能量衰减后的激光;使经尾纤传输的激光经过能量衰减器后能量连续衰减;
还包括人机交互控制器,所述供电单元、电缆用于为其供电;所述人机交互控制器、总控单元与所述激光能量模拟控制单元之间互相通讯连接;所述人机交互控制器中输入指示环境、速度、能量和距离值,总控单元计算出匀速运动平移台的运动速度,将运动速度值送至激光能量模拟控制单元,激光模拟控制单元接收并保存总控单元发送的运动速度数据,根据此运动速度数据控制匀速运动平移台带动所述第二光楔水平匀速运动;通过第二光楔水平运动,使得激光经过第二光楔的距离产生变化,衰减程度同时发生变化,以实现激光能量连续衰减,即连续可调的要求;
还包括光学准直扩束镜,所述激光出射光纤输出能量衰减后的激光进入所述光学准直扩束镜,出射光纤的光出射端面位于光学准直扩束镜的前焦点上,所述光学准直扩束镜用于能量衰减后的激光平行出射,用于导引头仿真;
还包括指示光激光器驱动电源、指示光激光器,所述指示光激光器由指示光激光器驱动电源驱动发出指示光激光,所述指示光激光器发射出的指示光需与经光学准直扩束镜发射的光共轴,用于导引头对准;
所述总控单元计算出匀速运动平移台的运动速度,具体的,所述总控单元包括计算能量衰减器的第二光楔的移动速度的软件,所述软件通过输入指示环境、导引头的实际飞行速度、能量和距离值,以及输入目标能量衰减曲线值,计算匹配出匀速运动平移台的移动速度即第二光楔的移动速度,实现对激光目标模拟器能量连续衰减匹配模拟;具体计算匹配方法如下
首先计算出目标能量衰减曲线,方法为:
在实际的激光半主动寻制导过程中,包括有目标、激光导引头和激光目标指示器,激光目标指示器发出的光射到目标上再反射到导引头的光束,相当于激光目标模拟器中的激光器发出的光经过目标模拟器光路的光束,该光束要求跟导引头对准;实际制导过程中,激光目标指示器发出的激光通过第一光路到达目标,目标反射激光通过第二光路最终到达激光导引头,当假定目标为朗伯型时,即目标反射能量在各个方向上亮度值相等,对于有效反射截面比激光光斑尺寸大的目标而言,导引头探测到的激光能量密度与激光目标指示器发出的激光能量之间的关系可以用下面的方程来表示:
Figure FDA0003959191820000031
Figure FDA0003959191820000032
Figure FDA0003959191820000041
式中:
P-导引头探测到的目标回波信号能量密度;
P0-激光目标指示器发射的激光能量;
σS-地面目标的漫反射系数;
l-导引头与目标之间的距离;
τ1-第一光路中大气对激光的透射率,见公式(2)
τ2-第二光路中大气对激光的透射率,见公式(2)
ERF-误差函数
Wi-水蒸气含量;
V-大气能见度;v-大气能见度;
λ0-参考波长
λ-激光目标指示器发射的激光波长
q-经验常数
L1-激光目标指示器距离目标的距离
L2-导引头距离目标的距离
则l取R时
Figure FDA0003959191820000042
Figure FDA0003959191820000043
假设前后输入的两个距离值分别为r1、r2,即R取值为r1和r2,r1>r2
Figure FDA0003959191820000044
Figure FDA0003959191820000051
则导引头飞行过程中接收的能量变化倍率β与前后距离r1、r2的关系式为
Figure FDA0003959191820000052
则导引头飞行过程中接收的能量变化dB数与前后距离r1、r2的关系式为
Figure FDA0003959191820000053
此关系式就是目标能量衰减曲线,即目标距离导引头的距离为r1、r2时的导引头飞行过程中接收的能量变化dB数;
然后,计算匹配出匀速运动平移台的移动速度,方法如下:
基于朗伯定律:
I=I0exp(γR) (9)
I0为入射前光能量值,I为经过衰减后的能量值,γ为材料特有的衰减系数,R为光在物质中通过的路程。
2.根据权利要求1所述的激光目标模拟器,其特征在于还包括激光均化器,所述激光出射光纤输出能量衰减后的激光进入所述激光均化器,所述激光均化器用于激光平顶化处理,即激光光斑能量均匀化处理,然后输出平顶化处理的激光,使得激光能量均匀,所述平顶化处理的激光进入所述光学准直扩束镜后平行出射。
3.根据权利要求2所述的激光目标模拟器,其特征在于所述激光均化器为毛玻璃。
4.根据权利要求1-3中任一项所述的激光目标模拟器,其特征在于所述指示光激光器驱动电源、指示光激光器为红光激光器驱动电源、红光激光器。
CN202010695144.9A 2020-07-19 2020-07-19 一种激光目标模拟器 Active CN112050685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010695144.9A CN112050685B (zh) 2020-07-19 2020-07-19 一种激光目标模拟器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010695144.9A CN112050685B (zh) 2020-07-19 2020-07-19 一种激光目标模拟器

Publications (2)

