CN112033982A - 一种基于能谱的3d打印无损检测方法 - Google Patents

一种基于能谱的3d打印无损检测方法 Download PDF

Info

Publication number
CN112033982A
CN112033982A CN202010682913.1A CN202010682913A CN112033982A CN 112033982 A CN112033982 A CN 112033982A CN 202010682913 A CN202010682913 A CN 202010682913A CN 112033982 A CN112033982 A CN 112033982A
Authority
CN
China
Prior art keywords
energy
ray
printing
testing method
nondestructive testing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010682913.1A
Other languages
English (en)
Inventor
荣鹏
王少阳
王大为
高川云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202010682913.1A priority Critical patent/CN112033982A/zh
Publication of CN112033982A publication Critical patent/CN112033982A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • G01N2223/04Investigating materials by wave or particle radiation by transmission and measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种基于能谱的3D打印无损检测方法,其特征在于,将X射线能谱处理得到离散的若干个能量的光子,且光子的能量分别为Ia‑In,光子穿过物体后剩下的能量分别为I1‑Im,则
Figure DDA0002586505250000011
ui为衰减系数,li为X射线穿过物体的长度。原有技术只能仿真单能X射线的正投数据,与设备上实际采集的结果差距较大。本发明可以仿真多能X射线的正投数据,得到的结果更接近设备采集的结果,为科研和研究算法提供有力的工具。

Description

一种基于能谱的3D打印无损检测方法
技术领域
本发明属于3D打印无损检测的技术领域,具体涉及一种基于能谱的3D打印无损检测方法。
背景技术
现有的3D打印零件的无损检测技术都是基于单能的X射线的正投算法,即假设物体的每个像素的衰减值是一个常数。或者将投影射线穿过的像素值直接相加,或者将投影射线穿过的像素值加权相加(以像素穿过每个像素的长度或者面积为权重)。
如图1所示,X射线的投影值等于μ15671112,但是实际3D打印零件检测时使用的X射线均是多能的,这种单能正投算法与实际采集到的投影图像灰度值差距较大,无法仿真真实的投影图像。设备使用的X射线是多能的,即X射线中光子的能量是不一样的,对于一个均匀物体,对不同能量的光子来说衰减系数是不一样的,因此不能简单的将一个像素的衰减系数设置为一个常数。通常而言,针对某设备使用的X光线,其X射线的能量通常满足二态分布,即以某个特定值为中心的分布。
在使用设备采集的真实的投影图像进行重建时,由于设备使用的X射线是多能的,重建后的图像上会有硬化伪影。然而,为了验证硬化伪影去除算法的好坏,有时候需要仿真数字模体,并且期望能够仿真多能X射线正投的投影值,这时候上述正投算法就无能为力了。
发明内容
本发明的目的在于提供一种基于能谱的3D打印无损检测方法,本发明得到的投影值与实际设备采集得到的正投数据基本一致,从而可以仿真设备真实得到的数据,为科研和算法的验证提供更有力的工具。
本发明主要通过以下技术方案实现:一种基于能谱的3D打印无损检测方法,将X射线能谱处理得到离散的若干个能量的光子,且光子的能量分别为Ia-In,光子穿过物体后剩下的能量分别为I1-Im,则:
Figure BDA0002586505230000011
其中:ui为衰减系数,
li为X射线穿过物体的长度。
为了更好地实现本发明,进一步的,物体投影值为
Figure BDA0002586505230000012
为了更好地实现本发明,进一步的,对X射线能谱进行微分处理得到离散的若干个能量的光子。
为了更好地实现本发明,进一步的,多能X射线的能量满足二态分布。
为了更好地实现本发明,进一步的,多能X射线的能量满足斜二态分布。
本发明的有益效果:
原有技术只能仿真单能X射线的正投数据,与设备上实际采集的结果差距较大。本发明可以仿真多能X射线的正投数据,得到的结果更接近设备采集的结果,为科研和研究算法提供有力的工具。
附图说明
图1为现有技术X射线的正投示意图;
图2为现有技术单能的X射线的正投算法示意图。
具体实施方式
实施例1:
一种基于能谱的3D打印无损检测方法,当用某kVp的多能X射线扫描物体时,则可以根据kVp的值确定该多能X射线的能谱,即确定多能X射线中每个能量的光子的个数。通常而言,某KVP的多能X射线的能量满足二态分布(根据激励源的不同也可以是其他分布,比如斜二态分布等)。可以对这一分布的X射线能谱进行微分处理,得到离散的多个能量的光子,如Ia、Ib、Ic、…In
下面以多能X射线包含Ia、Ib两种能量的光子来进行示例性说明。这时光子总能量为Ia+Ib
先看能量Ia的光子,这时候是单能光子,即物体对于Ia的光子来说衰减系数是常数,假设衰减系数分别为μ1、μ2Λμn。假设X射线穿过每个像素的长度分别为l1、l2Λl16,则Ia穿过物体后剩下的能量为
Figure BDA0002586505230000021
其中
Figure BDA0002586505230000022
使用的是长度加权,这里可以直接相加或者使用面积加权等方法。
对于能量为Ib的光子,假设衰减系数分别为μ1′、μ2′Λμn′,则Ib穿过物体后,能量变为
Figure BDA0002586505230000023
则可以得到物体的投影值为
Figure BDA0002586505230000024
即得到多能X射线的正投值。
如图1所示,原有技术只能仿真单能X射线的正投数据,与设备上实际采集的结果差距较大。本发明可以仿真多能X射线的正投数据,得到的结果更接近设备采集的结果,为科研和研究算法提供有力的工具。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (5)

1.一种基于能谱的3D打印无损检测方法,其特征在于,将X射线能谱处理得到离散的若干个能量的光子,且光子的能量分别为Ia-In,光子穿过物体后剩下的能量分别为I1-Im,则:
Figure FDA0002586505220000011
其中:ui为衰减系数,
li为X射线穿过物体的长度。
2.根据权利要求1所述的一种基于能谱的3D打印无损检测方法,其特征在于,物体投影值为
Figure FDA0002586505220000012
3.根据权利要求1或2所述的一种基于能谱的3D打印无损检测方法,其特征在于,对X射线能谱进行微分处理得到离散的若干个能量的光子。
4.根据权利要求1所述的一种基于能谱的3D打印无损检测方法,其特征在于,多能X射线的能量满足二态分布。
5.根据权利要求1所述的一种基于能谱的3D打印无损检测方法,其特征在于,多能X射线的能量满足斜二态分布。
CN202010682913.1A 2020-07-15 2020-07-15 一种基于能谱的3d打印无损检测方法 Pending CN112033982A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010682913.1A CN112033982A (zh) 2020-07-15 2020-07-15 一种基于能谱的3d打印无损检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010682913.1A CN112033982A (zh) 2020-07-15 2020-07-15 一种基于能谱的3d打印无损检测方法

Publications (1)

Publication Number Publication Date
CN112033982A true CN112033982A (zh) 2020-12-04

Family

ID=73579169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010682913.1A Pending CN112033982A (zh) 2020-07-15 2020-07-15 一种基于能谱的3d打印无损检测方法

Country Status (1)

Country Link
CN (1) CN112033982A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609908A (zh) * 2012-01-13 2012-07-25 中国人民解放军信息工程大学 基于基图像tv模型的ct射束硬化校正方法
CN103559699A (zh) * 2013-11-18 2014-02-05 首都师范大学 一种基于投影估计的多能谱ct图像重建方法
CN105447832A (zh) * 2015-12-14 2016-03-30 天津三英精密仪器有限公司 一种基于探测器单元标定的ct图像伪影校正方法及应用
CN108135560A (zh) * 2015-10-27 2018-06-08 株式会社日立制作所 X射线ct数据处理装置以及搭载其的x射线ct装置
CN109613028A (zh) * 2018-11-30 2019-04-12 上海航天精密机械研究所 3d打印特征编码与检测方法、系统及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609908A (zh) * 2012-01-13 2012-07-25 中国人民解放军信息工程大学 基于基图像tv模型的ct射束硬化校正方法
CN103559699A (zh) * 2013-11-18 2014-02-05 首都师范大学 一种基于投影估计的多能谱ct图像重建方法
CN108135560A (zh) * 2015-10-27 2018-06-08 株式会社日立制作所 X射线ct数据处理装置以及搭载其的x射线ct装置
CN105447832A (zh) * 2015-12-14 2016-03-30 天津三英精密仪器有限公司 一种基于探测器单元标定的ct图像伪影校正方法及应用
CN109613028A (zh) * 2018-11-30 2019-04-12 上海航天精密机械研究所 3d打印特征编码与检测方法、系统及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张定华等著: "《锥束CT技术及其应用》", 31 December 2010 *
陈慧娟等: "一种基于多能统计的射束硬化校正方法", 《CT理论与应用研究》 *

Similar Documents

Publication Publication Date Title
Wang et al. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter–Part II: System modeling, scatter correction, and optimization
Van Geet et al. Towards 3-D petrography: application of microfocus computer tomography in geological science
EP2843623B1 (en) X-ray dual-energy CT reconstruction method
Van de Casteele et al. A model-based correction method for beam hardening artefacts in X-ray microtomography
DE102017207125A1 (de) Verfahren zum Durchführen einer Materialzerlegung unter Verwendung einer Dual-Energie-Röntgen-CT und eines entsprechenden Dual-Energie-Röntgen-CT-Gerätes
US10987071B2 (en) Pixelated K-edge coded aperture system for compressive spectral X-ray imaging
CN107847198B (zh) 辐射图像处理方法及射线照相系统
WO2018192909A1 (en) Beam hardening correction in x-ray dark-field imaging
CN101566590A (zh) 面阵探测器射线数字成像中的散射强度分布获取方法
Altunbas et al. A unified scatter rejection and correction method for cone beam computed tomography
CN113167913A (zh) 针对常规成像的光子计数的能量加权
Elhamiasl et al. Low-dose x-ray CT simulation from an available higher-dose scan
Ingacheva et al. Polychromatic CT data improvement with one-parameter power correction
CN111145281B (zh) 一种双能ct直接迭代基材料分解图像重建方法
CN110246199B (zh) 一种面向能谱ct的投影域数据噪声去除方法
CN112033982A (zh) 一种基于能谱的3d打印无损检测方法
CN110706299A (zh) 一种用于双能ct的物质分解成像方法
Gusenbauer et al. Comparison of metal artefact reduction algorithms from medicine applied to industrial xct applications
Cao et al. Limited angle reconstruction with two dictionaries
Ou et al. Dual-energy materials characterization methods for laminography image enhancement based on photon counting detector
Zobly et al. Whole-Body Bone Scan Image Enhancement Algorithms
CN111340127A (zh) 基于材料聚类的能谱ct迭代材料分解方法和装置
Arunmuthu et al. Simulation of beam hardening in X-ray tomography and its correction using linearisation and pre-filtering approaches
Haase et al. Estimation of statistical weights for model-based iterative CT reconstruction
Xia et al. Noise and bias properties of monoenergetic images from DECT used for attenuation correction with PET/CT and SPECT/CT

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204

RJ01 Rejection of invention patent application after publication