Publication Number Publication Date
CN112050685A CN112050685A (zh) 2020-12-08
CN112050685B true CN112050685B (zh) 2023-03-14

Family

ID=73601679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010695144.9A Active CN112050685B (zh) 2020-07-19 2020-07-19 一种激光目标模拟器

Country Status (1)

Country Link
CN (1) CN112050685B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2522881Y (zh) * 2001-12-07 2002-11-27 鸿富锦精密工业(深圳)有限公司 可调光衰减器
JP2005070710A (ja) * 2003-08-28 2005-03-17 Hitachi Maxell Ltd 光減衰器
CN201210212Y (zh) * 2008-06-17 2009-03-18 中国船舶重工集团公司第七一七研究所 可调激光衰减装置
JP2009294397A (ja) * 2008-06-04 2009-12-17 Jtekt Corp レーザ集光プリズム
CN102445112A (zh) * 2011-11-15 2012-05-09 长春理工大学 基于双光楔的双波段模拟器
CN102591007A (zh) * 2012-03-29 2012-07-18 中国科学院上海光学精密机械研究所 连续可调光程不变的光衰减器
CN109682256A (zh) * 2018-12-18 2019-04-26 北京交通大学 一种激光运动目标模拟器
CN110108173A (zh) * 2019-05-07 2019-08-09 四川航天系统工程研究所 一种末制导弹的激光导引头动态性能自动测试系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW507877U (en) * 2001-11-30 2002-10-21 Hon Hai Prec Ind Co Ltd Tunable optical attenuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2522881Y (zh) * 2001-12-07 2002-11-27 鸿富锦精密工业(深圳)有限公司 可调光衰减器
JP2005070710A (ja) * 2003-08-28 2005-03-17 Hitachi Maxell Ltd 光減衰器
JP2009294397A (ja) * 2008-06-04 2009-12-17 Jtekt Corp レーザ集光プリズム
CN201210212Y (zh) * 2008-06-17 2009-03-18 中国船舶重工集团公司第七一七研究所 可调激光衰减装置
CN102445112A (zh) * 2011-11-15 2012-05-09 长春理工大学 基于双光楔的双波段模拟器
CN102591007A (zh) * 2012-03-29 2012-07-18 中国科学院上海光学精密机械研究所 连续可调光程不变的光衰减器
CN109682256A (zh) * 2018-12-18 2019-04-26 北京交通大学 一种激光运动目标模拟器
CN110108173A (zh) * 2019-05-07 2019-08-09 四川航天系统工程研究所 一种末制导弹的激光导引头动态性能自动测试系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
一种基于半导体激光二极管的激光目标模拟器;彭晶晶等;《制导与引信》;20180331;第39卷(第1期);17-21 *
宽范围高精度无级激光能量衰减器的研究;邴昱凯等;《光电工程》;20101130;第37卷(第11期);48-51 *
激光目标模拟器能量链模型的建立与分析;郭慧敏等;《光学技术》;20031130;第29卷(第6期);643-645 *

Also Published As

Publication number Publication date
CN112050685A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN102279093B (zh) 红外动态三角形目标模拟器
CN105487410B (zh) 一种半主动激光导引头半实物仿真目标模拟方法
CN106468523B (zh) 一种小型化红外/激光共口径目标模拟器
CN108680060A (zh) 一种激光红外复合目标模拟器、设备及系统
US3848830A (en) Missile guidance system
CN105573328A (zh) 光学跟踪/瞄准系统的动态参数校准装置及其使用方法
CN109655813A (zh) 基于光纤延时的激光测距仪室内校准装置及方法
US4339177A (en) Optical apparatus for controlling the distribution of illumination
CN103486906A (zh) 一种激光、红外点源和红外成像的复合目标模拟器
US3609883A (en) System for simulating the firing of a weapon at a target
CN112764021A (zh) 一种红外/毫米波/激光多模复合仿真系统
CN112050685B (zh) 一种激光目标模拟器
CN104062097A (zh) 一种角反射器回光特性标定的装置及方法
US4446363A (en) Target for optically activated seekers and trackers
CN109489506B (zh) 一种多波段目标辐射模拟系统
CN112393641B (zh) 一种激光目标模拟器能量衰减匹配模拟方法
CN108362905A (zh) 一种激光光幕弹丸或破片过靶光信号模拟产生系统及其方法
CN108549159B (zh) 一种用于机载激光照测器的光学系统
US5592850A (en) Missile guidance seeker and seeker missile countermeasures system testing appartatus with co-location and independent motion of target sources
CN109682256B (zh) 一种激光运动目标模拟器
CN106610528A (zh) 长波红外和短波红外复合准直光学系统
CN209690502U (zh) 一种基于光纤延时的激光测距仪室内校准装置
FR2275747A1 (fr) Procede pour la simulation de tir d'un engin teleguide et dispositif pour la mise en oeuvre du procede
Zhou et al. Design and achievement of hardware-in-the-loop simulation system for strapdown semi-active laser seeker
CN106134466B (zh) 一种离轴的激光光束定向发射器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant