CN112029737A - Method for enhancing function of adeno-associated virus vector - Google Patents

Method for enhancing function of adeno-associated virus vector Download PDF

Info

Publication number
CN112029737A
CN112029737A CN202010980343.4A CN202010980343A CN112029737A CN 112029737 A CN112029737 A CN 112029737A CN 202010980343 A CN202010980343 A CN 202010980343A CN 112029737 A CN112029737 A CN 112029737A
Authority
CN
China
Prior art keywords
gly
pro
asn
ser
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010980343.4A
Other languages
Chinese (zh)
Inventor
L·范登伯格
G·高
J·M·威尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pennsylvania Penn
Original Assignee
University of Pennsylvania Penn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36968964&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN112029737(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of Pennsylvania Penn filed Critical University of Pennsylvania Penn
Publication of CN112029737A publication Critical patent/CN112029737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0091Purification or manufacturing processes for gene therapy compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14142Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • C12N2750/14152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Abstract

The present invention provides a method for correcting singletons in selected adeno-associated virus (AAV) sequences to increase packaging yield, transduction efficiency, and/or gene transfer efficiency of the selected AAV. The method comprises altering one or more singletons in the parental AAV capsid to align them with amino acids at corresponding positions in the functional AAV capsid sequences used for alignment.

Description

Method for enhancing function of adeno-associated virus vector
The application is a divisional application of an invention patent application of international application PCT/US2006/013375, international application date 2006, 4/7/2006, Chinese national phase application No. 200680010566.6, entitled "method for enhancing adeno-associated virus vector function".
Background
Adeno-associated virus (AAV), a member of the parvoviridae (Parvovirus) family, is a small, non-enveloped, icosahedral virus with a single-stranded linear DNA genome of 4.7 kilobases (kb) to 6 kb. Since the virus is found as a contaminant of purified adenovirus stocks, AAV is designated as a dependent virus (dependently). The life cycle of AAV includes a latent phase (AAV genome site-specifically integrates into the host chromosome after infection), and an infectious phase (following infection with adenovirus or herpes simplex virus, the integrated genome is then rescued, replicated, and packaged into the infected virus). The properties of non-pathogenicity, broad host range (including non-dividing cells), infectivity, and potential site-specific chromosomal integration make AAV an attractive tool for gene transfer.
AAV vectors have been described for use as vehicles for therapeutic and immunogenic molecules. To date, several well-characterized distinct AAVs have been isolated from human or non-human primates (NHPs).
Recently, a large number of AAV of different sequences have been described by researchers [ G.Gao et al, Proc Natl Acad Sci USA, 100(10): 6081-; US-2003-0138772-A1 (24/7/2003) ], and these AAV were characterized as distinct serotypes and clades [ G.Gao et al, J.Virol., 78(12):6381-6388 (6/2004); international patent publication No. WO 2005/033321 ]. It has been reported that different AAVs exhibit different transfection efficiencies and also exhibit tropism for different cells or tissues.
It is desirable to have AAV-based constructs for the delivery of heterologous molecules to different cell types.
Summary of The Invention
The present invention provides a method for improving non-functional and/or weak AAV vectors.
In one aspect, the method provides a method of correcting singletons in selected adeno-associated virus (AAV) sequences to increase packaging yield, transduction efficiency, and/or gene transfer efficiency of the selected AAV. The method comprises altering one or more singletons in a parental AAV capsid to align the singletons with amino acids at corresponding positions in the functional AAV capsid sequences being aligned.
In another aspect, the invention provides modified AAV sequences, i.e., sequences from which one or more singletons are removed.
In yet another aspect, the invention provides an AAV vector having an AAV capsid modified according to the invention.
The following detailed description readily presents other aspects and advantages of the present invention.
Brief Description of Drawings
Figure 1 shows in vitro 293 transduction of AAV vectors corrected for singleton mutations. The correction of singleton mutations (if present) is indicated after the vector name and the numbers indicate the number of mutations.
FIGS. 2A-2C show AAV vectors assayed in 293 cells over a range of multiplicity of infection of 101To 104Wherein figure 2A compares parental rh.8 and singleton corrected rh.8(rh.8r), figure 2B compares parental rh.37 and modified rh.37, and figure 2C compares AAV2 and AAV 8. As a control, the results of similar titrations of AAV2 and AAV2/8eGFP expression vectors are also given. The Y-axis represents the percentage (%) of eGFP positive cells as determined by flow cytometry.
FIG. 3 is a phylogenetic tree of AAV sequences showing their phylogenetic relationship and the clades to which they belong.
FIGS. 4A-4L are alignments of capsid protein (vp1) nucleic acid sequences of AAV2[ SEQ ID NO:7], cy.5[ SEQ ID NO:8], rh.10[ SEQ ID NO:9], rh.13[ SEQ ID NO:10], AAV1[ SEQ ID NO:11], AAV3[ SEQ ID NO:12], AAV6[ SEQ ID NO:13], AAV7[ SEQ ID NO:14], AAV8[ SEQ ID NO:15], hu.13[ SEQ ID NO:16], hu.26[ SEQ ID NO:17], hu.37[ SEQ ID NO:18], hu.53[ SEQ ID NO:19], rh.39[ SEQ ID NO:20], rh.43[ SEQ ID NO:21], and rh.46[ SEQ ID NO:22 ].
FIGS. 5A-5D are alignments of capsid protein (vp1) amino acid sequences of AAV2[ SEQ ID NO:23], cy.5[ SEQ ID NO:24], rh.10[ SEQ ID NO:25], rh.13[ SEQ ID NO:26], AAV1[ SEQ ID NO:27], AAV3[ SEQ ID NO:28], AAV6[ SEQ ID NO:29], AAV7[ SEQ ID NO:30], AAV8[ SEQ ID NO:31], hu.13[ SEQ ID NO:32], hu.26[ SEQ ID NO:33], hu.37[ SEQ ID NO:34], hu.53[ SEQ ID NO:35], rh.39[ SEQ ID NO:36], rh.43[ SEQ ID NO:37], and rh.46[ SEQ ID NO:38 ].
FIGS. 6A-6B are alignments of the amino acid sequences of the capsid proteins (vp1) of rh.13[ SEQ ID NO:26], rh.2[ SEQ ID NO:39], rh.8[ SEQ ID NO:41], hu.29[ SEQ ID NO:42] and rh.64[ SEQ ID NO:43 ].
Detailed Description
The present invention provides a method for improving the function of an AAV vector. The invention is particularly suited for improving packaging yield, transduction efficiency, and/or gene transfer efficiency of AAV vectors comprising one or more singletons of mutations in the capsid. The invention further provides novel AAV capsid sequences identified and prepared according to the methods of the invention.
The terms "comprises/comprising" and "including" as used in this specification and claims include other elements, values, steps, and the like. Rather, the term "consists of and variations thereof do not include other components, elements, values, steps, and the like.
Simplex mutation method of the present invention
The term "singleton" as used herein refers to a variable amino acid at a given position in a selected (i.e., parental) AAV capsid sequence. The presence of variable amino acids is determined by aligning the parental AAV capsid sequences with a library of functional AAV capsid sequences. The sequences are then analyzed to determine all such variable amino acid sequences in the parental AAV capsid: AAV sequences in functional AAV libraries are fully conserved at this amino acid position. The parental AAV sequence is then altered to change the singleton mutation to the conserved amino acid at that site in the identified functional AAV capsid sequence. According to the invention, the parental AAV sequences may have 1-6, 1-5, 1-4, 1-3, or 2 singletons. Parental AAV sequences may also have more than 6 singletons.
Once modified, the modified AAV capsid can be used to construct an AAV vector having the modified capsid. The vectors may be constructed using techniques well known to those skilled in the art.
The AAV selected for modification according to the methods of the invention is an AAV which is intended to enhance one or more of the following three functional properties, namely: packaging into a virion with a capsid of the selected AAV sequence, improves transduction efficiency or increases gene transfer efficiency. For example, a parental AAV may be characterized by a lower packaging efficiency compared to other closely related AAV. In another example, the parental AAV may have a lower transduction efficiency than a closely related AAV. In another example, the parental AAV may have a lower gene transfer efficiency (i.e., a lower ability to deliver the target molecule in vivo) as compared to a closely related AAV. In other examples, the parental AAV is qualified for each of the above functions, but one or more of the functions are to be further enhanced.
Thus, the present invention provides a library of functional AAVs in which the sequences of the AVV are aligned with the selected (parental) AAV. Suitably, the library comprises AAVs having the desired function, which is the improvement to be achieved in the selected parental AAV. In other words, each sequence of the functional AAV library is characterized by a target level of packaging capacity, a target level of in vitro transduction efficiency, or a target level of in vivo gene transfer efficiency (i.e., the ability to deliver to a selected target tissue or cell in a subject). The functional AAVs making up the library may each have one, two or all of these functional characteristics. Other functions of interest for the library can be readily determined by one skilled in the art.
In one embodiment, the functional AAV is an AAV capable of producing virions with equal or greater packaging and transduction efficiencies than AAV1, AAV2, AAV7, AAV8, or AAV 9. Function can be assessed using pseudotyped setting (pseudotyped setting) with AAV2 rep and AAV2 ITRs. Thus, conventional techniques may be usedAn altered parental AAV is constructed, and an AAV vector is considered functional if the titer of virus produced by the parental AAV is at least 50% when compared to the production of AAV 2. In addition, one skilled in the art can readily determine the ability of an AAV to transduce a cell. For example, the parental AAV may be constructed to contain a marker gene for ease of virus detection. For example, AAV is made to contain eGFP or another gene that can be detected fluorescently. If the AAV comprises CMV-eGFP, the virus produced when the altered parental AAV capsid infects a multiplicity of 104When 293 cells were transduced, which were pretreated with wild type human adenovirus type 5 at a multiplicity of infection of 20 for 2 hours, transduction efficiencies greater than 5% of the GFP fluorescence of all cells were functional.
Suitably, the library consists of at least three or at least four functional AAV capsid sequences representing at least two different clades. Preferably, the library comprises at least two sequences of each representative clade. In certain embodiments three, four, five, six or more clades are provided.
"clade" refers to a group of AAVs that are phylogenetically related to each other based on alignment of the AAV vp1 amino acid sequences, as determined by a adjacency algorithm, with a Bootstrap value (Bootstrap value) of at least 75% (at least 1000 replications), and a poisson correction distance of no greater than 0.05.
The literature contains a detailed description of the Neighbor-joining algorithm. See, for example: nei and s.kumar, Molecular Evolution and phylogenetics (oxford university press, new york (2000)). There are computer programs available for executing the algorithm. For example, the MEGA v2.1 program performs a modified Nci-Goiobori method. Using these techniques and computer programs, and the AAV vp1 capsid protein sequences, one skilled in the art can readily determine whether a selected AAV is contained within one clade identified herein, within another clade, or outside of these clades.
Although the clades are primarily based on naturally occurring AAV vp1 capsids, they are not limited to naturally occurring AAV. Clades may include non-naturally occurring AAVs including, but not limited to, recombinant, modified or altered, chimeric, hybrid, synthetic, artificial, i.e., other AVVs, as long as these are phylogenetically related to each other based on alignment of the AAV vp1 amino acid sequences, determined with a adjacency algorithm (bootstrap value of at least 75% (at least 1000 replications)), and a poisson corrected distance measurement of no more than 0.05.
The AAV clades described include clade a (represented by AAV1 and AAV 6), clade B (represented by AAV2), clade C (represented by AAV2-AAV3 hybrid), clade D (represented by AAV 7), clade E (represented by AAV 8), and clade F (represented by human AAV 9). These clades are represented by respective members-one of the known AAV serotypes. The known AAV1 and AAV6 belong to the same clade (clade A), and 4 isolates recovered from 3 persons are included. The known AAV3 and AAV5 serotypes differ significantly from each other, but were not detected in the screens described herein, and were not included in these clades.
Further discussion of AAV clades can be found in G.Gao et al, J.Virol, 78(12), 6381-6388 (6.2004) and International patent publication Nos. WO 2004/028817 and WO 2005/033321. The latter document also provides novel human AAV sequences, which are incorporated herein by reference.
In one embodiment, the library used in the methods of the invention does not include AAV 5. In another embodiment, the library used in the methods of the invention does not include AAV 4. However, in certain embodiments, for example: when the parental AAV is similar to AAV5, it may be desirable to include this sequence in the alignment.
Although libraries containing the smallest number of sequences can be constructed, the efficiency of identifying single mutations can be optimized by using libraries containing more sequences. Suitably, the library comprises a minimum of four sequences, representing at least two clades. Preferably, each clade in the library has at least two representative sequences. In one embodiment, the library comprises more than 100 AAV sequences. In another embodiment, the library comprises at least 3 to 100 AAV sequences. In yet another embodiment, the library comprises at least 6 to 50 AAV sequences.
AAV suitable for use in the functional libraries of the invention comprise, for example: AAV1, AAV2, AAV6, AAV7, AAV8, AAV9 and other described sequences, [ g.gao et al, Proc natl.acad sci., 100(10):6081-6086 (5/13/2003); international patent publication nos. WO 2004/042397 and WO 2005/033321) ]. Other AAVs can be readily selected by those skilled in the art, for example: AAV isolated using the methods described in International patent publication No. WO 03/093460A1 (11/13/2003) and U.S. patent application publication No. 2003-0138772A1 (24/7/2003).
According to the invention, the at least three sequences within the library are at least 85% identical over the full length alignment of the capsid sequences.
"percent (%) identity" of the amino acid sequence of the full length of the protein or a fragment thereof can be easily determined. Suitably, the fragment is at least about 8 amino acids in length, and may be up to about 700 amino acids in length. In general, when referring to "identity", "homology" or "similarity" between two different adeno-associated viruses, "identity", "homology" or "similarity" is determined with reference to sequences that are "aligned". "aligned" sequences or "alignment" refers to polynucleotide sequences or protein (amino acid) sequences that typically contain corrections for deletions or additions of bases or amino acids as compared to a reference sequence.
The alignment can be performed using a variety of well known or commercially available multiple sequence alignment programs. Programs for amino acid sequence alignment are for example: "Clustal X", "MAP", "PIMA", "MSA", "BLOCKER", "MEME" and "Match-Box" programs. Typically, these programs are used in default settings, although one skilled in the art can change the settings as desired. Alternatively, other algorithms and computer programs that can be used to derive an identity statement or to perform an alignment as described above can be used by those skilled in the art. See, for example: thomson et al, Nucl. acids. Res., "comprehensive comparison of multiple sequence alignments (A comprehensive comparison of multiple sequence alignments)," 27(13): 2682-.
There are also multiple sequence alignment programs for nucleic acid sequences. Examples of such programs include web-worn suits over the internet"W string (Clustal W)", which is available to the server, "CAP sequence component", "MAP", and "MEME". Other sources of these procedures are known to those skilled in the art. Alternatively, a Vector NTI utility may be used. There are also a number of algorithms known in the art that can be used to measure nucleotide sequence identity, including those included in the above-described programs. As another example, Fasta, a program in GCG version 6.1, can be usedTMTo compare polynucleotide sequences. FastaTMAlignments and percent sequence identity for the best overlap region between query and search sequences can be derived. For example, Fasta can be used with default parameters (word length 6 and NOPAM coefficients for the scoring matrix) provided in GCG version 6.1TMTo determine the percent sequence identity between nucleic acid sequences, which is incorporated herein by reference.
According to the invention, target or parental AAV capsid sequences suspected of containing a singleton mutation are compared to the library AAV capsid sequences. This comparison was performed using a full-length vp1 protein sequence alignment of AAV capsids.
When the AAV sequences are aligned, a singleton mutation is identified for a selected amino acid position if all AAV in the library have identical amino acid residues therein (i.e., are fully conserved) and the parental AAV has different amino acid residues therefrom.
Typically, when aligned based on the AAV capsid vp1 protein, the alignment comprises insertions and deletions so determined as compared to a reference AAV sequence (e.g., AAV2), and the numbering of the amino acid residues is based on the reference scale (reference scale) generated by the alignment. However, any given AAV sequence may have fewer than dry amino acid residues than the benchmark scale. In the present invention, the terms "identical site" or "corresponding site" when describing the sequences of a parental AAV and a reference library refer to the amino acids at the same numbered residues within the amino acids of each sequence, relative to a benchmark scale used for alignment. However, outside of the alignment, these amino acids within each AAV vp1 protein may be at different numbered residues.
Alternatively, the methods of the invention can be performed using nucleic acid alignments and identifying codons encoding different amino acids (i.e., non-synonymous codons) as singleton mutations. When the nucleic acid sequence of a given codon in the parental AAV differs from the sequence of that codon in the library, but encodes the same amino acid, these different codon sequences are synonymous codons rather than singletons.
According to the invention, a parental AAV containing a singleton mutation is altered such that the singleton residue is replaced with a conserved amino acid residue of the AAV in the library.
The above substitutions of codons for variable amino acids can be made using conventional site-directed mutagenesis techniques. In general, site-directed mutagenesis, which includes only the necessary steps, is used to obtain the desired codons for conserved amino acid residues. Such methods are known to those of skill in the art and can be carried out using published methods and/or commercially available kits (e.g., available from Stratagene and Promega). Site-directed mutagenesis can be performed on AAV genomic sequences. For convenience, vectors (e.g., plasmid backbones) can be used to carry AAV sequences. Alternatively, the parental AAV may be altered by one skilled in the art using other techniques known in the art.
The parental AAV may have more than one singleton mutation, for example: two, three, four, five, six or more. However, it is possible that an improvement in function is observed after correction of one singleton mutation. In embodiments where the parental AAV carries multiple singletons, one singleton at a time may be altered, followed by determining whether the modified AAV is most functionally functional. Alternatively, it can be determined whether the desired function is enhanced after changing multiple singletons.
When the parental AAV comprises multiple singletons, even if an improvement in function is observed after the first singleton is changed, the function can be optimized by changing the remaining singletons.
Generally, parental AAVs altered in one or more singletons according to the methods of the invention are tested for function by packaging the AAV into AAV particles. These methods are well known to those skilled in the art, see, for example: g.gao et al, Proc Natl Acad sci, cited above; sambrook et al, molecular cloning: a Laboratory Manual (Molecular Cloning: A Laboratory Manual), Cold spring harbor Press (Cold spring harbor, New York).
These altered AAVs have a novel capsid produced according to the methods of the invention and are tested for their function. Suitable methods for determining AAV function are described herein, including, for example: production of deoxyribonuclease (DNAse) protects particle capacity, in vitro cell transduction efficiency, and/or in vivo gene transfer. Suitably, the altered AAV of the invention has a sufficient number of singleton mutations altered to enhance one or all of these characteristic functions as compared to the function of the parental AAV.
Novel AAV of the present invention
The invention further provides methods for predicting whether a novel AAV is functional. The method comprises using the singleton method of the invention and identifying a deletion of a singleton in a selected AAV sequence, i.e., an AAV that has no singleton.
Thus, in one embodiment, the invention provides a method of selecting an AAV for use in generating a vector. The method comprises selecting a parental AAV capsid sequence to be analyzed and identifying a deletion of a singleton mutation on the parental AAV capsid in an alignment of the parental AAV capsid sequence and a library of functional AAV capsid sequences. Once it is determined that the selected AAV capsid has no singleton mutation, the AVV can be used to generate vectors according to known techniques.
The terms "substantial homology" or "substantial similarity", when used with respect to a nucleic acid or fragment thereof, means that at least about 95% to 99% of the aligned sequences have nucleotide sequence identity when optimally aligned with another nucleic acid (or the complementary strand thereof) including appropriate nucleotide insertions or deletions. Preferably, the homology is present over the full-length sequence, or an open reading frame thereof, or other suitable fragment of at least 15 nucleotides in length. Examples of suitable fragments are described herein.
As used herein with respect to nucleic acid sequences, the terms "sequence identity", "percent sequence identity" or "percent identity" refer to the residues of two sequences being identical in the best matched alignment. The length of the sequence identity comparison may be the full length of the genome, the full length of the gene coding sequence, or a fragment requiring at least about 500 to 5000 nucleotides. However, identity between smaller fragments may also be required, e.g., fragments of at least about 9 nucleotides, typically at least about 20 to 24 nucleotides, at least about 28 to 32 nucleotides, at least about 36 or more nucleotides.
The term "substantial homology" or "substantial similarity", when used in describing amino acids or fragments thereof, means that at least about 95% to 99% of the compared sequences have amino acid sequence identity, and in certain embodiments about 97% of the compared sequences have identity, when optimally aligned with another amino acid (or its complementary strand) that contains an appropriate amino acid insertion or deletion. Preferably, the homology is over the full length sequence, or a protein thereof (e.g., cap protein, rep protein) or a fragment thereof of at least 8 amino acids, or more desirably at least 15 amino acids in length. Examples of suitable fragments are described herein.
The term "highly conserved" means at least 80% identity, preferably at least 90% identity, more preferably more than 97% identity. Identity can be readily determined by one skilled in the art based on algorithms and procedures known in the art.
The term "serotype" refers to a serological distinction between AAV having a capsid and other AAV serotypes. Serological distinction was determined based on the absence of cross-reactivity of antibodies to this AAV with other AVVs. Cross-reactivity is typically determined using a neutralizing antibody assay. To perform this assay, polyclonal sera against a particular AAV are generated in rabbits or other suitable animal models using adeno-associated virus. In this assay, antisera to a particular AAV are then tested for the ability to neutralize the same (homologous) or heterologous AAV. The dilution at which 50% neutralization was achieved was taken as the neutralizing antibody titer. Two vectors are considered to be the same serotype if the reciprocal of the quotient of the heterologous titer divided by the homologous titer is less than 16 for both AAVs. Conversely, if the reciprocal of the ratio of the heterologous titer to the homologous titer is 16 or greater, the two AAVs are considered to be different serotypes.
In additional embodiments, the invention provides AAV having novel capsids, including rh.20, rh.32/33, rh.39, rh.46, rh.73, and rh.74. The sequence of rh.20 has the amino acid sequence of SEQ ID NO. 1 or a sequence with 95-99% identity to the full length SEQ ID NO. 1. The capsid of rh.32/33 has the amino acid sequence of SEQ ID NO. 2 or a sequence with 95-99% identity to full length SEQ ID NO. 2. The capsid of rh.39 has the amino acid sequence of SEQ ID NO. 3 or a sequence with 95-99% identity to full length SEQ ID NO. 3. The capsid of rh.46 has the amino acid sequence of SEQ ID NO. 4 or a sequence 95-99% identical to full length SEQ ID NO. 4. The capsid of rh.73 has the amino acid sequence of SEQ ID NO. 5 or a sequence with 95-99% identity to full length SEQ ID NO. 5. The capsid of rh.74 has the amino acid sequence of SEQ ID NO 6 or a sequence 95-99% identical to the full length SEQ ID NO 6. Preferably, these novel AAV capsid sequences are identical to the extent that they do not have any singleton mutations. The new AAV sequence is shown in the sequence table.
In yet another embodiment, the novel AAV sequences of the present invention include singleton-corrected AAV capsid proteins and sequences encoding these capsid proteins. Examples of suitable singleton-corrected AAV sequences include AAV6.1, AAV6.2, aav6.1.2, rh.8r, rh.48.1, rh.48.2, rh.48.1.2, hu.44r1, hu.44r2, hu.44r3, hu.29r, ch.5r1, rh.67, rh.54, hu.48r1, hu.48r2, and hu.48r3. For example, singleton-corrected AAV6, including AAV6.1, AAV6.2, and AAV6.12, showed significant functional improvements compared to the parental AAV6 sequence.
Particularly desirable proteins include AAV capsid proteins encoded by nucleotide sequences identified as described above. The AAV capsid is composed of three proteins, vp1, vp2, and vp3, which are splice variants of each other. Other desirable fragments of the capsid protein include constant and variable regions located between hypervariable regions (HVRs). Other desirable fragments of the capsid protein include the HVRs themselves.
An algorithm developed to determine the regions of sequence discrimination in AAV2 resulted in 12 hypervariable regions (HVRs), 5 of which overlapped or were part of the four previously described variable regions (Chiorini et al, J.Virol., 73:1309-19 (1999); Rutledge et al, J.Virol., 72: 309-319). Using this algorithm and/or the alignment techniques described herein, HVRs of new AAV serotypes were determined. For example, HVRs are located at the following positions: HVR1, aa 146-152; HVR2, aa 182-186; HVR3, aa 262-264; HVR4, aa 381-383; HVR5, aa 450-474; HVR6, aa 490-495; HVR7, aa 500-504; HVR8, aa 514-522; HVR9, aa 534-555; HVR10, aa 581-594; HVR11, aa 658-667; and HVR12, aa705-719[ the numbering system is based on alignment using AAV2 vp1 as a reference point ]. The corresponding fragments of the novel AAV capsids of the invention can be readily determined by one skilled in the art using the Clustal X program and its default settings, or using other commercially available or well-known alignment programs and their default settings (such as those described herein) for the alignments herein.
Suitably, the fragment is at least 8 amino acids in length. However, fragments of other desired lengths may also be conveniently employed. Such fragments may be produced by recombinant or other suitable methods, such as chemical synthesis.
The invention further provides additional AAV sequences identified using the sequence information provided herein. For example, in view of the sequences provided herein, genome walking technology (Siebert et al, 1995, Nucleic Acid Research, 23:1087-1088, Friezner-Degen et al, 1986, J.biol.chem.261:6972-698, BD Biosciences Clontech, Palo Alto, Calif.) can be used to isolate infectious sequences. Genome walking techniques are particularly suitable for identifying and isolating sequences adjacent to the novel sequences identified by the methods of the present invention. Based on the novel AAV capsid sequences and rep sequences provided herein, this technique can also be used to isolate Inverted Terminal Repeats (ITRs) of the novel AAV.
Novel AAV amino acid sequences, peptides and proteins can be expressed from the AAV nucleic acid sequences of the invention. In addition, these amino acid sequences, peptides and proteins can also be produced by other methods known in the art, including, for example, chemical synthesis, other synthetic methods, or other methods. Any of the AAV capsid sequences provided herein can be readily produced using a variety of methods.
Suitable production techniques are well known to those skilled in the art. See, for example: sambrook et al, molecular cloning: a Laboratory Manual (Molecular Cloning: A Laboratory Manual), Cold spring harbor Press (Cold spring harbor, New York). Alternatively, peptides can be synthesized by well-known Solid Phase Peptide Synthesis methods (Merrifield, J.Am.chem.Soc, 85:2149 (1962); Stewart and Young, Solid Phase Peptide Synthesis (Freeman, san Francisco, 1969), pp.27-62). These and other suitable production methods are known to those skilled in the art and do not constitute a limitation of the present invention.
The sequences, proteins and fragments of the invention may be produced by a variety of suitable methods, including recombinant production, chemical synthesis or other synthetic methods. Such production methods are known to those skilled in the art and do not constitute a limitation of the present invention.
Production of rAAV with novel AAV capsids
The invention includes novel AAV capsid sequences produced by mutation following identification of a single mutation according to the methods of the invention. The invention further includes novel AAV rh.20, rh.32/33, rh.39, rh.46, rh.73, and rh.74 capsid sequences (SEQ ID Nos: 1-6).
In another aspect, the invention provides molecules for the generation of viral vectors that deliver heterologous genes or other nucleic acid sequences to target cells using the novel AAV sequences of the invention (including fragments thereof).
Molecules of the invention containing AAV sequences include various genetic elements (vectors) that can be delivered to a host cell, such as: naked DNA capable of carrying sequences, plasmids, phages, transposons, cosmids, episomes, proteins in non-viral delivery vectors (e.g., lipid-based vehicles), viruses, and the like.
The selected vector may be delivered by a variety of suitable methods, including transfection, electroporation, liposome delivery, membrane fusion techniques, high-speed DNA-coated beads, viral infection, and protoplast fusion. Methods for constructing embodiments of this aspect of the invention are known to those skilled in the art of nucleic acid manipulation, including genetic engineering, recombinant engineering and synthetic techniques. See, for example: sambrook et al, molecular cloning: a Laboratory Manual (Molecular Cloning: A Laboratory Manual), Cold spring harbor Press, Cold spring harbor, New York.
In one embodiment, the vectors of the invention contain, among other elements, sequences encoding the AAV capsids of the invention, or fragments thereof. In another embodiment, the vectors of the invention contain at least a sequence encoding an AAV rep protein or fragment thereof. Optionally, the vectors of the invention may contain AAV cap and rep proteins. In vectors with both AAV rep and cap, the AAV rep and AAV cap sequences may be derived from AAV from the same clade. Alternatively, the invention provides vectors containing rep and cap sequences from different AAV's. In one embodiment, the rep and cap sequences are expressed from sources (e.g., separate vectors, or host cells and vectors) that are independent of each other. In another embodiment, the rep sequences are fused in-frame to cap sequences from a different AAV to form a chimeric AAV vector. Optionally, the vector of the invention is a vector packaged in an AAV capsid of the invention. These vectors, and others described herein, may further comprise a minigene comprising a selected transgene flanked by an AAV5'ITR and an AAV3' ITR.
Thus, in one embodiment, the vectors described herein contain nucleic acid sequences encoding a complete AAV capsid from the same AAV sequence. Alternatively, these vectors contain sequences encoding a synthetic capsid comprising one or more fragments of a singleton-corrected AAV capsid fused to a heterologous AAV or non-AAV capsid protein (or fragment thereof). These artificial capsid proteins are selected from a discontinuous portion of the capsid corrected for singleton mutation or from other AAV capsids. The purpose of these changes is to increase expression, yield and/or improve purification in the selected expression system, or for other purposes (e.g., to change tropism or to modify neutralizing antibody epitopes).
The vectors described herein, e.g., plasmids, can be used for a variety of purposes, but are particularly useful for producing rAAV containing capsids comprising AAV sequences or fragments thereof. These vectors, including raavs, their elements, constructs, and uses are described in detail herein.
In one aspect, the invention provides a method of producing a recombinant adeno-associated virus (AAV) having a novel AAV capsid of the invention. The method involves culturing a host cell containing a nucleic acid sequence encoding a novel AAV capsid protein of the invention, or a fragment thereof, as defined herein; a functional rep gene; a minigene consisting of at least an AAV Inverted Terminal Repeat (ITR) and a transgene; with sufficient helper functions to package the minigene into an AAV capsid protein.
Culturing in a host cell the components necessary for packaging the AAV minigene into an AAV capsid can be provided transiently (in transit) to the host cell. Alternatively, one or more essential components (e.g., minigene, rep sequence, cap sequence, and/or cofactor function) may be provided by a stable host cell that has been engineered to contain one or more essential components by methods known to those skilled in the art. Preferably, such a stable host cell contains the desired components under the control of an inducible promoter. However, the essential elements may also be under the control of a constitutive promoter. In discussions of regulatory elements suitable for use with transgenes, examples of suitable inducible and constitutive promoters are provided herein. Alternatively, the selected stable host cell may contain the selected element under the control of a constitutive promoter and the other selected element under the control of one or more inducible promoters. For example: stable host cells can be made from 293 cells (containing the E1 co-factor under the control of a constitutive promoter), but which contain rep and/or cap proteins under the control of an inducible promoter. Other stable host cells can also be prepared by those skilled in the art.
The minigenes, rep sequences, cap sequences and cofactors required for the production of the rAAV of the invention may be delivered to the packaging host cell in the form of various genetic elements capable of conveying the sequences carried. The selected genetic element may be delivered by any suitable method, including the methods described herein. Methods for constructing embodiments of this aspect of the invention are known to those skilled in the art of nucleic acid manipulation, including genetic engineering, recombinant engineering and synthetic techniques. See, e.g., Sambrook et al, molecular cloning: a Laboratory Manual (Molecular Cloning: A Laboratory Manual), Cold spring harbor Press, Cold spring harbor, New York. Similarly, methods of producing AAV virions are well known, and selection of appropriate methods does not limit the invention. See, for example: k.fisher et al, j.virol., 70: 520, 532(1993) and U.S. Pat. No. 5,478,745.
Unless otherwise specified, the AAV ITRs described herein and other selected AAV components can be readily selected from any AAV, including but not limited to: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV9, and other novel AAV sequences of the invention. These ITRs or other AAV components can be readily isolated from AAV sequences using techniques known to those skilled in the art. The AAV may be isolated or obtained from an academic, commercial, or public source (e.g., American Type Culture Collection (ATCC), Manassas, Va.). Alternatively, the AAV sequences can be referenced, for example, to a literature or database (e.g.,
Figure BDA0002687276010000121
etc.) by synthesis or other suitable methods.
A. Small gene
A minigene consists of at least the transgene and its regulatory sequences and 5 'and 3' Inverted Terminal Repeats (ITRs). In a desirable embodiment, the ITRs of AAV serotype 2 are used. However, other suitable sources of ITRs may be selected. It is this minigene that will be packaged into capsid protein and delivered to the selected host cell.
1. Transgenosis
A transgene is a nucleic acid sequence that encodes a polypeptide, protein, or other product of interest and is heterologous to its flanking vector sequences. The nucleic acid coding sequence is operably linked to regulatory components in a manner that allows for transcription, translation, and/or expression of the transgene in a host cell.
The composition of the transgene sequence depends on the use of the resulting vector. For example: one class of transgenic sequences comprises a reporter sequence that, upon expression, produces a detectable signal. Such reporter sequences include, but are not limited to, DNA sequences encoding: beta-lactamase, beta-galactosidase (LacZ), alkaline phosphatase, thymokinase, Green Fluorescent Protein (GFP), Enhanced GFP (EGFP), Chloramphenicol Acetyltransferase (CAT), luciferase, membrane-bound proteins (e.g., CD2, CD4, CD8), influenza hemagglutinin protein, and other substances known in the art for which high affinity antibodies exist or can be produced by conventional methods, and fusion proteins containing a membrane-bound protein suitably fused to an antigen-labeled region of hemagglutinin or Myc, among other substances.
When these coding sequences are associated with regulatory elements that drive their expression, signals can be provided that are detected by conventional methods, including enzymatic, radiographic, colorimetric, fluorescent or other spectroscopic assays, fluorescence activated cell sorting assays, and immunoassays, including enzyme linked immunosorbent assays (ELISAs), Radioimmunoassays (RIA), and immunohistochemistry. For example: when the marker sequence is the LacZ gene, the presence of the signal-carrying vector is detected by measuring the activity of beta-galactosidase. When the transgene is green fluorescent protein or luciferase, the vector carrying the signal can be observed photometrically by the generation of color or light.
Desirably, however, the transgene is a non-marker sequence encoding a product of biological or medical use, such as a protein, peptide, RNA, enzyme, dominant negative mutant, or catalytic RNA. Desirable RNA molecules include tRNA, dsRNA, ribosomal RNA, catalytic RNA, siRNA, small hairpin RNA, trans-splicing RNA, and antisense RNA. An example of a useful RNA sequence is one that inhibits or eliminates expression of a target nucleic acid sequence in a treated animal. In general, suitable target sequences include tumor targets and viral diseases. Such as tumor targets and viruses as described in the immunogenic section below.
Transgenes may be used to correct or reduce gene defects, including defects in which normal genes are expressed at levels below normal or in which functional gene products are not expressed. Alternatively, the transgene may provide a cell with a product that is not otherwise expressed in that cell type or in that host. Preferred types of transgene sequences encode therapeutic proteins or polypeptides that are expressed in the host cell. The invention further includes the use of multiple transgenes. In some cases, different transgenes may be used to encode individual subunits of a protein, or to encode different peptides or proteins. This is particularly suitable when the DNA encoding the protein subunit is large, such as an immunoglobulin, platelet-derived growth factor or dystrophin. To allow the cells to produce multi-subunit proteins, the cells are infected with recombinant viruses, each containing a different subunit. Alternatively, different subunits of a protein may be encoded by the same transgene. In this case, a single transgene comprises DNA encoding all subunits, with the DNA of each subunit separated by an Internal Ribosome Entry Site (IRES). This is particularly suitable when the DNA encoding each subunit is small, for example the total volume of DNA encoding the subunit and IRES is less than 5 kilobase pairs (5 kb). As an alternative to IRES, the DNA may be separated by a sequence encoding a 2A peptide which is self-cleaving at a post-translational stage. See, for example: m.l.donnelly et al, j.gen.virol., 78 (first part): 13-21(1 month 1997); furler, s. et al, Gene ther, 8 (11): 864-873 (month 6 2001); klump h. et al, Gene ther., 8 (10): 811-817 (5 months 2001). The 2A peptide is significantly smaller than IRES, making it well suited for use when space is a limiting factor. More commonly, where the transgene is large, composed of multiple subunits, or two transgenes are co-delivered, rAAV carrying the desired transgene or subunit are allowed to be shared such that they are concatenated to form a single vector genome in vivo. In such embodiments, the first AAV may carry an expression cassette for expression of one transgene and the second AAV may carry an expression cassette for a different transgene for co-expression in a host cell. However, the selected transgene may encode any biologically active or other product, such as: the desired product was investigated.
One skilled in the art can readily select the appropriate transgene. The choice of transgene does not limit the invention.
2. Adjusting element
In addition to the above major elements for minigenes, the vectors also contain conventional control elements operatively linked to the transgene in a manner that allows transcription, translation and/or expression of the transgene in the cells transfected with the plasmid vectors produced by the invention or infected with a virus. Sequences "operably linked" herein include expression control sequences that are contiguous with the gene of interest and control sequences that function in trans (in trans) or that are some distance away to control the expression of the gene of interest.
Expression control sequences include suitable transcription initiator, terminator, promoter and enhancer sequences; efficient RNA processing signals, such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and sequences that enhance secretion of the encoded product when desired. Many expression control sequences, including natural, constitutive, inducible, and/or tissue-specific promoters, are known and available in the art.
Examples of constitutive promoters include, but are not limited to: the retroviral Rous Sarcoma Virus (RSV) LTR promoter (optionally linked to the RSV enhancer), the Cytomegalovirus (CMV) promoter (optionally linked to the CMV enhancer) [ see, for example: boshirt et al, Cell, 41: 521-530(1985), SV40 promoter, dihydrofolate reductase promoter, β -actin promoter, phosphoglycerate kinase (PGK) promoter, and EFl promoter (Invitrogen). Inducible promoters are capable of regulating gene expression and may be regulated by exogenously supplied compounds, environmental factors (e.g., temperature), or specific physiological states, such as acute phase, specific differentiation state of the cell, or acting only in replicating cells. Inducible promoters and inducible systems are available from a variety of commercial sources, including but not limited to Invitrogen, Clontech, and Ariad. Many other systems are known and can be readily selected by those skilled in the art. Examples of inducible promoters regulated by exogenous compounds include the zinc-induced Metallothionein (MT) promoter, dexamethasone (Dex) -induced Mouse Mammary Tumor Virus (MMTV) promoter, T7 polymerase promoter system [ international patent publication No. WO 98/10088], ecdysone insect promoter [ No et al, proc.natl.acad.sci. us, 93: 3346-3351(1996) ], the tetracycline repression system [ Gossen et al, Proc. Natl. Acad. Sci. USA, 89: 5547-5551(1992) ], the tetracycline induction system [ Gossen et al, Science, 268: 1766-1769(1996), see also Harvey et al, curr, opin, chem, biol., 2: 512-: 239, 243(1997) and Wang et al, Gene ther, 4: 432-: 2856-2872(1997)]. Other inducible promoter types useful in the present invention are those that are regulated by a particular physiological state, such as temperature, acute phase, particular differentiation state of the cell, or act only in replicating cells.
In another embodiment, a native promoter for the transgene is used. Where expression of the transgene is desired to mimic native expression, a native promoter may be preferred. When expression of a transgene must be regulated in a transient or developmental manner, or regulated in a tissue-specific manner or in response to a particular transcriptional stimulus, a native promoter may be used. In additional embodiments, other natural expression control elements, such as enhancer elements, polyadenylation sites, or Kozak consensus sequences may also be used to mimic natural expression.
Another embodiment of the transgene comprises a gene operably linked to a tissue specific promoter. For example, if expression in skeletal muscle is desired, a promoter active in muscle should be used. This includes promoters of genes encoding the following products: skeletal beta-actin, myosin light chain 2A, dystrophin, muscle creatine kinase, and synthetic muscle promoters with higher activity than the natural promoters (see: Li et al, nat. Biotech., 17: 241) -245 (1999)). Examples of known tissue-specific promoters are liver-specific (albumin, Miyatake et al, J.Virol., 71: 5124-32 (1997); hepatitis B virus core promoter, Sandig et al, Gene ther., 3: 1002-9 (1996): alpha-fetoprotein (AFP), Arbuthrot et al, hum.Genether., 7: 1503-14(1996)), osteocalcin of bone (Stein et al, mol.biol.Rep., 24: 185-96 (1997)); bone sialoprotein (Chen et al, J.bone Miner. Res., 11: 654-64(1996)), lymphocyte-specific (CD2, Hansal et al, J.Immunol.161: 1063-8 (1998); immunoglobulin heavy chain; T cell receptor chain), Neuron-specific (e.g., Neuron-specific enolase (NSE) promoter (Andersen et al, cell. mol. Neurobiol., 13: 503-15(1993)), neurofilament light chain gene (Piccioli et al, Proc. Natl. Acad. Sci., USA, 88: 5611-5(1991)), and Neuron-specific vgf gene (Piccioli et al, Neuron, 15: 373-84(1995)), etc.).
Optionally, the plasmid carrying the transgene for therapeutic use may also contain a selectable marker gene or reporter gene, e.g., a sequence encoding geneticin resistance, hygromycin resistance, puromycin (puromycin) resistance, or the like. Such a selectable reporter gene or marker gene (preferably located outside the viral genome to be rescued by the method of the invention), e.g., ampicillin resistance, can be used to indicate the presence of the plasmid in the bacterial cell. Other components of the plasmid may include an origin of replication. These and other promoter and vector elements can be selected by conventional methods, and many such sequences are available [ see, e.g.: sambrook et al, and references cited herein ].
For ease of reference, the combination of transgene, promoter/enhancer and 5 'and 3' AAV ITRs is referred to herein as a "minigene". Such minigenes can be designed by conventional techniques in view of the teachings of the present invention.
3. Delivery of minigenes to packaging host cells
Any suitable vector, such as a plasmid, for delivery to a host cell may be used to carry the minigene. The plasmids used in the present invention may be engineered into plasmids suitable for replication and integration (optional) in prokaryotic cells, mammalian cells, or both. These plasmids (or other vectors carrying 5'AAV ITR-heterologous molecule-3' AAV ITR) contain sequences that allow minigenes to replicate in eukaryotic and/or prokaryotic cells and selectable markers for use in these systems. The selectable marker gene or reporter gene may include sequences encoding geneticin resistance, hygromycin resistance, puromycin resistance, or the like. These plasmids may also contain certain selectable reporter or marker genes, such as ampicillin resistance, which may be used to indicate the presence of the vector in the bacterial cell. Other components of the plasmid may include an origin of replication and an amplicon, such as an amplicon system using Epstein Barr virus nuclear antigen. The amplicon system or other similar amplicon component allows high copy episomal replication in cells. The molecule carrying the minigene is preferably transfected into a cell in which it can transiently exist. Alternatively, the minigene (carrying the 5'AAV ITR-heterologous molecule-3' AAV ITR) may be stably integrated into the genome of the host cell, either into the chromosome or as an episome. In certain embodiments, the minigene may optionally exist in multiple copies in the form of head-to-head, head-to-tail, or tail-to-tail concatemers. Suitable transfection techniques are known and can be readily used to deliver minigenes to host cells.
Typically, when a vector containing a minigene is delivered by transfection, about 5. mu.g to 100. mu.g DNA, about 10. mu.g to 50. mu.g DNA will typically be delivered at about 1X104-1×1013Individual cell or about 1X105And (4) cells. However, one skilled in the art can adjust the ratio of vector DNA amount to host cell, taking into account factors such as the vector chosen, the method of delivery, and the host cell chosen.
Rep and Cap sequences
In addition to the minigene, the host cell contains sequences that drive expression of the novel AAV capsid proteins of the invention (or capsid proteins containing fragments thereof) in the host cell and rep sequences from the same source as the AAV ITRs in the minigene or from a cross-complementary source. The AAV cap and rep sequences may be obtained from the AAV sources described above independently of each other and may be introduced into the host cell in any manner known to those of skill in the art as described above. In addition, sequences encoding various major rep proteins may be provided from different AAV sources (e.g., AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9) in the pseudopackaging of AAV vectors. For example: the rep78/68 sequence is derived from AAV2, while the rep52/40 sequence is derived from AAV 8.
In one embodiment, the host cell stably contains the capsid protein under the control of a suitable promoter (e.g., as described above). In this embodiment, the capsid protein is preferably expressed under the control of an inducible promoter. In another embodiment, the capsid protein is provided to the host cell in a transfor mode (in trans). When delivered to a host cell in a transfectional manner, the capsid protein can be delivered by a plasmid containing sequences required to direct expression of the selected capsid protein in the host cell. When delivered to a host cell in a transfectional manner, the plasmid carrying the capsid protein preferably also carries other sequences required for packaging the rAAV, such as rep sequences.
In another embodiment, the host cell stably contains a rep sequence under the control of a suitable promoter (as described above). In this embodiment, the major rep protein is preferably expressed under the control of an inducible promoter. In another embodiment, the rep protein is provided to the host cell in a transfer mode (in trans). When delivered to a host cell in a transfor manner, the rep protein may be delivered by a plasmid containing the sequences required to direct expression of the selected rep protein in the host cell. When delivered to a host cell in a transfectional manner, the plasmid carrying the capsid protein also preferably carries other sequences required for packaging the rAAV, such as rep and cap sequences.
Thus, in one embodiment, the rep and cap sequences may be located on a single nucleic acid molecule transfected into a host cell and stably present in the cell as episomes. In another embodiment, the rep and cap sequences are stably integrated into the chromosome of the cell. In another embodiment, the rep and cap sequences are transiently expressed in the host cell. For example, useful nucleic acid molecules for such transfection contain, from 5 'to 3', a promoter, an optional spacer inserted between the promoter and the start site of the rep gene sequence, an AAV rep gene sequence, and an AAV cap gene sequence.
Optionally, rep and/or cap sequences may be provided on a vector containing additional DNA sequences to be introduced into the host cell. For example: the vector may contain a rAAV construct comprising a minigene. The vector may contain one or more genes encoding helper factor functions such as adenovirus proteins E1, E2a, and E4 ORF6, and genes for VAI RNA.
The promoter used in this construct is preferably a constitutive, inducible or native promoter of a character known to the person skilled in the art or as described hereinbefore. In one embodiment, the AAV P5 promoter sequence is used. The selection of AAV to provide these sequences is not a limitation of the present invention.
In another preferred embodiment, the promoter for rep is an inducible promoter, such as those described above for the transgenic regulatory elements. One of the preferred promoters for Rep expression is the T7 promoter. Cells constitutively or inducibly expressing T7 polymerase are transfected or transformed with a vector comprising a rep gene and a cap gene regulated by the T7 promoter. See International patent publication No. W098/10088, published on 12/3/1998.
In designing the carrier, spacers are optional elements. The spacer is a DNA sequence inserted between the promoter and the ATG start site of the rep gene. The spacers may have any desired design; that is, it may be a random nucleotide sequence, or may encode a gene product, such as a marker gene. The spacer may contain genes that typically include initiation/termination and polyA sites. The spacer may be a non-coding DNA sequence, a repetitive non-coding sequence, a coding sequence without transcriptional control, or a coding sequence with transcriptional control from a prokaryote or eukaryote. Two typical sources of spacer sequences are bacteriophage ladder sequences or yeast ladder sequences, both of which are available from, for example, Gibco or Invitrogen, among others. The spacer may be of any size sufficient to reduce the expression of the rep78 and rep68 gene products such that the expression of the rep52, rep40, and cap gene products is at normal levels. Thus, the spacer has a length ranging from about l 0bp to about 10.0kbp, preferably from about 100bp to about 8.0 kbp. To reduce the likelihood of recombination, the spacer length is preferably less than 2 kbp; however, the present invention is not limited thereto.
While the molecule providing rep and cap may be transiently (i.e., by transfection) present in the host cell, it is preferred that one or both of the rep and cap proteins be stably expressed in the host cell with a promoter controlling its expression, e.g., as an episome or by integration into the host cell chromosome. The methods used to construct embodiments of this aspect of the invention are conventional genetic engineering or recombinant engineering techniques, such as those described in the foregoing references. Although the present specification provides illustrative examples of specific constructs, one skilled in the art can use the information provided herein to select spacers, P5 promoter and other elements (including at least one translation initiation and termination signal), and optionally additional polyadenylation sites, to select and design other suitable constructs.
In another embodiment of the invention, the rep or cap protein may be stably provided by the host cell.
C. Cofactor function
For packaging the rAAV of the invention, the packaging host cell also requires cofactor function. Optionally, these functions may be provided by the herpes virus. The required ancillary functions are preferably provided by human or non-human primate adenovirus sources, respectively, such as those described above and/or obtained from a variety of sources (including American Type Culture Collection (ATCC), Manassas, Va.). In a presently preferred embodiment, the host cell is provided with and/or contains an E1a gene product, an E1b gene product, an E2a gene product, and/or an E4 ORF6 gene product. The host cell may contain other adenoviral genes, such as VAI RNA, but these genes are not required. In a preferred embodiment, no other adenoviral genes or gene functions are present in the host cell.
"adenoviral DNA expressing the E1a gene product" refers to various adenoviral sequences encoding E1a or functional portions thereof. Adenoviral DNA expressing the E2a gene product and adenoviral DNA expressing the E40 RF6 gene product are defined similarly. Also included are alleles or other modifications of the adenoviral gene or functional portion thereof. Such modifications include both those specifically introduced by conventional genetic engineering or mutagenesis techniques to enhance adenoviral function in some manner, and naturally occurring allelic variants. Such modifications and methods for obtaining adenoviral gene function by DNA manipulation are known to those skilled in the art.
Adenovirus E1a, E1b, E2a, and/or E4 ORF6 gene products, as well as various other desired helper factor functions, can be provided using a variety of methods for their expression in a cell. Each sequence encoding these products may be located on a separate vector, or one or more genes may be located on the same vector. The vector may be any of the various vectors known in the art or described supra, including plasmids, cosmids, and viruses. The vector may be introduced into the host cell by a variety of methods known in the art or previously described, including transfection, infection, electroporation, liposome delivery, membrane fusion techniques, high-speed DNA-coated beads, viral infection and protoplast fusion, and the like. One or more adenoviral genes can be stably integrated into the host cell genome, stably expressed as episomes, or transiently expressed. The gene product may be expressed in its entirety transiently, either in episomes or stably integrated; alternatively, some gene products may be stably expressed while others are transiently expressed. Furthermore, the promoter of each adenoviral gene can be selected independently of each other from a constitutive promoter, an inducible promoter or a native adenoviral promoter. Promoters may be regulated by a particular physiological state of an organism or cell (i.e., differentiation state or replicating or resting cells) or by other means such as exogenously added factors.
D. Host cells and packaging cell lines
The host cell itself may be selected from a variety of organisms, including prokaryotic (e.g., bacterial) cells and eukaryotic cells, including insect cells, yeast cells, and mammalian cells. Particularly desirable host cells are selected from a characteristic mammalian species, including, without limitation, the following: a549, WEHI, 3T3, 10T1/2, BHK, MDCK, COS1, COS7, BSCl, BSC40, BMT10, VERO, W138, HeLa, 293 cells (expressing functional adenovirus E1), Saos, C2C12, L cells, HT1080, HepG2 and primary fibroblasts, hepatocytes and myoblasts derived from mammals including humans, monkeys, mice, rats, rabbits and hamsters. The mammalian source of the selected cells and the type of mammalian cells (i.e., fibroblasts, hepatocytes, tumor cells, etc.) do not limit the invention. The requirements for the cells used are: it does not carry any adenoviral genes other than E1, E2a and/or E40 RF 6; it does not contain any other viral genes that could cause homologous recombination of contaminating viruses during rAAV production; and, it can be infected or transfected with DNA and express the transfected DNA. In a preferred embodiment, the host cell is a cell comprising stably transfected rep and cap.
One of the host cells used in the present invention is a host cell stably transformed with rep and cap encoding sequences and transfected with adenovirus E1, E2a and E40 RF6 DNA and constructs carrying minigenes as described previously. Stable rep and/or cap expressing cell lines, such as B-50 (International patent application publication No. W099/15685), or the cell lines described in U.S. Pat. No. 5,658,785, may also be used similarly. Another desirable host cell contains the essential adenoviral DNA required for expression of E4 ORF 6. Other cell lines can also be constructed using the novel singleton-corrected AAV cap sequences of the present invention.
The invention of the preparation of host cells involved such as assembly of selected DNA sequences and technology. Such assembly may be accomplished using conventional techniques. Such techniques include cDNA and genomic cloning, using overlapping oligonucleotide sequences of adenovirus and AAV genomes, in conjunction with polymerase chain reaction, synthetic methods, and other suitable methods of providing the desired nucleotide sequences, which are well known and described in Sambrook et al, cited above.
These molecules (e.g., plasmids or viruses) can also be introduced into the host cell using techniques known to the skilled artisan and discussed herein. In a preferred embodiment, standard transfection techniques are used, such as: cap04Transfection or electroporation, and/or infection of cell lines, such as the human embryonic kidney cell line HEK293 (a human kidney cell line containing a functional adenovirus E1 gene that provides the E1 protein in trans), with a hybrid adenovirus/AAV vector.
It will be readily appreciated by those skilled in the art that the novel AAV sequences of the present invention can be readily adapted for use in the above and other expression vector systems for gene delivery in vitro, ex vivo or in vivo. Similarly, one skilled in the art can readily select other AAV genomic fragments of the invention for use in various rAAV and non-rAAV vector systems. These vector systems include, for example: lentivirus, retrovirus, poxvirus, vaccinia virus, and adenovirus systems, among others. The choice of these vector systems does not limit the invention.
Thus, the present invention further provides vectors generated using the nucleic acid and amino acid sequences of the novel AAV of the present invention. Such vectors can be used for a variety of purposes, including the delivery of therapeutic molecules and in vaccine administration protocols (vaccine domains). Recombinant AAV comprising the novel AAV capsids of the invention are particularly desirable for delivery of therapeutic molecules. These and other vector constructs containing the novel AAV sequences of the invention may be used in vaccine administration regimens, for example: for co-delivery of cytokines, or for delivery of the immunogen itself.
Recombinant viruses and uses thereof
One skilled in the art can use the techniques described herein to generate rAAV having a capsid of an AAV of the invention or a capsid thereof containing one or more fragments of an AAV of the invention. In one embodiment, full-length capsids from singleton-corrected AAV are used.
A. Delivery of viruses
In another aspect, the invention provides a method of delivering a transgene to a host involving transfecting or infecting a selected host cell with a recombinant viral vector produced from a singleton-corrected AAV (or functional fragment thereof) of the invention. Methods for delivery are well known to those skilled in the art and do not limit the present invention.
In a desirable embodiment, the invention provides a method for AAV-mediated delivery of a transgene to a host. The method involves transfecting or infecting a selected host cell with a recombinant viral vector containing a transgene of choice under the control of sequences directing its expression and a modified capsid protein.
Optionally, a sample from the host may first be assayed for the presence of antibodies to the selected AAV source (e.g., a serotype). Various assay formats for detecting neutralizing antibodies are well known to those skilled in the art. The choice of such an assay does not limit the invention. See, for example: fisher et al, Nature med, 3 (3): 306-312 (3 months 1997) and w.c. manning et al, Human Gene Therapy, 9: 477-485 (1/3/1998). The results of this assay, e.g., no specific neutralizing antibodies of a particular capsid origin, can be used to determine which AAV vector containing a capsid protein of a particular origin is preferred for delivery.
In one aspect of this method, a vector having a different AAV capsid protein can be delivered before or after delivery of a vector having an AAV capsid protein of the invention. Thus, gene delivery by rAAV vectors can be used to repeatedly deliver genes into selected host cells. Ideally, the later-administered rAAV vector carries the same transgene as in the first rAAV vector, but the later-administered vector contains capsid proteins that are derived from a different source (and preferably a different serotype) than the first vector. For example: if the first vector has a capsid protein corrected by a singleton mutation, the subsequently administered vector may have a capsid protein selected from other AAV, e.g., an AAV which may be of another serotype or of another clade.
Optionally, multiple rAAV vectors can be concatenated into a single vector genome in vivo by co-administering multiple rAAV vectors for delivery of a large transgene or multiple transgenes. In such embodiments, a first AAV may carry an expression cassette for expression of a single transgene (or subunit thereof), and a second AAV may carry an expression cassette for expression of a second transgene (or a different subunit) for co-expression in a host cell. The first AAV can carry an expression cassette for a first portion of a polycistronic construct (e.g., a promoter and a transgene, or a subunit) and the second AAV can carry an expression cassette for a second portion of the polycistronic construct (e.g., a transgene or subunit and a polyA sequence). These two portions of the polycistronic construct are concatamerized in vivo into a single vector genome that co-expresses the transgenes delivered by the first and second AAV. In such embodiments, the rAAV vector carrying the first expression cassette and the rAAV vector carrying the second expression cassette may be contained in a single pharmaceutical composition for delivery. In other embodiments, two or more rAAV vectors are delivered in separate pharmaceutical compositions, which may be administered substantially simultaneously or slightly sequentially.
The above recombinant vectors can be delivered into host cells according to the disclosed methods. rAAV, preferably suspended in a physiologically compatible carrier, can be administered to a human or non-human mammalian patient. One skilled in the art can readily select an appropriate vector depending on the indication for which viral delivery is intended. For example, suitable carriers include saline that can be formulated with various buffers (e.g., phosphate buffered saline). Other examples of carriers include sterile saline, lactose, sucrose, calcium phosphate, gelatin, glucose, agar, pectin, peanut oil, sesame oil and water. The choice of the carrier does not limit the invention.
Optionally, the compositions of the invention may contain, in addition to the rAAV and the vector, other conventional pharmaceutical components, such as preservatives or chemical stabilizers. Suitable preservatives are, for example, chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, parabens, ethyl vanillin, glycerol, phenol and p-chlorophenol. Suitable chemical stabilizers include gelatin and albumin.
The vector should be administered in an amount sufficient to transfect the cells and provide sufficient gene delivery and expression levels to provide therapeutic efficacy without adverse side effects, or medically acceptable physiological effects, as will be determined by one of skill in the medical arts. Conventional and pharmaceutically acceptable routes of administration include, but are not limited to: direct delivery to the target organ (e.g., liver (optionally via hepatic artery) or lung), oral, inhalation, intranasal, intratracheal, intraarterial, intraocular, intravenous, intramuscular, subcutaneous, intradermal, and other parenteral routes of administration. If desired, various routes of administration may be combined.
The dosage of the viral vector depends mainly on factors such as the condition to be treated, the age, weight and health of the patient and thus may vary from patient to patient. For example, a human therapeutically effective dose of a viral vector will generally comprise a concentration of about 1X109-1×10160.1mL to 100mL of a solution of each genomic viral vector. The preferred human dose for delivery to the large organs (e.g., liver, muscle, heart and lung) may be about 5X 1010-5×1013AAV genomes/kg, approximately 1-100mL in volume. The preferred dose for delivery to the eye is about 5X 109-5×1012Copies of the genome, in a volume of about 0.1mL to 1 mL. The dosage can be adjusted to balance side effects with therapeutic efficacy, and such dosage can vary depending on the particular therapeutic use of the recombinant vector. The expression level of the transgene can be monitored to determine the frequency of administration to obtain a viral vector, preferably an AAV vector containing a minigene. Optionally, the compositions of the invention may be used for immunization according to a dosing regimen similar to that described for therapeutic purposes.
Examples of therapeutic and immunogenic products for delivery using the AAV-containing vectors of the invention are provided below. These vectors may be used in various therapeutic or vaccination protocols described herein. In addition, these carriers can be used in combination with one or more other carriers or active ingredients for delivery as required by the therapeutic and/or vaccination regimen.
B. Therapeutic transgenes
Useful therapeutic products encoded by transgenes include hormones and growth and differentiation factors, including but not limited to: insulin, glucagon, Growth Hormone (GH), parathyroid hormone (PTH), growth hormone releasing factor (GRF), Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), human chorionic gonadotropin (hCG), Vascular Endothelial Growth Factor (VEGF), angiopoietin, angiostatin, Granulocyte Colony Stimulating Factor (GCSF), Erythropoietin (EPO), Connective Tissue Growth Factor (CTGF), basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), Epidermal Growth Factor (EGF), platelet-derived growth factor (PDGF), insulin growth factors I and II (IGF-I and IGF-II), any of the transforming growth factor alpha superfamily (including any of TGF alpha, activin, inhibin), or Bone Morphogenetic Protein (BMP) BMP1-15, heregulin/neuregulin/ARIA/Neu Differentiation Factor (NDF) family of growth factors, Nerve Growth Factor (NGF), Brain Derived Neurotrophic Factor (BDNF), neurotrophins NT-3 and NT-4/5, ciliary neurotrophic factor (CNTF), glial cell line derived neurotrophic factor (GDNF), neurturin, collectin, any of the semaphorin/Wardysin families, netrin-1 and netrin-2, Hepatocyte Growth Factor (HGF), ephrin, noggin, sonic hedgehog protein and tyrosine hydroxylase.
Other useful transgene products include proteins that modulate the immune system, including but not limited to: cytokines and lymphokines, such as Thrombopoietin (TPO), Interleukins (IL) IL-1 through IL-25 (including, for example, IL-2, IL-4, IL-12, and IL-18), monocyte chemistry inducing protein, leukemia inhibitory factor, granulocyte-macrophage colony stimulating factor, Fas ligand, tumor necrosis factors alpha and beta, interferons alpha, beta, and gamma, stem cell factor, flk-2/flt3 ligand. Gene products produced by the immune system may also be used in the present invention. These products include, but are not limited to: immunoglobulin IgG, IgM, IgA, IgD and IgE, chimeric immunoglobulins, humanized antibodies, single chain antibodies, T cell receptors, chimeric T cell receptors, single chain T cell receptors, class I and class ii MHC molecules, and engineered immunoglobulin and MHC molecules. Useful gene products also include complement regulatory proteins such as complement regulatory protein, Membrane Cofactor Protein (MCP), Decay Accelerating Factor (DAF), CR1, CF2, and CD 59.
Other useful gene products include any of hormone receptors, growth factors, cytokines, lymphokines, regulatory proteins, and immune system proteins. The present invention encompasses cholesterol-and/or lipid-modulated receptors, including Low Density Lipoprotein (LDL) receptors, High Density Lipoprotein (HDL) receptors, Very Low Density Lipoprotein (VLDL) receptors, and clearance receptors. The present invention also includes the following gene products: for example, members of the steroid hormone receptor superfamily, including glucocorticoid receptors and estrogen receptors, vitamin D receptors, and other nuclear receptors. In addition, useful gene products include transcription factors such as jun, fos, max, mad, serum effector (SRF), AP-1, AP2, myb, MyoD and myogenin, protein-containing ETS-boxes, TFE3, E2F, ATFl, ATF2, ATF3, ATF4, ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, CCAAT-box binding proteins, interferon regulatory factor (IRF-1), Wilms tumor protein, ETS-binding proteins, STAT, GATA-box binding proteins such as the forkhead protein family of GATA-3 and winged helix proteins.
Other useful gene products include carbamoyl synthetase I, ornithine transcarbamylase, argininosuccinate synthetase, argininosuccinate lyase, arginase, fumarylacetoacetate hydrolase, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, cystathionine beta-synthase, branched chain keto acid decarboxylase, albumin, isovaleryl-CoA dehydrogenase, propionyl-CoA carboxylase, methylmalonyl-CoA mutase, glutaryl-CoA dehydrogenase, insulin, beta-glucosidase, pyruvate carboxylate, liver phosphorylase, phosphorylase kinase, glycine decarboxylase, H-protein, T-protein, cystic fibrosis transmembrane conductance regulator (CFTR) sequence and dystrophin gene products [ for example: small-or micro-dystrophin ]. Other useful gene products include enzymes that can be used for various conditions caused by a lack of enzyme activity, such as enzyme replacement therapy. For example, enzymes containing mannose-6-phosphate may be used to treat lysozyme storage disease (e.g., the gene encoding β -Glucuronidase (GUSB)).
Other useful gene products include products for treating hemophilia, including hemophilia B (including factor IX) and hemophilia A (including factor VIII and variants thereof, e.g., the light and heavy chains of heterodimers and B-deleted domains; U.S. Pat. No. 6,200,560 and U.S. Pat. No. 6,221,349). The factor VIII gene encodes 2351 amino acids, a protein with six domains, designated sequentially from amino to carboxy as a1-a2-B-A3-C1-C2[ Wood et al, Nature, 312: 330 (1984); vehar et al, Nature, 312: 337 (1984); and Toole et al, Nature, 342: 337(1984)]. Human factor VIII is processed intracellularly to produce a heterodimer consisting essentially of a heavy chain containing a1, a2, and B domains and a light chain containing A3, C1, and C2 domains. The single chain polypeptide and heterodimer circulate in plasma as inactive precursors until activated by thrombin cleavage between the a2 and B domains, thereby releasing the B domain and forming a heavy chain consisting of the a1 and a2 domains. The protein-activated procoagulant form does not contain a B domain. Furthermore, in native proteins, the two polypeptide chains flanking the B domain ("a" and "B") bind divalent calcium cations.
In some embodiments, the minigene contains the first 57 base pairs of the factor VIII heavy chain encoding a 10 amino acid signal sequence and a human growth hormone (hGH) polyadenylation sequence. In another embodiment, the minigene further comprises the A1 and A2 domains, and the N-terminal 5 amino acids of the B domain, and/or the C-terminal 85 amino acids of the B domain, and the A3, C1, and C2 domains. In additional embodiments, the nucleic acids encoding the factor VIII heavy and light chains are separated by 42 nucleic acids encoding the 14 amino acids of the B domain and contained in a single minigene [ U.S. patent No. 6,200,560 ].
A therapeutically effective amount, as used herein, refers to an amount of AAV vector that produces a sufficient amount of factor VIII to reduce the time required for blood clotting in a subject. Typically, the whole clotting time is greater than 60 minutes for severe hemophiliacs with factor VIII levels less than 1% of normal levels, and about 10 minutes for non-hemophiliacs.
The present invention is not limited to any particular factor VIII sequence. Many natural and recombinant forms of factor VIII have been isolated and produced. Examples of natural and recombinant forms of factor VIII are found in the patent and scientific literature, including U.S. patent No. 5,563,045; 5,451,521, respectively; 5,422,260, respectively; 5,004,803, respectively; 4,757,006, respectively; 5,661,008, respectively; 5,789,203, respectively; 5,681,746; 5,595,886, respectively; 5,045,455, respectively; 5,668,108, respectively; 5,633,150, respectively; 5,693,499, respectively; 5,587,310, respectively; 5,171,844, respectively; 5,149,637, respectively; 5,112,950, respectively; 4,886,876, respectively; international patent publication Nos. WO 94/11503, WO 87/07144, WO 92/16557, WO 91/09122, W097/03195, W096/21035 and WO 91/07490; european patent application nos. EP 0672138, EP 0270618, EP 0182448, EP 0162067, EP 0786474, EP 0533862, EP 0506757, EP 0874057, EP 0795021, EP 0670332, EP 0500734; EP 0232112 and EP 0160457; sanberg et al, World Hemophilia association, 20 th international conference (XXth int. congress of the World fed. of Hemophilia), (1992) and Lind et al, eur.j. biochem., 232: 19(1995).
The nucleic acid sequence encoding the factor VIII described above may be obtained using recombinant methods or from vectors known to contain the sequence. In addition, the desired sequence can also be isolated directly from cells and tissues containing the sequence using standard techniques, such as phenol extraction and PCR with cDNA or genomic DNA [ see, e.g.: sambrook et al ]. In addition to cloning, nucleotide sequences may also be produced synthetically. Overlapping oligonucleotides can be prepared by standard methods and assembled from the overlapping oligonucleotides into a complete coding sequence [ see, e.g.: edge, Nature, 292: 757 (1981); nambari et al, Science, 223: 1299(1984) and Jay et al, j.biol.chem., 259: 6311(1984)].
Furthermore, the present invention is not limited to human factor VIII. Indeed, the present invention is intended to include factor VIII from animals other than humans, including, but not limited to, pet animals (e.g., dogs, cats and horses), livestock (e.g., cows, goats and sheep), laboratory animals, marine animals, large felines (large cat), and the like.
AAV vectors can contain nucleic acids encoding a factor VIII fragment that is biologically inactive per se, but which improves or restores blood clotting time when administered to a subject. For example, as previously described, factor VIII proteins contain two polypeptide chains: heavy and light chains separated by a B domain that will be cleaved off during processing. As demonstrated herein, co-transduction of receptor cells with both the heavy and light chains of factor VIII results in the expression of biologically active factor VIII. Since most hemophiliacs contain mutations or deletions in only one strand (e.g., the heavy or light chain), it is possible to give the patient only the defective strand to complement the other strand.
Other useful gene products include non-naturally occurring polypeptides, such as chimeric or hybrid polypeptides having a non-naturally occurring amino acid sequence containing insertions, deletions, or amino acid substitutions. For example, single-chain engineered immunoglobulins may be used in certain immunocompromised patients. Other types of non-naturally occurring gene sequences, including antisense molecules and catalytic nucleic acids, such as ribozymes, can be used to reduce overexpression of the target.
Reducing and/or modulating gene expression is particularly desirable for the treatment of hyperproliferative diseases characterized by cellular hyperproliferation, such as cancer and psoriasis. Target polypeptides include polypeptides that are produced only in hyperproliferative cells or at higher levels in hyperproliferative cells as compared to normal cells. Target antigens include oncogenes encoding polypeptides such as myb, myc, fyn, and translocation genes encoding polypeptides such as bcr/abl, ras, src, P53, neu, trk, and EGRF. In addition to oncogene products as target antigens, target polypeptides for use in anti-cancer therapy and protective treatment regimens include the variable regions of antibodies produced by B cell lymphomas and the variable regions of T cell receptors of T cell lymphomas, which, in certain embodiments, are also used as target antigens for autoimmune diseases. Other tumor-associated polypeptides may also be used as target polypeptides, such as polypeptides at higher levels in tumor cells, including polypeptides recognized by monoclonal antibody 17-lA and folate binding polypeptides.
Other suitable therapeutic polypeptides and proteins include polypeptides and proteins that treat individuals with autoimmune diseases and disorders by conferring a broad spectrum of basic protective immune responses against autoimmune-related targets, including cellular receptors and cells that produce "self" directed antibodies. T cell mediated autoimmune diseases include Rheumatoid Arthritis (RA), Multiple Sclerosis (MS),
Figure BDA0002687276010000261
Sarcoidosis, Insulin Dependent Diabetes Mellitus (IDDM), autoimmune thyroiditis, reactive arthritis, ankylosing spondylitis, scleroderma, polymyositis, dermatomyositis, psoriasis, vasculitis, wegener's granulomatosis, crohn's disease, and ulcerative colitis. These diseases are all characterized by T Cell Receptors (TCRs) that bind endogenous antigens and initiate the inflammatory cascade associated with autoimmune diseases.
C. Immunogenic transgenes
The AAV vectors of the invention are preferably designed to avoid generating an immune response against the AAV sequences contained in the vectors. However, these vectors are formulated such that the transgene carried by the vector is expressed to induce an immune response to the selected antigen. For example, to facilitate an immune response, expression of the transgene may be controlled by a constitutive promoter, the vector may be combined with an adjuvant as described herein, and/or the vector may be introduced into degenerated tissue.
Examples of suitable immunogenic transgenes may include immunogenic transgenes selected from various virus families. Examples of virus families that require an immune response to protect against include: picornaviridae, which includes rhinovirus genus that causes about 50% of common cold cases; enteroviruses, which include poliovirus, coxsackievirus, echovirus, and human enterovirus (e.g., hepatitis a virus); and the genus aphthovirus, which causes foot-and-mouth disease primarily in non-human animals. Within the picornaviridae, target antigens include VP1, VP2, VP3, VP4, and VPG. Other virus families include astrovirus and caliciviridae. The caliciviridae family includes norwalk group viruses considered to be an important cause of epidemic gastroenteritis. Another family of viruses that might be expected to be useful for targeting antigens to induce an immune response in a human or non-human animal is the togaviridae family, which includes the genera alphavirus, which includes sindbis virus, ross river virus, and venezuelan, eastern and western equine encephalitis virus, and rubella virus, including rubella virus. The flaviviridae family includes dengue, yellow fever, japanese encephalitis, st. Other target antigens may be produced from the hepatitis c or coronavirus family, which includes many non-human viruses such as infectious bronchitis virus (poultry), porcine infectious gastrointestinal virus (pig), porcine thromboencephalomyelitis virus (pig), feline infectious peritonitis virus (cat), feline enteric coronavirus (cat), canine coronavirus (dog) and human respiratory coronavirus which may cause the common cold and/or non-hepatitis a, b or c, which family of viruses may also be the cause of Severe Acute Respiratory Syndrome (SARS). Within the family coronaviridae, target antigens include E1 (also known as M or matrix protein), E2 (also known as S or spike protein), E3 (also known as HE or hemagglutinin-etibose), glycoproteins (not all coronaviruses) or N (nucleocapsid). He antigen can also be against the arterivirus and rhabdovirus families. Rhabdoviridae include the genera vesiculovirus (e.g., herpes stomatitis virus) and rabies virus (e.g., rabies). Within the Rhabdoviridae, suitable antigens may be derived from either the G protein or the N protein. Filoviridae, including hemorrhagic fever viruses such as marburg and ebola may be suitable sources of antigens. The paramyxoviridae family includes parainfluenza virus type 1, parainfluenza virus type 3, bovine parainfluenza virus type 3, mumps virus (mumps virus), parainfluenza virus type 2, parainfluenza virus type 4, newcastle disease virus (chicken), rinderpest virus, measles virus (which includes measles and canine distemper), and pneumovirus (which includes respiratory syncytial virus). Influenza viruses are classified in the family orthomyxoviridae and are suitable sources of antigens (e.g., HA protein, N1 protein). The bunyaviridae family includes the genera bunyavirus (California encephalitis, Laxos encephalitis), phlebovirus (rift Valley fever), Hantavirus (Primala is a hemahagin fever virus), Neuropyvirus (Neuropygian sheep disease) and various unnamed bungarus viruses (bungavir). The arenaviridae family provides a source of antigens against LCM and lassa fever virus. Another source of antigens is the bornaviridae family. Reoviridae include the genera reovirus, rotavirus (which causes acute gastroenteritis in children), orbivirus and colorado tick fever (colorado tick fever, Lebombo virus (human), equine encephalopathy, bluetongue virus). The retroviral family includes the oncogenic RNA virus subfamily, which includes human and veterinary diseases such as feline leukemia virus, HTLVI and HTLVII, the lentivirus subfamily (including HIV, simian immunodeficiency virus, feline immunodeficiency virus, canine infectious anemia virus, and foamy virus subfamily).
In the case of HIV and SIV, a number of suitable antigens have been described and can be readily selected. Examples of suitable HIV and SIV antigens include, but are not limited to, gag, pol, Vif, Vpx, VPR, Env, Tat, and Rev proteins, and various fragments thereof. For example, fragments of suitable envelope (env) proteins include, for example: gp41, gp140, and gp 120. In addition, various modifications to these and other HIV and SIV antigens have been described. Suitable antigens for this purpose are known to those skilled in the art. For example, sequences encoding gag, pol, Vif, and Vpr, Env, Tat, and Rev may be selected from other proteins. See, for example: modified gag proteins are described in U.S. Pat. No. 5,972,596. See also, HIV and SIV proteins described in D.H. Barouch et al, J.Virol, 75(5): 2462-. These proteins or subunits thereof may be delivered via multiple vectors or from a single vector, alone or in combination.
Papovaviridae include the sub-family polyomaviridae (BKU and JCU viruses) and the sub-family papillomavirus (associated with cancer or malignant progression of papilloma). The family adenoviridae includes viruses that cause respiratory disease and/or enteritis (EX, AD7, ARD, O.B). Parvoviridae include feline parvovirus (feline enteritis), feline panleukopenia virus, canine parvovirus, and porcine parvoviridae. The herpesviridae family includes the sub-family herpesviridae, which includes the genera herpes simplex virus (HSVI, HSVII), varicella virus (pseudorabies, varicella zoster); and the sub-family of beta herpesviruses, which includes the genus cytomegalovirus (HCMV, murine cytomegalovirus); and the sub-family gamma herpesviridae, which includes the genera lympholatent virus, EBV (burkitt's lymphoma), human herpesviruses 6A, 6B and 7, kaposi's sarcoma-associated herpesviruses and herpes simian viruses (B virus), infectious rhinotracheitis virus, marek's disease virus and parvovirus. The poxviridae include the chordopoxvirinae subfamily, including the orthopoxvirus genus (variola (small pox) and vaccinia (vaccinia)), the parapoxvirus genus, the avipoxvirus genus, the capripoxvirus genus, the leporipoxvirus genus, the suipoxvirus genus, and the entomopoxviridae. Hepadnaviridae includes hepatitis b virus. One of the unclassified viruses that may serve as a suitable source of antigen are hepatitis virus, hepatitis E virus and prion. Another virus that has been used as a source of antigen is the Nipan virus. Other viral sources include avian infectious bursal disease virus and porcine respiratory and reproductive syndrome virus. The family A viruses includes equine arteritis virus and various encephalitis viruses.
The invention also includes immunogens for immunizing human or non-human animals against other pathogens, including bacteria, fungi, parasitic microorganisms or multicellular parasites that infect human and non-human vertebrates, or pathogens derived from cancer cells or tumor cells. Examples of bacterial pathogens include pathogenic gram-positive cocci, including pneumococci, staphylococci (and toxins produced thereby, e.g., enterotoxin B), and streptococci. Pathogenic gram-negative cocci include meningococci, gonococci. Pathogenic enteric gram-negative bacilli include enterobacteriaceae; pseudomonas, acinetobacter, and ekangsiella; pseudomonas melioidis; salmonella; (ii) shigella; haemophilus species: moraxella; haemophilus ducreyi (h. ducreyi) (which causes chancroid); brucellosis (brucellosis); francisella tularensis (Franisella tularensis) harbourne (which causes tularemia); yersinia pestis (plague) and other yersinia species (pasteurella); streptococci moniliforme and spirochetes; gram-positive bacilli including listeria monocytogenes; erysipelothrix rhusiopathiae; corynebacterium diphtheriae (Corynebacterium diphtheria) (diphtheria); cholera; bacillus anthracis (b. anthracosis); donovan disease (groin granuloma) and bartonella disease. Diseases caused by pathogenic anaerobic bacteria include tetanus; botulism (clostridium botulinum and its toxins); clostridium perfringens (Clostridium perfringen) and its toxins; other clostridia species; tuberculosis; leprosy and other mycobacteria. Pathogenic spirochetal diseases including syphilis; dense helical body disease: yase disease, tastain disease and endemic syphilis; and leptospirosis. Other infections caused by more pathogenic bacteria and pathogenic fungi include melioidosis (Burkholderia rhinoceros (Burkholderia melli); actinomycosis; Nocardia disease; cryptococcosis, blastomycosis, histoplasmosis and coccidioidomycosis; candidiasis, aspergillosis and mucormycosis; sporotrichosis; paracoccidioidomycosis, petromycosis, Torulopsis, foot mycosis and chromomycosis; and dermatomycosis Malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, Pneumocystis carinii (Pneumocystis carinii), Trichans, Toxoplasma gondii (Toxoplasma gondii), babesiosis, giardiasis, trichinosis, filariasis, schistosomiasis, nematodes, trematode or fluke (trematode) infections and tapeworm (tapeworm) infections.
Many of these organisms and/or their toxins have been identified by the center for disease control [ (CDC), Department of health and Human Services (usa) ] as materials useful for bioattack. For example, some such biological substances include Bacillus anthracis (anthrax), Clostridium botulinum (Clostridium botulinum) and its toxins (botulinum toxins), Yersinia pestis (Yersinia pestis) (plague), variola major (smallpox), Franisella tularensis (Franisella tularensis), and viral hemorrhagic fever [ filoviruses (e.g., Ebola, Marburg) and arenaviruses [ e.g.: lassa virus, equine papbo virus ]; the Burnetco rickettsia (Coxiella burnetti) (Q fever), Brucella (Brucella disease), Burkholderia mallei (melioidea), Burkholderia mallei (melittis), Burkholderia pseudomallei (melioidea), Burkholderia pseudomallei (Burkholderia pseudomallei), Ricinus communis (Ricinus communis) and its toxin (ricin toxin), Clostridium perfringens (Clostridium perfringens) and its toxin (toxin), Staphylococcus (Staphyloccocus) and its toxin (enterotoxin B), Chlamydia psittaci (psittaci), Theragra, waterborne safety threat (e.g., Vibrio (Vibrio cholera), Cryptosporium parvum (Cryptosporidium parvum), Thermoya maculans (Rituchert virus), and other substances classified as Nipposite, such as Nippon encephalitis, Western encephalitis, and further, such as Nippon encephalitis, and further, as Nippon encephalitis, other organisms so classified or differently classified may also be identified and/or used for such a purpose in the future. It will be readily appreciated that the viral vectors and other constructs described herein may be used to deliver antigens, viruses, toxins or other by-products thereof from such organisms, which may prevent and/or treat infection or other adverse reactions caused by such biological substances.
Administration of the vectors of the invention to deliver immunogens against the variable region of T cells elicits immune responses including CTLs to eliminate T cells. In Rheumatoid Arthritis (RA), several specific TCR variable regions have been identified that are involved in the disease. These TCRs include V-3, V-14, V-17 and V-17. Thus, delivery of a nucleic acid sequence encoding at least one of these polypeptides will elicit an immune response that will target T cells involved in RA. In Multiple Sclerosis (MS), several specific TCR variable regions have been identified that are involved in the disease. These TCRs include V-7 and V-10. Thus, delivery of a nucleic acid sequence encoding at least one of these polypeptides will elicit an immune response that will target T cells involved in MS. In scleroderma, several specific TCR variable regions have been identified that are involved in the disease. These TCRs include V-6, V-8, V-14 and V-16, V-3C, V-7, V-14, V-15, V-16, V-28 and V-12. Thus, delivery of a nucleic acid molecule encoding at least one of these polypeptides will elicit an immune response that targets T cells involved in scleroderma.
Thus, the rAAV-derived recombinant viral vectors of the invention provide an efficient gene transfer vector that can deliver a selected transgene to a selected host cell in vivo or in vitro, even if the organism has neutralizing antibodies to one or more AAV sources. In one embodiment, the rAAV is mixed with the cells in vitro, the infected cells are cultured using conventional methods, and the transduced cells are returned to the patient.
These compositions are particularly useful for gene delivery for therapeutic purposes and for vaccination purposes, including the induction of protective immunity. The AAV of the present invention and compositions comprising the AAV of the present invention may also be used in immunotherapy, such as in U.S. patent application No. 60/565,936, entitled "continuous adenoviral and AAV-mediated delivery of immunogenic molecules", filed 4, 28, 2004, which is common to the applicants of the present application.
In addition, the compositions of the invention may also be used to produce a desired gene product in vitro. For in vitro production, the desired product (e.g., protein) can be obtained as follows: host cells are transfected with a rAAV containing a molecule encoding the desired product, and the cell culture is cultured under conditions that allow expression, and the desired product is then obtained from the culture. The expression product can then be purified and isolated as desired. Suitable transfection, cell culture, purification and isolation techniques are known to those skilled in the art.
The following examples illustrate several aspects and embodiments of the present invention.
Example 1
In accordance with the methods of the present invention, AAV sequences were identified as having a singleton when aligned with a library comprising representative sequences of clade A, B, C, D, E and F (represented by AAV9), respectively. The following table shows the capsid sequences and singleton mutations to be changed to conserved sequences. To indicate some mutations, a single mutation is followed by a sequence of amino acid residues for its substitution. To indicate other mutations, the singleton mutation is followed by its amino acid position and the residue used to replace it.
The amino acid numbering is based on the published sequences of each of these AAV capsids. See, for example: gao et al, j.virol, 78(12):6381-6388 (month 6 2004) and international patent publication No. WO 2004/042397[ all sequences therein are deposited in GenBank ], and international patent publication No. WO 2005/033321 filed on 9/30 2004, which are incorporated herein by reference.
For example, with respect to the following table, the respective names should be understood as follows. Cy5R1 refers to the modified amino acid sequence of SEQ ID NO: 24; at residue 13 of the native amino acid sequence of cy5 is a glycine. Cy5R2 refers to the modified amino acid sequence of SEQ ID NO: 24. cy5R3 has a modified amino acid sequence of SEQ ID NO:24, with the same changes as Cy5R2, and in addition, lysine at position 158 (asparagine in the native sequence) and glutamine at position 161 (proline in the native sequence). In view of the above information, one skilled in the art can readily determine other singleton alterations listed in the following table.
Figure BDA0002687276010000311
Figure BDA0002687276010000321
Example 2
In a preliminary study, five clones were selected to test the singleton method of the present invention. The table below provides a phenotypic description of these 5 clones. In addition to predicting the number of singleton mutations, the clade and serotype classes are also indicated.
When the titer is lower than 1X1011At GC, the package phenotype is considered as insufficient; when it is lower than 1X1012GCWhen it is, low is asserted; when it is lower than 1X1013GC, considered good; higher is considered to be excellent.
Gene transfer phenotype was determined by cb.a1at gene expression and is expressed as follows: "+ + + +", "+" and "-" indicate that more than 50% of the serum concentration level of A1AT compared to the preferred candidate (muscle: AAV1, liver: AAV8, lung: AAV9), corresponding to 10-50% of the level, respectively, is less than 10% of the level. "n/a" indicates that a vector cannot be generated at a sufficient level for in vivo gene transfer studies.
Singleton correction cloning was performed as follows. Site-directed mutagenesis was performed on the original packaging plasmid. After this, the integrity of the vector backbone was determined by Pstl digestion and correction of the singleton was confirmed by sequencing. EGFP-expression vectors were then generated in triplicate in 12-well plates, juxtaposed to parental vector containing the singleton, AAV2, and AAV2/8 positive control production, and production in the absence of packaging plasmid as a negative control. After 3 × freezing, an equal amount of harvested lysate was cultured in 293 cells. eGFP expression was detected by flow cytometry 72 hours after transduction.
Site-directed mutagenesis of the singleton mutations was performed in clones rh.37, rh.2, ch.5, rh.13 and rh.8. These specific sequences were selected to represent the various phenotypes described in the literature previously.
Figure BDA0002687276010000322
Figure BDA0002687276010000331
An increase in vector expression was observed in 4 out of 5 clones. The increase in rh.37 and rh.2, which previously showed low packaging yields, was most pronounced. The production level of these carrier-produced particles was sufficient for detection. Vectors rh.8 and rh.13 show an increased transduction rate.
To distinguish the effect of singleton mutations on transduction from the effect on packaging and assembly, small vector preparations were prepared and titrated for Dnase-resistant particles by quantitative PCR. A two-fold log (two-log) increase in vector yield was observed for rh.37. rh.8 showed a 5-fold increase in titer, while rh.13 appeared unchanged. Titers of singleton corrected clones were all within acceptable ranges compared to AAV2 and AAV2/8 products, and when generalized to large scale production. No titration of rh.2 was performed.
The effect of singleton changes was then monitored in vitro in a transduction environment of equal particle number per cell. The titration was performed on rh.8 and rh.13 using 293 cells. The transduction efficiency of all multiplicity of infection (MOI) was moderately increased.
Of this initial subset of 5 clones, 3 were able to transduce cells and had productive capacity. Two clones were unable to produce any eGFP expression in the environment set up in this experiment. This is probably due to some defect in the packaging of the vector which could not be predicted by the singleton method.
The method of the invention was used to correct four predicted singleton mutation sites in AAV clone hu.46: P156S R362C S393F a 676. However, these modifications did not produce AAV that restored its activity, indicating that there were other types of lethal errors in the hu.46 sequence.
Example 3 in vitro analysis of viral vectors with altered capsid
Using the methods of the present invention, the capsid proteins of rh.64 and hu.29 were altered, and then viral vectors with altered capsids were constructed by pseudotyped packaging as described in example 2 and G.Gao et al, Proc Natl Acad Sci, USA, 99, 11854-9 (9.3.2002).
Briefly, the transduction efficiency of vectors in human endothelial kidney cells (293 cells) was tested in vitro using vectors expressing Enhanced Green Fluorescent Protein (EGFP). After a short preincubation with wtAd5, at 104These 293 cells were incubated in the presence of pseudo-type AAVCMVeGFP particles of GC/cells. The number of eGFP-positive cells per 10,000 cells was determined by FACS analysis with a detection sensitivity of 5 cells/10K.
Modifying rh.64 capsids according to the invention provides a 100-fold increase in efficiency of the modified rh.64 particles following a change in R697W. The subsequent V686E mutation increased the packaging capacity by a factor of two.
The hu.29 capsid was modified according to the invention, providing rh.64 viral particles with defective packaging capacity repaired by the change of G396E. It was observed that the increase in virus production was over 1000-fold.
Many of the more than 20 modified AAV viral particles, including AAV6.1, hu.48rr 1, hu.48rr 2, hu.44rr 3, rh.48.2, rh.48.2.1, showed enhanced expression.
Example 4 Effect of mutations in vivo Gene transfer applications
The effect of singleton mutants was studied in an in vivo environment setting. A number of gene transfer studies have been performed with C57B/6 mice on vectors modified according to the methods of the present invention. Muscle and liver orientation studies were initiated and compared on the basis of the preferred candidates currently used for specific applications.
Human alpha-antitrypsin (A1AT) was selected as a sensitive quantitative reporter gene in the vector and expressed under the control of the CMV-enhanced chicken beta-actin promoter. The use of the CB promoter enables high levels of non-tissue specific and constitutive A1AT gene transfer and allows the use of the same vector formulation to study gene transfer in any tissue of interest.
Muscle was selected as the first target tissue. 40 different new vectors (based on 24 different clones each containing the corresponding singleton mutant) were injected intramuscularly into the hind limb of C57B/6 mice. Using CB.A1AT transgene cassette at 1X1011GC/animal was used for all experiments. Each group of each clade used the same amount of vehicle (50. mu.l) per mouse per time. Each independent study included one or two clades and a control group comprising representative serotypes of clades, AAV2/8 and AAV2/1, on which muscle-directed gene transfer was studied. Transgene expression was detected on days 7, 14, 28 and 63 after injection and assessed by a specific hA1AT ELISA.
Performance data was obtained for several isolates and singleton corrections following intrahepatic (intraportal) liver directed injection. Preliminary results indicate that most of the corrected clones performed as well as or better than the original isolate.
For one particular clone, cy.5, singleton correction appears to have a beneficial effect on muscle transduction. The clone cy.5R4, corrected for carrying 4 singletons, had a gene transfer efficiency which was further improved compared to the appropriate muscle tropism already present in the original isolate. The cy.5R4 performed equally or slightly better than the baseline controls AAV2/1 and AAV 2/7.
Isolate rh.64, which previously should have a low titer and could not be evaluated further, performed particularly well in muscle after correction for one singleton. Rh.64R1 performed better than rh.64.2, producing levels of hA1AT higher than its most recent related serotype AAV2/8 and higher than AAV 2/7.
In other studies, mice were injected with vectors based on clade groups. Using the vector for expressing CB.hA1AT at 1X1011GC/mouse dosing. Serum levels of hA1AT were determined using a specific hA1AT ELISA.
The effect of singleton mutations on gene transfer in vivo appears to depend on the isolate and the target tissue. There are several observations that are meaningful.
With respect to certain singleton clones, the effect of singleton is qualitatively similar in muscle and in liver (e.g., rh.2, rh.13, or cy.5). Isolates hu.48 and rh.48 showed that in muscle, expression increased with an increasing number of revertant singletons.
Other clones, such as rh.64 and aav6, showed specific expression characteristics. In the case of isolate hu.48R2, the packaging efficiency was about 10 times lower than that of hu.48R3, but the efficiency of the latter to transduce muscle was about 5 times lower. AAV6 contains two singletons. They all had a moderate effect on packaging, and their combination brought AAV6 packaging to baseline levels. In vitro, the differences between the parental clone and each different clone were almost imperceptible. In vivo, in muscle, AAV6.1 and aav6.1.2 attenuated gene transfer, whereas AAV6.2 enhanced transfer moderately.
Example 5 evaluation of AAV demonstrating mutation-correction in Lung and liver
AAV vectors optimized for packaging and gene transfer efficiency by singleton of mutant residue back mutations were further evaluated in lung and liver. Data are presented for vectors that do not contain singletons and for vectors in which the singletons are reverted to conserved amino acids.
A. Identification of pulmonary metastasis of the CB.A1AT AAV gene mediated by pi2, rh32.33, AAV2/9, AAV2/5, rh.2R, ch5R after intratracheal injection
The ability of several AAV capsids to enter the target, i.e., lung, was compared. The level of cb.a1at in serum was determined. The AAV evaluated had no singleton (pi2, rh32.33, AAV2/9, AAV2/5, rh.2R, ch5R) or contained one singleton (rh.2, rh.8). AAV2/5 and AAV2/9 were referenced.
Gene transfer studies were performed in C57B/6 mice (male, 5 per group) using vectors carrying either the cb.a1at expression cassette (i.e., AAV 25 'ITR, chicken β -actin promoter (CB), human α 1-antitrypsin (A1AT), AAV 23' ITR) or the cb.nlacz expression cassette (i.e., AAV 25 'ITR, nuclear-localized β -galactosidase (nLacZ), AAV 23' ITR) contained in the capsid described above. Briefly, 50. mu.L of singleton-corrected or singleton-free vector was ligated with a vector carrying A1AT and a vector carrying nLacZ (1X 10)11GC) vehicle was co-infused in the gas line (1X 10)11Genomic Copy (GC)).
On days 12 and 20, 20 blood samples were collected, and the serum concentration level of A1AT (ngAAT/mL serum) was determined. And (3) displaying data: at 1X1011Rh.2 to rh.2r significantly increased the expression of human α l-antitrypsin in the lung after GC Intratracheal (IT) injection. In addition, a collection of AAV vectors without single mutation residues was identified. All vectors showed acceptable expression levels in the lung.
B. Assessment of AAV6 singleton vectors compared to AAV2/5 and AAV2/9
The single-site mutation-corrected clone AAV6 was evaluated. Modified AAV6(AAV6.2) was prepared using the singleton mutation correction method of the invention and the pseudotyping techniques described herein. AAV6.2 particles carrying A1AT and LacZ expression cassette were prepared as described in example 5, and intranasally (1X 10)11GC) and endotracheal tube sensationAnd (6) dyeing. AAT expression in serum and bronchoalveolar fluid (BAL) was assessed by ELISA. Normalization was performed based on the expression level of total protein. LacZ expression was determined by ELISA detection of beta-galactosidase in lung homogenates. Necropsy was performed on day 21.
These vectors were compared to AAV2/6, AAV2/5 and AAV2/9 in studies using C57Bl/6 mice (male, n-8/group), AAV2/6 being the current clinical candidate for pulmonary gene transfer.
There was a statistically significant improvement in AAV6.2 over AAV6 in serum A1AT secretion. AAV6.2 also showed higher A1AT levels compared to other vectors, including AAV2/9 and AAV 2/5. In BAL, there was a slight improvement, as was LacZ expression in lung homogenates. However, due to the large animal-to-animal differences, no conclusions can be drawn from LacZ quantification.
When the localization of AAV gene expression was determined, deeper staining of nuclear localization LacZ was observed in AAV2/6.2 group compared to AAV2/6. In the lung airway epithelium, the primary target of diseases such as cystic fibrosis, significant improvements were observed compared to AAV2/6 and AAV 2/5.
C. AAV.CB. A1AT (1X 10) in C57B1/6 mice using clade B and AAV members of clade C11GC) intravenous (iv) injection
All vectors used were free of singleton residues from isolates (AAV2/8, AAV2, hu.13, hu.51, hu.11, hu.53) or by mutation (hu.29R). All vectors were compared to AAV2/8 (clade E) as a benchmark.
D. AVV members of clade E were injected intravenously. The members rh.64Rl, rh.64R2 and rh.2R are optimized by singleton mutation. Other vectors are free of singletons.
It was found that members of AAV clades B and C, including singleton optimized clone hu.29r, expressed approximately comparable to each other. hu.29r was reconstituted from hu.29, reverting to its packaging capacity, and now, it exhibited gene transfer function similar to that of other members of the virus family.
For the clade E vector tested, either the native no-singleton vector or the singleton-corrected vector, performed similarly to the current best vector for liver-targeted gene transfer, AAV 2/8. Of particular note are AAV rh64Rl and rh.64r 2. rh.64 was once thought to be defective in packaging, but now, after one (rh.64rl) or two (rh.64rl 2) singled mutational transitions, its liver-directed gene transfer was equally good. For rh.2, correction for singleton corresponds to a significant increase in gene delivery efficiency of over 10-fold.
All publications, including patents, cited in this specification are herein incorporated by reference. While the invention has been described with reference to a particularly preferred embodiment, it will be understood that modifications may be made without departing from the spirit of the invention.
Sequence listing
<110> Pennsylvania State university Hotel Association
<120> method for enhancing function of adeno-associated virus vector
<130> 075796F3
<150> US 60/669,083
<151> 2005-04-07
<150> US 60/733,497
<151> 2005-11-04
<160> 50
<170> PatentIn version 3.3
<210> 1
<211> 738
<212> PRT
<213> macaque adeno-associated virus, rh.20
<400> 1
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr
405 410 415
Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala
580 585 590
Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 2
<211> 733
<212> PRT
<213> macaque adeno-associated virus clone 32/33
<400> 2
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Leu Glu Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Ile Gly Lys
145 150 155 160
Lys Gly Lys Gln Pro Ala Lys Lys Arg Leu Asn Phe Glu Glu Asp Thr
165 170 175
Gly Ala Gly Asp Gly Pro Pro Glu Gly Ser Asp Thr Ser Ala Met Ser
180 185 190
Ser Asp Ile Glu Met Arg Ala Ala Pro Gly Gly Asn Ala Val Asp Ala
195 200 205
Gly Gln Gly Ser Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys
210 215 220
Asp Ser Thr Trp Ser Glu Gly Lys Val Thr Thr Thr Ser Thr Arg Thr
225 230 235 240
Trp Val Leu Pro Thr Tyr Asn Asn His Leu Tyr Leu Arg Leu Gly Thr
245 250 255
Thr Ser Asn Ser Asn Thr Tyr Asn Gly Phe Ser Thr Pro Trp Gly Tyr
260 265 270
Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln
275 280 285
Arg Leu Ile Asn Asn Asn Trp Gly Leu Arg Pro Lys Ala Met Arg Val
290 295 300
Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Thr Ser Asn Gly Glu
305 310 315 320
Thr Thr Val Ala Asn Asn Leu Thr Ser Thr Val Gln Ile Phe Ala Asp
325 330 335
Ser Ser Tyr Glu Leu Pro Tyr Val Met Asp Ala Gly Gln Glu Gly Ser
340 345 350
Leu Pro Pro Phe Pro Asn Asp Val Phe Met Val Pro Gln Tyr Gly Tyr
355 360 365
Cys Gly Ile Val Thr Gly Glu Asn Gln Asn Gln Thr Asp Arg Asn Ala
370 375 380
Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn
385 390 395 400
Asn Phe Glu Met Ala Tyr Asn Phe Glu Lys Val Pro Phe His Ser Met
405 410 415
Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Leu Asp
420 425 430
Gln Tyr Leu Trp His Leu Gln Ser Thr Thr Ser Gly Glu Thr Leu Asn
435 440 445
Gln Gly Asn Ala Ala Thr Thr Phe Gly Lys Ile Arg Ser Gly Asp Phe
450 455 460
Ala Phe Tyr Arg Lys Asn Trp Leu Pro Gly Pro Cys Val Lys Gln Gln
465 470 475 480
Arg Phe Ser Lys Thr Ala Ser Gln Asn Tyr Lys Ile Pro Ala Ser Gly
485 490 495
Gly Asn Ala Leu Leu Lys Tyr Asp Thr His Tyr Thr Leu Asn Asn Arg
500 505 510
Trp Ser Asn Ile Ala Pro Gly Pro Pro Met Ala Thr Ala Gly Pro Ser
515 520 525
Asp Gly Asp Phe Ser Asn Ala Gln Leu Ile Phe Pro Gly Pro Ser Val
530 535 540
Thr Gly Asn Thr Thr Thr Ser Ala Asn Asn Leu Leu Phe Thr Ser Glu
545 550 555 560
Glu Glu Ile Ala Ala Thr Asn Pro Arg Asp Thr Asp Met Phe Gly Gln
565 570 575
Ile Ala Asp Asn Asn Gln Asn Ala Thr Thr Ala Pro Ile Thr Gly Asn
580 585 590
Val Thr Ala Met Gly Val Leu Pro Gly Met Val Trp Gln Asn Arg Asp
595 600 605
Ile Tyr Tyr Gln Gly Pro Ile Trp Ala Lys Ile Pro His Ala Asp Gly
610 615 620
His Phe His Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu Lys His Pro
625 630 635 640
Pro Pro Gln Ile Phe Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Ala
645 650 655
Thr Thr Phe Thr Ala Ala Arg Val Asp Ser Phe Ile Thr Gln Tyr Ser
660 665 670
Thr Gly Gln Val Ala Val Gln Ile Glu Trp Glu Ile Glu Lys Glu Arg
675 680 685
Ser Lys Arg Trp Asn Pro Glu Val Gln Phe Thr Ser Asn Tyr Gly Asn
690 695 700
Gln Ser Ser Met Leu Trp Ala Pro Asp Thr Thr Gly Lys Tyr Thr Glu
705 710 715 720
Pro Arg Val Ile Gly Ser Arg Tyr Leu Thr Asn His Leu
725 730
<210> 3
<211> 738
<212> PRT
<213> macaque adeno-associated virus clone 39 capsid
<400> 3
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly
580 585 590
Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 4
<211> 738
<212> PRT
<213> cloning of 46 capsid protein of Actinidia adeno-associated Virus
<400> 4
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala
580 585 590
Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 5
<211> 738
<212> PRT
<213> macaque adeno-associated virus clone 73 capsid
<400> 5
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro
180 185 190
Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Arg Gln Asn Thr Ala
580 585 590
Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 6
<211> 736
<212> PRT
<213> macaque adeno-associated virus clone 74 capsid
<400> 6
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Leu Asn Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Asp Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Gly
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Lys Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Lys Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Thr Pro Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Asp Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Ser Gly Ile
145 150 155 160
Gly Lys Lys Ser Pro His Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Glu Ala Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ser Asp Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His
260 265 270
Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe
275 280 285
His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn
290 295 300
Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln
305 310 315 320
Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn
325 330 335
Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro
340 345 350
Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala
355 360 365
Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly
370 375 380
Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro
385 390 395 400
Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe
405 410 415
Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp
420 425 430
Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys
435 440 445
Thr Gln Gly Thr Asn Ala Thr Val Gln Gly Ala Lys Leu Gln Phe Ser
450 455 460
Gln Ala Gly Pro Ser Asn Met Arg Asp Gln Ala Arg Asn Trp Leu Pro
465 470 475 480
Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Asn Asp Asn
485 490 495
Asn Asn Ser Glu Tyr Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn
500 505 510
Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Asp Asp Glu Glu Lys Phe Phe Pro Met Asn Gly Thr Leu Val Phe Gly
530 535 540
Lys Asn Gly Ala Gly Asn Ser Asn Val Asp Ile Glu Asn Val Met Ile
545 550 555 560
Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln
565 570 575
Tyr Gly Val Val Ser Asp Asn Leu Gln Ser Ser Asn Thr Arg Pro Ile
580 585 590
Thr Gly Asp Val Asp Ser Gln Gly Val Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asn Pro Ala Thr Thr Phe Thr Pro Gly Lys Phe Ala Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Gln Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 7
<211> 2208
<212> DNA
<213> adeno-associated Virus serotype 2
<400> 7
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260
cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320
tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560
ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt 1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag 1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa 1920
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc 1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg 2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac 2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208
<210> 8
<211> 2187
<212> DNA
<213> cy.5 nucleic acids
<400> 8
atggctgccg atggttatct tccagattgg ctcgagggca acctctctga gggcattcgc 60
gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120
gacggccggg gtctggtgct tcctggctac aggtacctcg gacccttcaa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240
aagcagctcg agcaggggga caacccgtac ctcaagtaca accacgccga cgccgagttt 300
caggagcgtc ttcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
ggaaagaaga gacccataga atcccccgac tcctccacgg gcatcggcaa gaacggccag 480
ccgcccgcta aaaagaagct caactttggg cagactggcg actcagagtc agtgcccgac 540
ccccaacctc tcggagaacc tcccgccgcg ccctcaggtc tgggatctgg tacaatggct 600
gcaggcggtg gcgcaccaat ggcagacaat aacgaaggcg ccgacggagt gggtaatgcc 660
tccggaaatt ggcattgcga ttccacatgg ctgggcgaca gagtcatcac caccagcacc 720
cgcacctggg ccctgcccac ctacaacaac cacctctaca agcagatatc aagtcagagc 780
ggggctacca acgacaacca cttcttcggc tacagcaccc cctggggcta ttttgacttc 840
aacagattcc actgccactt ctcaccacgt gactggcagc gactcatcaa caacaactgg 900
ggattccggc ccagaaagct gcggttcaag ttgttcaaca tccaggtcaa ggaggtcacg 960
acgaacgacg gcgttacgac catcgctaat aaccttacca gcacgattca ggtcttctcg 1020
gactcggagt accaactgcc gtacgtcctc ggctctgcgc accagggctg cctccctccg 1080
ttccctgcgg acgtgttcat gattcctcag tacggatatc tgactctaaa caacggcagt 1140
cagtctgtgg gacgttcctc cttctactgc ctggagtact ttccttctca gatgctgaga 1200
acgggcgata actttgaatt cagctacacc tttgaggaag tgcctttcca cagcagctat 1260
gcgcacagcc agagcctgga ccggctgatg aatcccctca tcgaccagta cctgtactac 1320
ctggcccgga cccagagcac tacggggtcc acaagggagc tgcagttcca tcaggctggg 1380
cccaacacca tggccgagca atcaaagaac tggctgcccg gaccctgtta tcggcagcag 1440
agactgtcaa aaaacataga cagcaacaac aacagtaact ttgcctggac cggggccact 1500
aaataccatc tgaatggtag aaattcatta accaacccgg gcgtagccat ggccaccaac 1560
aaggacgacg aggaccagtt ctttcccatc aacggagtgc tggtttttgg caaaacgggg 1620
gctgccaaca agacaacgct ggaaaacgtg ctaatgacca gcgaggagga gatcaaaacc 1680
accaatcccg tggctacaga agaatacggt gtggtctcca gcaacctgca atcgtctacg 1740
gccggacccc agacacagac tgtcaacagc cagggggctc tgcccggcat ggtctggcag 1800
aaccgggacg tgtacctgca gggtcccatc tgggccaaaa ttcctcacac ggacggcaac 1860
tttcacccgt ctcccctgat gggcggattt ggactcaaac acccgcctcc tcaaattctc 1920
atcaaaaaca ccccggtacc tgctaatcct ccagaggtgt ttactcctgc caagtttgcc 1980
tcatttatca cgcagtacag caccggccag gtcagcgtgg agatcgagtg ggaactgcag 2040
aaagaaaaca gcaaacgctg gaatccagag attcagtaca cctcaaatta tgccaagtct 2100
aataatgtgg aatttgctgt caacaacgaa ggggtttata ctgagcctcg ccccattggc 2160
acccgttacc tcacccgtaa cctgtaa 2187
<210> 9
<211> 2217
<212> DNA
<213> macaque gland-associated Virus, rh.10
<400> 9
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
ggaaagaaga gaccggtaga gccatcaccc cagcgttctc cagactcctc tacgggcatc 480
ggcaagaaag gccagcagcc cgcgaaaaag agactcaact ttgggcagac tggcgactca 540
gagtcagtgc ccgaccctca accaatcgga gaaccccccg caggcccctc tggtctggga 600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720
atcaccacca gcacccgaac ctgggccctc cccacctaca acaaccacct ctacaagcaa 780
atctccaacg ggacttcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc 840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900
cgactcatca acaacaactg gggattccgg cccaagagac tcaacttcaa gctcttcaac 960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020
agcacgattc aggtctttac ggactcggaa taccagctcc cgtacgtcct cggctctgcg 1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacgggtac 1140
ctgactctga acaatggcag tcaggccgtg ggccgttcct ccttctactg cctggagtac 1200
tttccttctc aaatgctgag aacgggcaac aactttgagt tcagctacca gtttgaggac 1260
gtgccttttc acagcagcta cgcgcacagc caaagcctgg accggctgat gaaccccctc 1320
atcgaccagt acctgtacta cctgtctcgg actcagtcca cgggaggtac cgcaggaact 1380
cagcagttgc tattttctca ggccgggcct aataacatgt cggctcaggc caaaaactgg 1440
ctacccgggc cctgctaccg gcagcaacgc gtctccacga cactgtcgca aaataacaac 1500
agcaactttg cctggaccgg tgccaccaag tatcatctga atggcagaga ctctctggta 1560
aatcccggtg tcgctatggc aacccacaag gacgacgaag agcgattttt tccgtccagc 1620
ggagtcttaa tgtttgggaa acagggagct ggaaaagaca acgtggacta tagcagcgtt 1680
atgctaacca gtgaggaaga aattaaaacc accaacccag tggccacaga acagtacggc 1740
gtggtggccg ataacctgca acagcaaaac gccgctccta ttgtaggggc cgtcaacagt 1800
caaggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatc 1860
tgggccaaga ttcctcacac ggacggaaac tttcatccct cgccgctgat gggaggcttt 1920
ggactgaaac acccgcctcc tcagatcctg attaagaata cacctgttcc cgcggatcct 1980
ccaactacct tcagtcaagc taagctggcg tcgttcatca cgcagtacag caccggacag 2040
gtcagcgtgg aaattgaatg ggagctgcag aaagaaaaca gcaaacgctg gaacccagag 2100
attcaataca cttccaacta ctacaaatct acaaatgtgg actttgctgt taacacagat 2160
ggcacttatt ctgagcctcg ccccatcggc acccgttacc tcacccgtaa tctgtaa 2217
<210> 10
<211> 2187
<212> DNA
<213> Actinidia adeno-associated virus, rh.13
<400> 10
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240
aagcagctcg agcaggggga caacccgtac ctcaagtaca accacgccga cgccgagttt 300
caggagcgtc ttcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
ggaaagaaga gacccataga atcccccgac tcctccacgg gcatcggcaa gaaaggccag 480
cagcccgcta aaaagaagct caactttggg cagactggcg actcagagtc agtgcccgac 540
ccccaacctc tcggagaacc tcccgccgcg ccctcaggtc tgggatctgg tacaatggct 600
gcaggcggtg gcgcaccaat ggcagacaat aacgaaggcg ccgacggagt gggtaatgcc 660
tccggaaatt ggcattgcga ttccacatgg ctgggcgaca gagtcatcac caccagcacc 720
cgcacctggg ccctgcccac ctacaacaac cacctctaca agcagatatc aagtcagagc 780
ggggctacca acgacaacca cttcttcggc tacagcaccc cctggggcta ttttgacttc 840
aacagattcc actgccactt ctcaccacgt gactggcagc gactcatcaa caacaactgg 900
ggattccggc ccagaaagct gcggttcaag ttgttcaaca tccaggtcaa ggaggtcacg 960
acgaacgacg gcgttacgac catcgctaat aaccttacca gcacgattca ggtcttctcg 1020
gactcggagt accaactgcc gtacgtcctc ggctctgcgc accagggctg cctccctccg 1080
ttccctgcgg acgtgttcat gattcctcag tacggatatc tgactctaaa caacggcagt 1140
cagtctgtgg gacgttcctc cttctactgc ctggagtact ttccttctca gatgctgaga 1200
acgggcaata actttgaatt cagctacacc tttgaggaag tgcctttcca cagcagctat 1260
gcgcacagcc agagcctgga ccggctgatg aatcccctca tcgaccagta cctgtactac 1320
ctggcccgga cccagagcac tacggggtcc acaagggagc tgcagttcca tcaggctggg 1380
cccaacacca tggccgagca atcaaagaac tggctgcccg gaccctgtta tcggcagcag 1440
agactgtcaa aaaacataga cagcaacaac aacagtaact ttgcctggac cggggccact 1500
aaataccatc tgaatggtag aaattcatta accaacccgg gcgtagccat ggccaccaac 1560
aaggacgacg aggaccagtt ctttcccatc aacggagtgc tggtttttgg cgaaacgggg 1620
gctgccaaca agacaacgct ggaaaacgtg ctaatgacca gcgaggagga gatcaaaacc 1680
accaatcccg tggctacaga agaatacggt gtggtctcca gcaacctgca atcgtctacg 1740
gccggacccc agacacagac tgtcaacagc cagggggctc tgcccggcat ggtctggcag 1800
aaccgggacg tgtacctgca gggtcccatc tgggccaaaa ttcctcacac ggacggcaac 1860
tttcacccgt ctcccctgat gggcggattt ggactcaaac acccgcctcc tcaaattctc 1920
atcaaaaaca ccccggtacc tgctaatcct ccagaggtgt ttactcctgc caagtttgcc 1980
tcatttatca cgcagtacag caccggccag gtcagcgtgg agatcgagtg ggaactgcag 2040
aaagaaaaca gcaaacgctg gaatccagag attcagtaca cctcaaatta tgccaagtct 2100
aataatgtgg aatttgctgt caacaacgaa ggggtttata ctgagcctcg ccccattggc 2160
acccgttacc tcacccgtaa cctgtaa 2187
<210> 11
<211> 2211
<212> DNA
<213> adeno-associated Virus serotype 1
<400> 11
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc 480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag 540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct 600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga 660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc 720
accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc 780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag caccccctgg 840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc 900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa 960
gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg 1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag 1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg 1140
ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct 1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct 1260
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320
caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaacaaggac 1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct 1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat 1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct 1560
ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc 1620
atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg 1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800
gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg 1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt 2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2100
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2160
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a 2211
<210> 12
<211> 2211
<212> DNA
<213> adeno-associated Virus serotype 3
<400> 12
atggctgctg acggttatct tccagattgg ctcgaggaca acctttctga aggcattcgt 60
gagtggtggg ctctgaaacc tggagtccct caacccaaag cgaaccaaca acaccaggac 120
aaccgtcggg gtcttgtgct tccgggttac aaatacctcg gacccggtaa cggactcgac 180
aaaggagagc cggtcaacga ggcggacgcg gcagccctcg aacacgacaa agcttacgac 240
cagcagctca aggccggtga caacccgtac ctcaagtaca accacgccga cgccgagttt 300
caggagcgtc ttcaagaaga tacgtctttt gggggcaacc ttggcagagc agtcttccag 360
gccaaaaaga ggatccttga gcctcttggt ctggttgagg aagcagctaa aacggctcct 420
ggaaagaagg gggctgtaga tcagtctcct caggaaccgg actcatcatc tggtgttggc 480
aaatcgggca aacagcctgc cagaaaaaga ctaaatttcg gtcagactgg agactcagag 540
tcagtcccag accctcaacc tctcggagaa ccaccagcag cccccacaag tttgggatct 600
aatacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaggg tgccgatgga 660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720
accaccagca ccagaacctg ggccctgccc acttacaaca accatctcta caagcaaatc 780
tccagccaat caggagcttc aaacgacaac cactactttg gctacagcac cccttggggg 840
tattttgact ttaacagatt ccactgccac ttctcaccac gtgactggca gcgactcatt 900
aacaacaact ggggattccg gcccaagaaa ctcagcttca agctcttcaa catccaagtt 960
agaggggtca cgcagaacga tggcacgacg actattgcca ataaccttac cagcacggtt 1020
caagtgttta cggactcgga gtatcagctc ccgtacgtgc tcgggtcggc gcaccaaggc 1080
tgtctcccgc cgtttccagc ggacgtcttc atggtccctc agtatggata cctcaccctg 1140
aacaacggaa gtcaagcggt gggacgctca tccttttact gcctggagta cttcccttcg 1200
cagatgctaa ggactggaaa taacttccaa ttcagctata ccttcgagga tgtacctttt 1260
cacagcagct acgctcacag ccagagtttg gatcgcttga tgaatcctct tattgatcag 1320
tatctgtact acctgaacag aacgcaagga acaacctctg gaacaaccaa ccaatcacgg 1380
ctgcttttta gccaggctgg gcctcagtct atgtctttgc aggccagaaa ttggctacct 1440
gggccctgct accggcaaca gagactttca aagactgcta acgacaacaa caacagtaac 1500
tttccttgga cagcggccag caaatatcat ctcaatggcc gcgactcgct ggtgaatcca 1560
ggaccagcta tggccagtca caaggacgat gaagaaaaat ttttccctat gcacggcaat 1620
ctaatatttg gcaaagaagg gacaacggca agtaacgcag aattagataa tgtaatgatt 1680
acggatgaag aagagattcg taccaccaat cctgtggcaa cagagcagta tggaactgtg 1740
gcaaataact tgcagagctc aaatacagct cccacgactg gaactgtcaa tcatcagggg 1800
gccttacctg gcatggtgtg gcaagatcgt gacgtgtacc ttcaaggacc tatctgggca 1860
aagattcctc acacggatgg acactttcat ccttctcctc tgatgggagg ctttggactg 1920
aaacatccgc ctcctcaaat catgatcaaa aatactccgg taccggcaaa tcctccgacg 1980
actttcagcc cggccaagtt tgcttcattt atcactcagt actccactgg acaggtcagc 2040
gtggaaattg agtgggagct acagaaagaa aacagcaaac gttggaatcc agagattcag 2100
tacacttcca actacaacaa gtctgttaat gtggacttta ctgtagacac taatggtgtt 2160
tatagtgaac ctcgccctat tggaacccgg tatctcacac gaaacttgtg a 2211
<210> 13
<211> 2208
<212> DNA
<213> adeno-associated Virus serotype 6
<400> 13
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggatgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaaga gggttctcga accttttggt ctggttgagg aaggtgctaa gacggctcct 420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcattggc 480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag 540
tcagtccccg acccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct 600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga 660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc 720
accaccagca cccgaacatg ggccttgccc acctataaca accacctcta caagcaaatc 780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag caccccctgg 840
gggtattttg atttcaacag attccactgc catttctcac cacgtgactg gcagcgactc 900
atcaacaaca attggggatt ccggcccaag agactcaact tcaagctctt caacatccaa 960
gtcaaggagg tcacgacgaa tgatggcgtc acgaccatcg ctaataacct taccagcacg 1020
gttcaagtct tctcggactc ggagtaccag ttgccgtacg tcctcggctc tgcgcaccag 1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcagtacgg ctacctaacg 1140
ctcaacaatg gcagccaggc agtgggacgg tcatcctttt actgcctgga atatttccca 1200
tcgcagatgc tgagaacggg caataacttt accttcagct acaccttcga ggacgtgcct 1260
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320
cagtacctgt attacctgaa cagaactcag aatcagtccg gaagtgccca aaacaaggac 1380
ttgctgttta gccgggggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct 1440
ggaccctgtt accggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaac 1500
tttacctgga ctggtgcttc aaaatataac cttaatgggc gtgaatctat aatcaaccct 1560
ggcactgcta tggcctcaca caaagacgac aaagacaagt tctttcccat gagcggtgtc 1620
atgatttttg gaaaggagag cgccggagct tcaaacactg cattggacaa tgtcatgatc 1680
acagacgaag aggaaatcaa agccactaac cccgtggcca ccgaaagatt tgggactgtg 1740
gcagtcaatc tccagagcag cagcacagac cctgcgaccg gagatgtgca tgttatggga 1800
gccttacctg gaatggtgtg gcaagacaga gacgtatacc tgcagggtcc tatttgggcc 1860
aaaattcctc acacggatgg acactttcac ccgtctcctc tcatgggcgg ctttggactt 1920
aagcacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggca 1980
gagttttcgg ctacaaagtt tgcttcattc atcacccagt attccacagg acaagtgagc 2040
gtggagattg aatgggagct gcagaaagaa aacagcaaac gctggaatcc cgaagtgcag 2100
tatacatcta actatgcaaa atctgccaac gttgatttca ctgtggacaa caatggactt 2160
tatactgagc ctcgccccat tggcacccgt tacctcaccc gtcccctg 2208
<210> 14
<211> 2214
<212> DNA
<213> adeno-associated Virus serotype 7
<400> 14
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120
aacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtcattt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
gcaaagaaga gaccggtaga gccgtcacct cagcgttccc ccgactcctc cacgggcatc 480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540
gagtcagtcc ccgaccctca acctctcgga gaacctccag cagcgccctc tagtgtggga 600
tctggtacag tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720
attaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780
atctccagtg aaactgcagg tagtaccaac gacaacacct acttcggcta cagcaccccc 840
tgggggtatt ttgactttaa cagattccac tgccacttct caccacgtga ctggcagcga 900
ctcatcaaca acaactgggg attccggccc aagaagctgc ggttcaagct cttcaacatc 960
caggtcaagg aggtcacgac gaatgacggc gttacgacca tcgctaataa ccttaccagc 1020
acgattcagg tattctcgga ctcggaatac cagctgccgt acgtcctcgg ctctgcgcac 1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctg 1140
actctcaaca atggcagtca gtctgtggga cgttcctcct tctactgcct ggagtacttc 1200
ccctctcaga tgctgagaac gggcaacaac tttgagttca gctacagctt cgaggacgtg 1260
cctttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcccctcatc 1320
gaccagtact tgtactacct ggccagaaca cagagtaacc caggaggcac agctggcaat 1380
cgggaactgc agttttacca gggcgggcct tcaactatgg ccgaacaagc caagaattgg 1440
ttacctggac cttgcttccg gcaacaaaga gtctccaaaa cgctggatca aaacaacaac 1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggcagaaa ctcgttggtt 1560
aatcccggcg tcgccatggc aactcacaag gacgacgagg accgcttttt cccatccagc 1620
ggagtcctga tttttggaaa aactggagca actaacaaaa ctacattgga aaatgtgtta 1680
atgacaaatg aagaagaaat tcgtcctact aatcctgtag ccacggaaga atacgggata 1740
gtcagcagca acttacaagc ggctaatact gcagcccaga cacaagttgt caacaaccag 1800
ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg 1860
gccaagattc ctcacacgga tggcaacttt cacccgtctc ctttgatggg cggctttgga 1920
cttaaacatc cgcctcctca gatcctgatc aagaacactc ccgttcccgc taatcctccg 1980
gaggtgttta ctcctgccaa gtttgcttcg ttcatcacac agtacagcac cggacaagtc 2040
agcgtggaaa tcgagtggga gctgcagaag gaaaacagca agcgctggaa cccggagatt 2100
cagtacacct ccaactttga aaagcagact ggtgtggact ttgccgttga cagccagggt 2160
gtttactctg agcctcgccc tattggcact cgttacctca cccgtaatct gtaa 2214
<210> 15
<211> 2217
<212> DNA
<213> adeno-associated virus serotype 8
<400> 15
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg cgctgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctgc aggcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
ggaaagaaga gaccggtaga gccatcaccc cagcgttctc cagactcctc tacgggcatc 480
ggcaagaaag gccaacagcc cgccagaaaa agactcaatt ttggtcagac tggcgactca 540
gagtcagttc cagaccctca acctctcgga gaacctccag cagcgccctc tggtgtggga 600
cctaatacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggcgccgac 660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780
atctccaacg ggacatcggg aggagccacc aacgacaaca cctacttcgg ctacagcacc 840
ccctgggggt attttgactt taacagattc cactgccact tttcaccacg tgactggcag 900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020
agcaccatcc aggtgtttac ggactcggag taccagctgc cgtacgttct cggctctgcc 1080
caccagggct gcctgcctcc gttcccggcg gacgtgttca tgattcccca gtacggctac 1140
ctaacactca acaacggtag tcaggccgtg ggacgctcct ccttctactg cctggaatac 1200
tttccttcgc agatgctgag aaccggcaac aacttccagt ttacttacac cttcgaggac 1260
gtgcctttcc acagcagcta cgcccacagc cagagcttgg accggctgat gaatcctctg 1320
attgaccagt acctgtacta cttgtctcgg actcaaacaa caggaggcac ggcaaatacg 1380
cagactctgg gcttcagcca aggtgggcct aatacaatgg ccaatcaggc aaagaactgg 1440
ctgccaggac cctgttaccg ccaacaacgc gtctcaacga caaccgggca aaacaacaat 1500
agcaactttg cctggactgc tgggaccaaa taccatctga atggaagaaa ttcattggct 1560
aatcctggca tcgctatggc aacacacaaa gacgacgagg agcgtttttt tcccagtaac 1620
gggatcctga tttttggcaa acaaaatgct gccagagaca atgcggatta cagcgatgtc 1680
atgctcacca gcgaggaaga aatcaaaacc actaaccctg tggctacaga ggaatacggt 1740
atcgtggcag ataacttgca gcagcaaaac acggctcctc aaattggaac tgtcaacagc 1800
cagggggcct tacccggtat ggtctggcag aaccgggacg tgtacctgca gggtcccatc 1860
tgggccaaga ttcctcacac ggacggcaac ttccacccgt ctccgctgat gggcggcttt 1920
ggcctgaaac atcctccgcc tcagatcctg atcaagaaca cgcctgtacc tgcggatcct 1980
ccgaccacct tcaaccagtc aaagctgaac tctttcatca cgcaatacag caccggacag 2040
gtcagcgtgg aaattgaatg ggagctgcag aaggaaaaca gcaagcgctg gaaccccgag 2100
atccagtaca cctccaacta ctacaaatct acaagtgtgg actttgctgt taatacagaa 2160
ggcgtgtact ctgaaccccg ccccattggc acccgttacc tcacccgtaa tctgtaa 2217
<210> 16
<211> 2208
<212> DNA
<213> adeno-associated Virus, hu.13
<400> 16
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360
gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa aacggctccg 420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480
aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg agacgcagac 540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720
accaccagca cccgaacttg ggccctgccc acctacaaca accatctcta caagcaaatc 780
tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg 840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900
aacaacaact ggggattccg gcccaagaga ctcaacttca agctctttaa cattcaagtc 960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag 1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt 1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740
accaacctgc agggcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt 1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc 1980
ttcagtgcgg caaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg 2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac 2100
acttccaact acaacaaatc tgttaatgtg gactttactg ttgacactaa tggcgtgtat 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208
<210> 17
<211> 2208
<212> DNA
<213> adeno-associated Virus, hu.26
<400> 17
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360
gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720
accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc 780
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc 1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga 1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc 1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920
caccctcctc cacaaattct catcaagaac accccggtac ctgcgaatcc ttcgaccact 1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208
<210> 18
<211> 2217
<212> DNA
<213> adeno-associated Virus, hu.37
<400> 18
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480
ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca 540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780
atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc 840
ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag 900
cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020
agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac 1140
cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200
tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260
gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320
atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620
ggagtcctga tgttcggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680
atgctaacca gcgaagaaga aattaaaacc actaaccccg tagccacaga acaatacggt 1740
gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800
caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt 1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct 1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160
ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217
<210> 19
<211> 2205
<212> DNA
<213> adeno-associated Virus, hu.53
<400> 19
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480
aaagcgggcc agcagcctgc aagaaaaaga ctgaatttcg gtcagactgg agacgcagac 540
tccgtacctg acccccagcc tctcagacag ccaccagcag cccccacaag tttgggatct 600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720
accaccagca cccgaacctg ggccctgccc acctacaaca accaccttta caagcaaatc 780
tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccctggggg 840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc gcatcaagga 1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260
cacagcagct acgctcacag ccagagtttg gatcggctga tgaatcctct gatcgaccag 1320
tacctgtatt atctaaacag aacacaaaca gctagtggaa ctcagcagtc tcggctactg 1380
tttagccaag ctggacccac aagcatgtct cttcaagcta aaaactggct gcctggaccg 1440
tgttatcgcc agcagcgttt gtcaaagcag gcaaacgaca acaacaacag caactttccc 1500
tggactggag ctaccaagta ctacctcaat ggcagagact ctttggtgaa cccgggcccg 1560
gccatggcca gccacaagga cgatgaagaa aagtttttcc ccatgcatgg aaccctaata 1620
tttggtaaag aaggaacaaa tgctaccaac gcggaattgg aaaatgtcat gattacagat 1680
gaagaggaaa tcaggaccac caatcccgtg gctacagagc agtacggata tgtgtcaaat 1740
aatttgcaaa actcaaatac tgctgcaagt actgaaactg tgaatcacca aggagcatta 1800
cctggtatgg tgtggcagga tcgagacgtg tacctgcagg gacccatttg ggccaagatt 1860
cctcacaccg atggacactt tcatccttct ccactgatgg gaggttttgg actcaaacac 1920
ccgcctcctc agattatgat caaaaacact cccgttccag ccaatcctcc cacaaacttc 1980
agttctgcca agtttgcttc cttcatcaca cagtattcca cgggacaggt cagcgtggag 2040
atcgagtggg agctgcagaa ggagaacagc aaacgctgga atcccgaaat tcagtacact 2100
tccaactaca acaaatctgt taatgtggac tttactgtgg acactaatgg tgtgtattca 2160
gagcctcgcc ccattggcac cagatacctg actcgtaatc tgtaa 2205
<210> 20
<211> 2217
<212> DNA
<213> macaque gland-associated Virus, rh.39
<400> 20
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480
ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca 540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780
atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc 840
ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag 900
cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020
agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac 1140
cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200
tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260
gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320
atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620
ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680
atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt 1740
gtggtggctg ataacttgca gcaaaccaat acggggccta ttgtgggaaa tgtcaacagc 1800
caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt 1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct 1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160
ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217
<210> 21
<211> 2211
<212> DNA
<213> macaque gland-associated Virus, rh.43
<400> 21
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120
gacggccggg gcctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctcg aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
ggaaagaaga gaccagtaga gcagtcaccc caagaaccag actcctcctc gggcatcggc 480
aagaaaggcc aacagcccgc cagaaaaaga ctcaattttg gccagactgg cgactcagag 540
tcagttccag accctcaacc tctcggagaa cctccagcag cgccctctgg tgtgggacct 600
aatacaatgg ctgcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga 660
gtgggtagtt cctcgggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc 720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780
tccaacggga catcgggagg agccaccaac gacaacacct acttcggcta cagcaccccc 840
tgggggtatt ttgactttaa cagattccac tgccactttt caccacgtga ctggcagcga 900
ctcatcaaca acaactgggg attccggccc aagagactca gcttcaagct cttcaacatc 960
caggtcaagg aggtcacgca gaatgaaggc accaagacca tcgccaataa cctcaccagc 1020
accatccagg tgtttacgga ctcggagtac cagctgccgt acgttctcgg ctctgcccac 1080
cagggctgcc tgcctccgtt cccggcggac gtgttcatga ttccccagta cggctaccta 1140
acactcaaca acggtagtca ggccgtggga cgctcctcct tctactgcct ggaatacttt 1200
ccttcgcaga tgctgagaac cggcaacaac ttccagttta cttacacctt cgaggacgtg 1260
cctttccaca gcagctacgc ccacagccag agcttggacc ggctgatgaa tcctctgatt 1320
gaccagtacc tgtactactt gtctcggact caaacaacag gaggcacggc aaatacgcag 1380
actctgggct tcagccaagg tgggcctaat acaatggcca atcaggcaaa gaactggctg 1440
ccaggaccct gttaccgcca acaacgcgtc tcaacgacaa ccgggcaaaa caacaatagc 1500
aactttgcct ggactgctgg gaccaaatac catctgaatg gaagaaattc attggctaat 1560
cctggcatcg ctatggcaac acacaaagac gacgaggagc gttttttccc agtaacggga 1620
tcctgttttt ggcaacaaaa tgctgccaga gacaatgcgg attacagcga tgtcatgctc 1680
accagcgagg aagaaatcaa aaccactaac cctgtggcta cagaggaata cggtatcgtg 1740
gcagataact tgcagcagca aaacacggct cctcaaattg gaactgtcaa cagccagggg 1800
gccttacccg gtatggtctg gcagaaccgg gacgtgtacc tgcagggtcc catctgggcc 1860
aagattcctc acacggacgg caacttccac ccgtctccgc tgatgggcgg ctttggcctg 1920
aaacatcctc cgcctcagat cctgatcaag aacacgcctg tacctgcgga tcctccgacc 1980
accttcaacc agtcaaagct gaactctttc atcacgcaat acagcaccgg acaggtcagc 2040
gtggaaattg aatgggagct acagaaggaa aacagcaagc gctggaaccc cgagatccag 2100
tacacctcca actactacaa atctacaagt gtggactttg ctgttaatac agaaggcgtg 2160
tactctgaac cccgccccat tggcacccgt tacctcaccc gtaatctgta a 2211
<210> 22
<211> 2217
<212> DNA
<213> Actinidia adeno-associated virus, rh.46
<400> 22
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt 300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc 480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc 1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac 1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac 1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc 1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg 1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg 1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc 1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg 1680
atgctaacca gcgaggaaga aatcaaggcc accaaccccg tggccacaga acagtatggc 1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc 1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt 1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct 1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217
<210> 23
<211> 735
<212> PRT
<213> capsid protein of adeno-associated virus serotype 2
<400> 23
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro
20 25 30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Ser Gly Thr Gly
145 150 155 160
Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 185 190
Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380
Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser
385 390 395 400
Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu
405 410 415
Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430
Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr
435 440 445
Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450 455 460
Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480
Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn
485 490 495
Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly
500 505 510
Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp
515 520 525
Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys
530 535 540
Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr
545 550 555 560
Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575
Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr
580 585 590
Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp
595 600 605
Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr
610 615 620
Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys
625 630 635 640
His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655
Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670
Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685
Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700
Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr
705 710 715 720
Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 24
<211> 728
<212> PRT
<213> cy.5 capsid protein
<400> 24
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Gly Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Arg Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Asn Gly Gln
145 150 155 160
Pro Pro Ala Lys Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu
165 170 175
Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser
180 185 190
Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala
195 200 205
Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp
210 215 220
His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr
225 230 235 240
Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile
245 250 255
Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser
260 265 270
Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser
275 280 285
Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro
290 295 300
Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr
305 310 315 320
Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile
325 330 335
Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser
340 345 350
Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile
355 360 365
Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly
370 375 380
Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg
385 390 395 400
Thr Gly Asp Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe
405 410 415
His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro
420 425 430
Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr
435 440 445
Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met
450 455 460
Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln
465 470 475 480
Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Asn Ser Asn Phe Ala Trp
485 490 495
Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn
500 505 510
Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Gln Phe Phe
515 520 525
Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn Lys
530 535 540
Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr
545 550 555 560
Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu
565 570 575
Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly
580 585 590
Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly
595 600 605
Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser
610 615 620
Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu
625 630 635 640
Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro
645 650 655
Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser
660 665 670
Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn
675 680 685
Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu
690 695 700
Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Glu Pro Arg Pro Ile Gly
705 710 715 720
Thr Arg Tyr Leu Thr Arg Asn Leu
725
<210> 25
<211> 738
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.10
<400> 25
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr
405 410 415
Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala
580 585 590
Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Asp
705 710 715 720
Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 26
<211> 728
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.13
<400> 26
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln
145 150 155 160
Gln Pro Ala Lys Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu
165 170 175
Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser
180 185 190
Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala
195 200 205
Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp
210 215 220
His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr
225 230 235 240
Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile
245 250 255
Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser
260 265 270
Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser
275 280 285
Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro
290 295 300
Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr
305 310 315 320
Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile
325 330 335
Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser
340 345 350
Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile
355 360 365
Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly
370 375 380
Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg
385 390 395 400
Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe
405 410 415
His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro
420 425 430
Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr
435 440 445
Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met
450 455 460
Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln
465 470 475 480
Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Asn Ser Asn Phe Ala Trp
485 490 495
Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn
500 505 510
Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Gln Phe Phe
515 520 525
Pro Ile Asn Gly Val Leu Val Phe Gly Glu Thr Gly Ala Ala Asn Lys
530 535 540
Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr
545 550 555 560
Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu
565 570 575
Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly
580 585 590
Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly
595 600 605
Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser
610 615 620
Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu
625 630 635 640
Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro
645 650 655
Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser
660 665 670
Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn
675 680 685
Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu
690 695 700
Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Glu Pro Arg Pro Ile Gly
705 710 715 720
Thr Arg Tyr Leu Thr Arg Asn Leu
725
<210> 27
<211> 736
<212> PRT
<213> capsid protein of adeno-associated virus serotype 1
<400> 27
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Ile Gly
145 150 155 160
Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190
Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His
260 265 270
Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe
275 280 285
His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn
290 295 300
Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln
305 310 315 320
Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn
325 330 335
Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro
340 345 350
Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala
355 360 365
Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly
370 375 380
Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro
385 390 395 400
Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe
405 410 415
Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp
420 425 430
Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg
435 440 445
Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser
450 455 460
Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro
465 470 475 480
Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn
485 490 495
Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn
500 505 510
Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys
515 520 525
Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly
530 535 540
Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile
545 550 555 560
Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg
565 570 575
Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro Ala
580 585 590
Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn
690 695 700
Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu
705 710 715 720
Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu
725 730 735
<210> 28
<211> 736
<212> PRT
<213> capsid protein of adeno-associated virus serotype 3
<400> 28
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Val Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Arg Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Gly
130 135 140
Ala Val Asp Gln Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Val Gly
145 150 155 160
Lys Ser Gly Lys Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190
Ala Ala Pro Thr Ser Leu Gly Ser Asn Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Lys Leu Ser Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Arg Gly Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380
Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser
385 390 395 400
Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu
405 410 415
Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430
Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr
435 440 445
Gln Gly Thr Thr Ser Gly Thr Thr Asn Gln Ser Arg Leu Leu Phe Ser
450 455 460
Gln Ala Gly Pro Gln Ser Met Ser Leu Gln Ala Arg Asn Trp Leu Pro
465 470 475 480
Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Thr Ala Asn Asp Asn
485 490 495
Asn Asn Ser Asn Phe Pro Trp Thr Ala Ala Ser Lys Tyr His Leu Asn
500 505 510
Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Asn Leu Ile Phe Gly
530 535 540
Lys Glu Gly Thr Thr Ala Ser Asn Ala Glu Leu Asp Asn Val Met Ile
545 550 555 560
Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln
565 570 575
Tyr Gly Thr Val Ala Asn Asn Leu Gln Ser Ser Asn Thr Ala Pro Thr
580 585 590
Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asn Pro Pro Thr Thr Phe Ser Pro Ala Lys Phe Ala Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 29
<211> 736
<212> PRT
<213> capsid protein of adeno-associated virus serotype 6
<400> 29
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Phe Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Ile Gly
145 150 155 160
Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190
Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His
260 265 270
Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe
275 280 285
His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn
290 295 300
Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln
305 310 315 320
Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn
325 330 335
Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro
340 345 350
Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala
355 360 365
Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly
370 375 380
Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro
385 390 395 400
Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe
405 410 415
Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp
420 425 430
Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg
435 440 445
Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser
450 455 460
Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro
465 470 475 480
Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn
485 490 495
Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn
500 505 510
Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys
515 520 525
Asp Asp Lys Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly
530 535 540
Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile
545 550 555 560
Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg
565 570 575
Phe Gly Thr Val Ala Val Asn Leu Gln Ser Ser Ser Thr Asp Pro Ala
580 585 590
Thr Gly Asp Val His Val Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn
690 695 700
Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu
705 710 715 720
Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu
725 730 735
<210> 30
<211> 737
<212> PRT
<213> capsid protein of adeno-associated virus serotype 7
<400> 30
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asn Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Ala Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro
180 185 190
Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn
210 215 220
Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn
260 265 270
Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Lys Leu Arg Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn
370 375 380
Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser
405 410 415
Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala
435 440 445
Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln
450 455 460
Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile
530 535 540
Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu
545 550 555 560
Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu
565 570 575
Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala
580 585 590
Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp
595 600 605
Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro
610 615 620
His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly
625 630 635 640
Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro
645 650 655
Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile
660 665 670
Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu
675 680 685
Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser
690 695 700
Asn Phe Glu Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly
705 710 715 720
Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn
725 730 735
Leu
<210> 31
<211> 738
<212> PRT
<213> capsid protein of adeno-associated virus serotype 8
<400> 31
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro
180 185 190
Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly
450 455 460
Phe Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile
530 535 540
Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala
580 585 590
Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 32
<211> 735
<212> PRT
<213> capsid protein of adeno-associated virus, hu.13
<400> 32
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro
20 25 30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Ser Gly Thr Gly
145 150 155 160
Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 185 190
Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380
Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser
385 390 395 400
Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu
405 410 415
Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430
Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr
435 440 445
Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450 455 460
Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480
Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn
485 490 495
Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly
500 505 510
Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp
515 520 525
Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys
530 535 540
Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr
545 550 555 560
Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575
Gly Ser Val Ser Thr Asn Leu Gln Gly Gly Asn Thr Gln Ala Ala Thr
580 585 590
Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp
595 600 605
Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr
610 615 620
Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys
625 630 635 640
His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655
Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670
Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685
Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700
Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr
705 710 715 720
Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 33
<211> 735
<212> PRT
<213> capsid protein of adeno-associated virus, hu.26
<400> 33
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro
20 25 30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Ser Gly Thr Gly
145 150 155 160
Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 185 190
Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380
Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser
385 390 395 400
Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu
405 410 415
Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430
Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr
435 440 445
Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln
450 455 460
Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480
Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn
485 490 495
Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly
500 505 510
Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp
515 520 525
Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys
530 535 540
Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr
545 550 555 560
Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575
Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr
580 585 590
Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp
595 600 605
Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr
610 615 620
Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys
625 630 635 640
His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655
Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670
Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685
Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700
Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr
705 710 715 720
Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 34
<211> 738
<212> PRT
<213> capsid protein of adeno-associated virus, hu.37
<400> 34
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly
580 585 590
Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 35
<211> 734
<212> PRT
<213> capsid protein of adeno-associated virus, hu.53
<400> 35
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro
20 25 30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Ser Gly Thr Gly
145 150 155 160
Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Arg Gln Pro Pro
180 185 190
Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380
Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser
385 390 395 400
Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu
405 410 415
Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430
Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr
435 440 445
Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala
450 455 460
Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro
465 470 475 480
Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn
485 490 495
Ser Asn Phe Pro Trp Thr Gly Ala Thr Lys Tyr Tyr Leu Asn Gly Arg
500 505 510
Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp
515 520 525
Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu
530 535 540
Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp
545 550 555 560
Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly
565 570 575
Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu
580 585 590
Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg
595 600 605
Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp
610 615 620
Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His
625 630 635 640
Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro
645 650 655
Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr
660 665 670
Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu
675 680 685
Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn
690 695 700
Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser
705 710 715 720
Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730
<210> 36
<211> 738
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.39
<400> 36
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly
580 585 590
Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 37
<211> 736
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.43
<400> 37
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Ile Gly
145 150 155 160
Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp Asn
260 265 270
Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr Thr
405 410 415
Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly Phe
450 455 460
Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp Leu
465 470 475 480
Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly Gln
485 490 495
Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His Leu
500 505 510
Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr His
515 520 525
Lys Asp Asp Glu Glu Arg Phe Phe Pro Val Thr Gly Ser Cys Phe Trp
530 535 540
Gln Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val Met Leu
545 550 555 560
Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Glu
565 570 575
Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Gln
580 585 590
Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605
Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 38
<211> 738
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.46
<400> 38
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala
580 585 590
Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 39
<211> 738
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.2
<400> 39
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Gly Ala
580 585 590
Pro Ile Val Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Val Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 40
<211> 729
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.37
<400> 40
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Ile Asp Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln
145 150 155 160
Gln Pro Ala Lys Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu
165 170 175
Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser
180 185 190
Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Thr Ala
195 200 205
Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp
210 215 220
His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr
225 230 235 240
Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile
245 250 255
Ser Ser Ser Ser Ser Gly Ala Thr Asn Asp Asn His Tyr Phe Gly Tyr
260 265 270
Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe
275 280 285
Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg
290 295 300
Pro Lys Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val
305 310 315 320
Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr
325 330 335
Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly
340 345 350
Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met
355 360 365
Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val
370 375 380
Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu
385 390 395 400
Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro
405 410 415
Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn
420 425 430
Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr
435 440 445
Thr Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr
450 455 460
Met Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln
465 470 475 480
Gln Arg Leu Ser Lys Asn Leu Asp Phe Asn Asn Asn Ser Asn Phe Ala
485 490 495
Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr
500 505 510
Asn Pro Gly Ile Pro Met Ala Thr Asn Lys Asp Asp Glu Asp Gln Phe
515 520 525
Phe Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn
530 535 540
Lys Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys
545 550 555 560
Thr Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn
565 570 575
Leu Gln Ser Ser Thr Ala Gly Pro Gln Ser Gln Thr Ile Asn Ser Gln
580 585 590
Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln
595 600 605
Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro
610 615 620
Ser Pro Leu Met Gly Gly Phe Gly Leu Glu His Pro Pro Pro Gln Ile
625 630 635 640
Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr
645 650 655
Pro Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val
660 665 670
Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp
675 680 685
Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val
690 695 700
Glu Phe Ala Val Asn Pro Asp Gly Val Tyr Thr Glu Pro Arg Pro Ile
705 710 715 720
Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725
<210> 41
<211> 736
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.8
<400> 41
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Ile Gly
145 150 155 160
Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Leu Gly Pro Asn Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp Asn
260 265 270
Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Thr Asn Glu Gly Thr Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn
370 375 380
Gly Ser Gln Ala Leu Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr
405 410 415
Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Val
435 440 445
Arg Thr Gln Thr Thr Gly Thr Gly Gly Thr Gln Thr Leu Ala Phe Ser
450 455 460
Gln Ala Gly Pro Ser Ser Met Ala Asn Gln Ala Arg Asn Trp Val Pro
465 470 475 480
Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Asn Gln Asn
485 490 495
Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Ala Lys Phe Lys Leu Asn
500 505 510
Gly Arg Asp Ser Leu Met Asn Pro Gly Val Ala Met Ala Ser His Lys
515 520 525
Asp Asp Asp Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly
530 535 540
Lys Gln Gly Ala Gly Asn Asp Gly Val Asp Tyr Ser Gln Val Leu Ile
545 550 555 560
Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Glu
565 570 575
Tyr Gly Ala Val Ala Ile Asn Asn Gln Ala Ala Asn Thr Gln Ala Gln
580 585 590
Thr Gly Leu Val His Asn Gln Gly Val Ile Pro Gly Met Val Trp Gln
595 600 605
Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Leu Thr Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 42
<211> 735
<212> PRT
<213> capsid protein of adeno-associated virus, hu.29
<400> 42
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro
20 25 30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Ser Gly Thr Gly
145 150 155 160
Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 185 190
Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380
Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Gly Tyr Phe Pro Ser
385 390 395 400
Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu
405 410 415
Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430
Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr
435 440 445
Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450 455 460
Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480
Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn
485 490 495
Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly
500 505 510
Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp
515 520 525
Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys
530 535 540
Gln Gly Pro Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr
545 550 555 560
Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575
Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr
580 585 590
Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp
595 600 605
Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr
610 615 620
Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys
625 630 635 640
His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655
Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670
Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685
Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700
Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr
705 710 715 720
Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 43
<211> 738
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.64
<400> 43
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala
580 585 590
Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Val Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Arg Arg Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 44
<211> 737
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.48
<400> 44
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Lys Gly Ala Asp Gly Val Gly Asn
210 215 220
Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn
260 265 270
Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Ser
290 295 300
Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn
370 375 380
Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr
405 410 415
Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala
435 440 445
Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln
450 455 460
Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile
530 535 540
Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu
545 550 555 560
Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu
565 570 575
Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala
580 585 590
Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp
595 600 605
Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro
610 615 620
His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly
625 630 635 640
Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro
645 650 655
Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile
660 665 670
Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu
675 680 685
Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser
690 695 700
Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly
705 710 715 720
Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn
725 730 735
Leu
<210> 45
<211> 736
<212> PRT
<213> capsid protein of adeno-associated virus, hu.44
<400> 45
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Arg Pro Gly Pro Pro Pro Pro
20 25 30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Glu Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Gly Pro Asp Ser Ser Ser Gly Ile Gly
145 150 155 160
Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190
Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His
260 265 270
Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe
275 280 285
His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn
290 295 300
Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln
305 310 315 320
Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn
325 330 335
Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro
340 345 350
Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala
355 360 365
Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly
370 375 380
Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro
385 390 395 400
Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe
405 410 415
Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp
420 425 430
Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Pro Asn Arg
435 440 445
Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser
450 455 460
Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro
465 470 475 480
Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn
485 490 495
Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn
500 505 510
Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys
515 520 525
Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly
530 535 540
Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile
545 550 555 560
Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg
565 570 575
Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro Ala
580 585 590
Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605
Gly Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn
690 695 700
Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu
705 710 715 720
Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu
725 730 735
<210> 46
<211> 735
<212> PRT
<213> capsid protein of ch.5
<400> 46
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro
20 25 30
Lys Pro Asn Gln Gln His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
His Gln Leu Lys Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Val Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Ile Glu Gln Ser Pro Ala Glu Pro Asp Ser Ser Ser Gly Ile Gly
145 150 155 160
Lys Ser Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Asn Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Glu Ser Gly Ala Thr Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380
Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser
385 390 395 400
Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu
405 410 415
Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430
Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr
435 440 445
Gln Gly Thr Ser Gly Thr Thr Gln Gln Ser Arg Leu Gln Phe Ser Gln
450 455 460
Ala Gly Pro Ser Ser Met Ala Gln Gln Ala Lys Asn Trp Leu Pro Gly
465 470 475 480
Pro Ser Tyr Arg Gln Gln Arg Met Ser Lys Thr Ala Asn Asp Asn Asn
485 490 495
Asn Ser Glu Phe Ala Trp Thr Ala Ala Thr Lys Tyr Tyr Leu Asn Gly
500 505 510
Arg Asn Ser Leu Val Asn Pro Gly Pro Pro Met Ala Ser His Lys Asp
515 520 525
Asp Glu Glu Lys Tyr Phe Pro Met His Gly Asn Leu Ile Phe Gly Lys
530 535 540
Gln Gly Thr Gly Thr Thr Asn Val Asp Ile Glu Ser Val Leu Ile Thr
545 550 555 560
Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575
Gly Gln Val Ala Thr Asn His Gln Ser Gln Asn Thr Thr Ala Ser Tyr
580 585 590
Gly Ser Val Asp Ser Gln Gly Ile Leu Pro Gly Met Val Trp Gln Asp
595 600 605
Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr
610 615 620
Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys
625 630 635 640
His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655
Pro Ala Thr Thr Phe Thr Pro Gly Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670
Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685
Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700
Asn Lys Ser Val Asn Val Glu Phe Thr Val Asp Ala Asn Gly Val Tyr
705 710 715 720
Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 47
<211> 737
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.67
<400> 47
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Leu Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn
210 215 220
Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn
260 265 270
Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn
370 375 380
Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr
405 410 415
Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala
435 440 445
Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln
450 455 460
Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile
530 535 540
Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu
545 550 555 560
Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu
565 570 575
Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala
580 585 590
Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp
595 600 605
Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro
610 615 620
His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly
625 630 635 640
Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro
645 650 655
Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile
660 665 670
Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu
675 680 685
Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser
690 695 700
Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly
705 710 715 720
Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn
725 730 735
Leu
<210> 48
<211> 738
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.58
<400> 48
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190
Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser
210 215 220
Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp
260 265 270
Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn
275 280 285
Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn
290 295 300
Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320
Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335
Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345 350
Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe
355 360 365
Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn
370 375 380
Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr
385 390 395 400
Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr
405 410 415
Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser
420 425 430
Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
435 440 445
Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460
Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met
530 535 540
Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val
545 550 555 560
Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575
Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala
580 585 590
Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val
595 600 605
Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620
Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe
625 630 635 640
Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Ser Thr Pro Val
645 650 655
Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe
660 665 670
Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685
Leu Gln Lys Glu Asn Ser Lys Cys Trp Asn Pro Glu Ile Gln Tyr Thr
690 695 700
Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720
Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735
Asn Leu
<210> 49
<211> 737
<212> PRT
<213> capsid protein of macaque gland-associated virus, rh.54
<400> 49
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
145 150 155 160
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro
180 185 190
Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205
Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn
210 215 220
Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val
225 230 235 240
Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His
245 250 255
Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn
260 265 270
Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn
370 375 380
Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Val Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr
405 410 415
Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala
435 440 445
Arg Thr Gln Ser Asn Pro Gly Gly Thr Ser Gly Asn Arg Glu Leu Gln
450 455 460
Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480
Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485 490 495
Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 505 510
Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr
515 520 525
His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile
530 535 540
Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu
545 550 555 560
Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu
565 570 575
Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala
580 585 590
Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp
595 600 605
Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro
610 615 620
His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly
625 630 635 640
Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro
645 650 655
Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile
660 665 670
Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu
675 680 685
Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser
690 695 700
Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly
705 710 715 720
Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn
725 730 735
Leu
<210> 50
<211> 736
<212> PRT
<213> capsid protein of adeno-associated virus, hu.48
<400> 50
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
20 25 30
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Ile Gly
145 150 155 160
Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro
180 185 190
Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Thr Ser Thr Gly Ala Ser Asn Asp Asn His
260 265 270
Tyr Phe Gly Tyr Gly Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe
275 280 285
His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn
290 295 300
Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln
305 310 315 320
Val Glu Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn
325 330 335
Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro
340 345 350
Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala
355 360 365
Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly
370 375 380
Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro
385 390 395 400
Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe
405 410 415
Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp
420 425 430
Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg
435 440 445
Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser
450 455 460
Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro
465 470 475 480
Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn
485 490 495
Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn
500 505 510
Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Val Ala Ser His Lys
515 520 525
Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly
530 535 540
Lys Glu Ser Ala Gly Ala Ser Ser Thr Ala Leu Asp Asn Val Met Ile
545 550 555 560
Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg
565 570 575
Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro Ala
580 585 590
Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu
625 630 635 640
Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn
690 695 700
Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu
705 710 715 720
Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu
725 730 735

Claims (32)

1. An adeno-associated virus (AAV) comprising an AAV capsid and a minigene having an AAV inverted terminal repeat and a heterologous gene operably linked to regulatory sequences which direct expression of the heterologous gene in a host cell, wherein the AAV capsid comprises an AAV vp1 protein, an AAV vp2 protein and an AAV vp3 protein, the AAV vp1 protein having i) a sequence consisting of amino acids 1 to 738 in SEQ ID No. 4(AAVrh46) and having a D41N modification, or ii) a sequence at least 95% identical to a sequence consisting of amino acids 1 to 738 in SEQ ID No. 4 and having a residue 41 of N (D41N).
2. An adeno-associated virus (AAV) comprising an AAV capsid and a minigene having an AAV inverted terminal repeat and a heterologous gene operably linked to regulatory sequences which direct expression of the heterologous gene in a host cell, wherein the AAV capsid comprises an AAV vp1 protein, an AAV vp2 protein and an AAV vp3 protein, the AAV vp1 protein having i) a sequence consisting of amino acids 1 to 738 in SEQ ID No. 4(AAVrh46) and having a modification of G135P, or ii) a sequence at least 95% identical to a sequence consisting of amino acids 1 to 738 in SEQ ID No. 4 and having residue 135 of P (G135P).
3. An adeno-associated virus (AAV) comprising an AAV capsid and a minigene having an AAV inverted terminal repeat and a heterologous gene operably linked to regulatory sequences which direct expression of the heterologous gene in a host cell, wherein the AAV capsid comprises an AAV vp1 protein, an AAV vp2 protein and an AAV vp3 protein, the AAV vp1 protein having i) a sequence consisting of amino acids 1 to 738 in SEQ ID No. 4(AAVrh46) and having a modification of a136V, or ii) a sequence at least 95% identical to a sequence consisting of amino acids 1 to 738 in SEQ ID No. 4 and having residue 136V (a 136V).
4. The AAV of claim 1, wherein the AAV inverted terminal repeat is from a different AAV than the AAV providing the capsid protein.
5. A composition comprising the AAV of claim 1 and a physiologically compatible carrier.
6. The AAV of claim 1, wherein the heterologous gene encodes ornithine transcarbamylase, arginosuccinate synthase, arginosuccinate lyase, arginase, fumarylacetoacetate hydrolase, carbamyl phosphate synthase I, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, cystathionine beta-synthase, branched ketoacid decarboxylase, isovaleryl-CoA dehydrogenase, propionyl-CoA carboxylase, methylmalonyl-CoA mutase, glutaryl-CoA dehydrogenase (GCDH), beta-glucosidase, pyruvate carboxylate, liver phosphorylase, phosphorylase kinase, beta-Glucuronidase (GUSB), glycine decarboxylase, Low Density Lipoprotein (LDL) receptor, High Density Lipoprotein (HDL) receptor, beta-glucosidase, or a pharmaceutically acceptable salt thereof, A Very Low Density Lipoprotein (VLDL) receptor, scavenger receptor, glucocorticoid receptor, estrogen receptor, vitamin D receptor, nuclear receptor, cystic fibrosis transmembrane conductance regulator (CFTR) sequence, factor IX or a variant thereof, factor VIII or a variant thereof, an dystrophin gene product, or an immunoglobulin.
7. The AAV of claim 6, wherein the dystrophin gene product is a mini-dystrophin or a micro-dystrophin.
8. The AAV of claim 6, wherein the immunoglobulin comprises an IgG, IgM, IgA, IgD, IgE, chimeric immunoglobulin, humanized antibody and/or single chain antibody.
9. A recombinant nucleic acid molecule encoding the AAV vp1 protein of claim 1.
10. A cultured host cell comprising the nucleic acid molecule of claim 9.
11. The cultured host cell of claim 10 further comprising a rep gene.
12. The cultured host cell of claim 10, wherein the recombinant nucleic acid molecule is a plasmid.
13. The AAV of claim 2, wherein the AAV inverted terminal repeat is from a different AAV than the AAV providing the capsid protein.
14. A composition comprising the AAV of claim 2 and a physiologically compatible carrier.
15. The AAV of claim 2, wherein the heterologous gene encodes ornithine transcarbamylase, arginosuccinate synthase, arginosuccinate lyase, arginase, fumarylacetoacetate hydrolase, carbamyl phosphate synthase I, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, cystathionine beta-synthase, branched ketoacid decarboxylase, isovaleryl-CoA dehydrogenase, propionyl-CoA carboxylase, methylmalonyl-CoA mutase, glutaryl-CoA dehydrogenase (GCDH), beta-glucosidase, pyruvate carboxylate, liver phosphorylase, phosphorylase kinase, beta-Glucuronidase (GUSB), glycine decarboxylase, Low Density Lipoprotein (LDL) receptor, High Density Lipoprotein (HDL) receptor, beta-glucosidase, or a pharmaceutically acceptable salt thereof, A Very Low Density Lipoprotein (VLDL) receptor, scavenger receptor, glucocorticoid receptor, estrogen receptor, vitamin D receptor, nuclear receptor, cystic fibrosis transmembrane conductance regulator (CFTR) sequence, factor IX or a variant thereof, factor VIII or a variant thereof, an dystrophin gene product, or an immunoglobulin.
16. The AAV5 of claim 15, wherein the dystrophin gene product is a mini-dystrophin or a micro-dystrophin.
17. The AAV5 of claim 15, wherein the immunoglobulin comprises an IgG, IgM, IgA, IgD, IgE, a chimeric immunoglobulin, a humanized antibody, and/or a single chain antibody.
18. A recombinant nucleic acid molecule encoding the AAV vp1 protein of claim 2.
19. A cultured host cell comprising the nucleic acid molecule of claim 18.
20. The cultured host cell of claim 19 further comprising a rep gene.
21. The cultured host cell of claim 19, wherein the recombinant nucleic acid molecule is a plasmid.
22. The AAV of claim 3, wherein the AAV inverted terminal repeat is from a different AAV from the AAV providing the capsid protein.
23. A composition comprising the AAV of claim 3 and a physiologically compatible carrier.
24. The AAV of claim 3, wherein the heterologous gene encodes ornithine transcarbamylase, arginosuccinate synthase, arginosuccinate lyase, arginase, fumarylacetoacetate hydrolase, carbamyl phosphate synthase I, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, cystathionine beta-synthase, branched ketoacid decarboxylase, isovaleryl-CoA dehydrogenase, propionyl-CoA carboxylase, methylmalonyl CoA mutase, glutaryl-CoA dehydrogenase (GCDH), beta-glucosidase, pyruvate carboxylate, liver phosphorylase, phosphorylase kinase, beta-Glucuronidase (GUSB), glycine decarboxylase, Low Density Lipoprotein (LDL) receptor, High Density Lipoprotein (HDL) receptor, A Very Low Density Lipoprotein (VLDL) receptor, scavenger receptor, glucocorticoid receptor, estrogen receptor, vitamin D receptor, nuclear receptor, cystic fibrosis transmembrane conductance regulator (CFTR) sequence, factor IX or a variant thereof, factor VIII or a variant thereof, an dystrophin gene product, or an immunoglobulin.
25. The AAV of claim 24, wherein the dystrophin gene product is a mini-dystrophin or a micro-dystrophin.
26. The AAV of claim 24, wherein the immunoglobulin comprises IgG, IgM, IgA, IgD, IgE, a chimeric immunoglobulin, a humanized antibody and/or a single chain antibody.
27. A recombinant nucleic acid molecule encoding the AAV vp1 protein of claim 3.
28. A cultured host cell comprising the nucleic acid molecule of claim 27.
29. The cultured host cell of claim 28 further comprising a rep gene.
30. The cultured host cell of claim 28, wherein the recombinant nucleic acid molecule is a plasmid.
31. An adeno-associated virus (AAV) vector having a modified AAVrh48 capsid (rh48.2) having a modified amino acid sequence shown in SEQ ID NO:44 wherein the amino acid residue at position 304 is changed from proto-amino acid to asparagine.
32. An adeno-associated virus (AAV) vector having an AAVhu48 capsid selected from the group consisting of: (a) the hu48 capsid having an amino acid sequence shown in modified SEQ ID No. 50 wherein the original glycine at amino acid residue position 277 is changed to serine, the original glutamic acid at amino acid residue position 322 is changed to lysine, and the proto-amino acid at amino acid residue position 552 is changed to asparagine; and (b) the capsid of hu48 having the amino acid sequence shown in modified SEQ ID NO 50 in which the original glycine at amino acid residue position 277 is changed to serine and the original glutamic acid at amino acid residue position 322 is changed to lysine.
CN202010980343.4A 2005-04-07 2006-04-07 Method for enhancing function of adeno-associated virus vector Pending CN112029737A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US66908305P 2005-04-07 2005-04-07
US60/669,083 2005-04-07
US73349705P 2005-11-04 2005-11-04
US60/733,497 2005-11-04
CN2006800105666A CN101203613B (en) 2005-04-07 2006-04-07 Method of increasing the function of gland related viral vector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2006800105666A Division CN101203613B (en) 2005-04-07 2006-04-07 Method of increasing the function of gland related viral vector

Publications (1)

Publication Number Publication Date
CN112029737A true CN112029737A (en) 2020-12-04

Family

ID=36968964

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202311294343.9A Pending CN117363655A (en) 2005-04-07 2006-04-07 Method for enhancing function of adeno-associated virus vector
CN201611102646.6A Active CN106906241B (en) 2005-04-07 2006-04-07 Method for enhancing function of adeno-associated virus vector
CN2006800105666A Active CN101203613B (en) 2005-04-07 2006-04-07 Method of increasing the function of gland related viral vector
CN201410499227.5A Active CN104293835B (en) 2005-04-07 2006-04-07 The method for strengthening function of gland related viral vector
CN202010980343.4A Pending CN112029737A (en) 2005-04-07 2006-04-07 Method for enhancing function of adeno-associated virus vector
CN201210422034.0A Active CN102994549B (en) 2005-04-07 2006-04-07 Method of increasing the function of an aav vector

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN202311294343.9A Pending CN117363655A (en) 2005-04-07 2006-04-07 Method for enhancing function of adeno-associated virus vector
CN201611102646.6A Active CN106906241B (en) 2005-04-07 2006-04-07 Method for enhancing function of adeno-associated virus vector
CN2006800105666A Active CN101203613B (en) 2005-04-07 2006-04-07 Method of increasing the function of gland related viral vector
CN201410499227.5A Active CN104293835B (en) 2005-04-07 2006-04-07 The method for strengthening function of gland related viral vector

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201210422034.0A Active CN102994549B (en) 2005-04-07 2006-04-07 Method of increasing the function of an aav vector

Country Status (8)

Country Link
US (13) US8999678B2 (en)
EP (12) EP2357010B1 (en)
JP (5) JP5702519B2 (en)
CN (6) CN117363655A (en)
DE (2) DE23193601T1 (en)
DK (2) DK2383346T3 (en)
ES (6) ES2580044T3 (en)
WO (1) WO2006110689A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462037A (en) * 2017-01-30 2019-11-15 学校法人日本医科大学 The mutant of adeno-associated virus (AAV) capsid protein
CN111163811A (en) * 2017-08-25 2020-05-15 奥维德医疗公司 Recombinant adeno-associated vector
CN114502737A (en) * 2019-07-15 2022-05-13 梅里特斯英国第二有限公司 Modified AAV capsid proteins for the treatment of arthritic diseases
CN116789739A (en) * 2022-12-08 2023-09-22 广州派真生物技术有限公司 Adeno-associated virus mutant and application thereof

Families Citing this family (333)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138772A1 (en) 2001-11-13 2003-07-24 Guangping Gao Method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby
US9233131B2 (en) 2003-06-30 2016-01-12 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
US9441244B2 (en) 2003-06-30 2016-09-13 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
ES2874298T3 (en) * 2003-09-30 2021-11-04 Univ Pennsylvania Adeno-associated virus (AAV) clades, sequences, vectors containing the same, and uses thereof
ES2580044T3 (en) * 2005-04-07 2016-08-18 The Trustees Of The University Of Pennsylvania Method of increasing the function of an AAV vector
ES2400235T3 (en) 2006-04-28 2013-04-08 The Trustees Of The University Of Pennsylvania AAV scalable production method
EP2848253A1 (en) * 2006-06-19 2015-03-18 Asklepios Biopharmaceutical, Inc. Modified factor VIII and factor IX genes and vectors for gene therapy
US9725485B2 (en) 2012-05-15 2017-08-08 University Of Florida Research Foundation, Inc. AAV vectors with high transduction efficiency and uses thereof for gene therapy
ES2599632T3 (en) * 2007-04-09 2017-02-02 University Of Florida Research Foundation, Inc. Compositions of rAAV vectors that have tyrosine modified capsid proteins and methods for their use
WO2010011404A2 (en) 2008-05-20 2010-01-28 Eos Neuroscience, Inc. Vectors for delivery of light-sensitive proteins and methods of use
US9217155B2 (en) 2008-05-28 2015-12-22 University Of Massachusetts Isolation of novel AAV'S and uses thereof
US11219696B2 (en) 2008-12-19 2022-01-11 Nationwide Children's Hospital Delivery of polynucleotides using recombinant AAV9
TR201906398T4 (en) * 2009-04-30 2019-05-21 Univ Pennsylvania Compositions for targeting conductive airway cells containing gland-associated virus structures.
US8734809B2 (en) 2009-05-28 2014-05-27 University Of Massachusetts AAV's and uses thereof
WO2011038187A1 (en) 2009-09-25 2011-03-31 The Trustees Of The University Of Pennsylvania Controlled adeno-associated virus (aav) diversification and libraries prepared therefrom
WO2011126808A2 (en) 2010-03-29 2011-10-13 The Trustees Of The University Of Pennsylvania Pharmacologically induced transgene ablation system
US9315825B2 (en) 2010-03-29 2016-04-19 The Trustees Of The University Of Pennsylvania Pharmacologically induced transgene ablation system
EP3536781A1 (en) 2010-04-23 2019-09-11 University of Massachusetts Cns targeting aav vectors and methods of use thereof
JP2013533847A (en) 2010-04-23 2013-08-29 ユニバーシティ オブ マサチューセッツ AAV-based treatment of cholesterol-related disorders
WO2011133874A1 (en) 2010-04-23 2011-10-27 University Of Massachusetts Multicistronic expression constructs
US9309534B2 (en) 2010-07-12 2016-04-12 Universidad Autonoma De Barcelona Gene therapy composition for use in diabetes treatment
US8663624B2 (en) 2010-10-06 2014-03-04 The Regents Of The University Of California Adeno-associated virus virions with variant capsid and methods of use thereof
JP5704361B2 (en) * 2010-10-27 2015-04-22 学校法人自治医科大学 Adeno-associated virus virion for gene transfer into nervous system cells
EP3699286A1 (en) 2011-04-20 2020-08-26 The Trustees of the University of Pennsylvania Regimens and compositions for aav-mediated passive immunization of airborne pathogens
CA2870511C (en) 2011-04-21 2023-08-08 University Of Massachusetts Raav-based compositions and methods for treating alpha-1 anti-trypsin deficiencies
CN105755044A (en) 2011-04-22 2016-07-13 加利福尼亚大学董事会 Adeno-associated Virus Virions With Variant Capsid And Methods Of Use Thereof
US20130039888A1 (en) 2011-06-08 2013-02-14 Nationwide Children's Hospital Inc. Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders
SG11201404956PA (en) 2012-02-17 2014-09-26 Philadelphia Children Hospital Aav vector compositions and methods for gene transfer to cells, organs and tissues
BR122021020419B1 (en) * 2012-04-18 2023-01-17 The Children's Hospital Of Philadelphia ADENO-ASSOCIATED VIRUS (AAV) VECTOR COMPRISING A VP1 CAPSID PROTEIN, PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME, AND USES THEREOF
TWI775096B (en) 2012-05-15 2022-08-21 澳大利亞商艾佛蘭屈澳洲私營有限公司 Treatment of amd using aav sflt-1
US10294281B2 (en) 2012-05-15 2019-05-21 University Of Florida Research Foundation, Incorporated High-transduction-efficiency rAAV vectors, compositions, and methods of use
EP3769789A1 (en) 2012-08-01 2021-01-27 Nationwide Children's Hospital Intrathecal delivery of recombinant adeno-associated virus 9
EP2692868A1 (en) 2012-08-02 2014-02-05 Universitat Autònoma De Barcelona Adeno-associated viral (AAV) vectors useful for transducing adipose tissue
US9636370B2 (en) * 2012-09-28 2017-05-02 The University Of North Carolina At Chapel Hill AAV vectors targeted to oligodendrocytes
EP2984166B1 (en) 2013-03-15 2020-04-22 The Trustees Of The University Of Pennsylvania Compositions for treating mpsi
WO2015012924A2 (en) 2013-04-29 2015-01-29 The Trustees Of The University Of Pennsylvania Tissue preferential codon modified expression cassettes, vectors containing same, and use thereof
CN105408486B (en) * 2013-05-21 2020-07-14 佛罗里达大学研究基金会有限公司 Capsid-modified RAAV3 vector compositions and uses in gene therapy of human liver cancer
CN105247044B (en) * 2013-05-31 2021-05-07 加利福尼亚大学董事会 Adeno-associated virus variants and methods of use thereof
PT3024498T (en) * 2013-07-22 2020-03-06 Childrens Hospital Philadelphia Variant aav and compositions, methods and uses for gene transfer to cells, organs and tissues
EP3049527A4 (en) 2013-09-26 2017-08-16 University of Florida Research Foundation, Inc. Synthetic combinatorial aav capsid library for targeted gene therapy
US20150098925A1 (en) * 2013-10-07 2015-04-09 Kiromic, Llc Compositions and methods for treating cardiovascular diseases using disease-specific promoter
EP3744730A1 (en) 2013-10-11 2020-12-02 Massachusetts Eye & Ear Infirmary Methods of predicting ancestral virus sequences and uses thereof
GB201403684D0 (en) * 2014-03-03 2014-04-16 King S College London Vector
US10072251B2 (en) 2014-02-19 2018-09-11 University Of Massachusetts Recombinant AAVS having useful transcytosis properties
US9890365B2 (en) 2014-03-09 2018-02-13 The Trustees Of The University Of Pennsylvania Compositions useful in treatment of ornithine transcarbamylase (OTC) deficiency
SG10201810150UA (en) 2014-03-17 2018-12-28 Adverum Biotechnologies Inc Compositions and methods for enhanced gene expression in cone cells
US10280418B2 (en) 2014-03-18 2019-05-07 Univeristy Of Massachusetts RAAV-based compositions and methods for treating amyotrophic lateral sclerosis
EP3134431B1 (en) 2014-04-25 2021-04-07 The Trustees Of The University Of Pennsylvania Ldlr variants and their use in compositions for reducing cholesterol levels
WO2015164723A1 (en) 2014-04-25 2015-10-29 The Trustees Of The University Of Pennsylvania Methods and compositions for treating metastatic breast cancer and other cancers in the brain
WO2015168666A2 (en) * 2014-05-02 2015-11-05 Genzyme Corporation Aav vectors for retinal and cns gene therapy
EP3142750B1 (en) 2014-05-13 2020-07-01 The Trustees Of The University Of Pennsylvania Compositions comprising aav expressing dual antibody constructs and uses thereof
US10577627B2 (en) 2014-06-09 2020-03-03 Voyager Therapeutics, Inc. Chimeric capsids
JP2018506261A (en) * 2014-08-13 2018-03-08 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィアThe Children’S Hospital Of Philadelphia Improved expression cassette for genomic integration and expression of mutation factor VIII for treating hemostatic diseases
CA2960912A1 (en) 2014-09-16 2016-03-24 Universitat Autonoma De Barcelona Adeno-associated viral vectors for the gene therapy of metabolic diseases
US10711270B2 (en) 2014-10-03 2020-07-14 University Of Massachusetts High efficiency library-identified AAV vectors
WO2016054554A1 (en) 2014-10-03 2016-04-07 University Of Massachusetts Heterologous targeting peptide grafted aavs
CN107073051B (en) 2014-10-21 2021-08-24 马萨诸塞大学 Recombinant AAV variants and uses thereof
CN112553229A (en) 2014-11-05 2021-03-26 沃雅戈治疗公司 AADC polynucleotides for treating Parkinson's disease
GB201420139D0 (en) 2014-11-12 2014-12-24 Ucl Business Plc Factor IX gene therapy
CN107207556B (en) 2014-11-14 2020-12-08 沃雅戈治疗公司 Regulatory polynucleotides
RU2020108189A (en) 2014-11-14 2020-03-11 Вояджер Терапьютикс, Инк. COMPOSITIONS AND METHODS OF TREATMENT OF LATERAL AMYOTROPHIC SCLEROSIS (ALS)
RU2727015C2 (en) 2014-11-21 2020-07-17 Дзе Юниверсити Оф Норт Каролина Эт Чепел Хилл Aav vectors aimed at the central nervous system
US11697825B2 (en) 2014-12-12 2023-07-11 Voyager Therapeutics, Inc. Compositions and methods for the production of scAAV
WO2016100575A1 (en) 2014-12-16 2016-06-23 Board Of Regents Of The University Of Nebraska Gene therapy for juvenile batten disease
EP3242945B1 (en) 2015-01-07 2021-09-01 Universitat Autònoma de Barcelona Single-vector gene construct comprising insulin and glucokinase genes
WO2016126857A1 (en) 2015-02-03 2016-08-11 University Of Florida Research Foundation, Inc. Recombinant aav1, aav5, and aav6 capsid mutants and uses thereof
US10676726B2 (en) 2015-02-09 2020-06-09 Duke University Compositions and methods for epigenome editing
EP3256170B1 (en) 2015-02-13 2020-09-23 University of Massachusetts Compositions and methods for transient delivery of nucleases
US11021519B2 (en) 2015-03-02 2021-06-01 Adverum Biotechnologies, Inc. Compositions and methods for intravitreal delivery of polynucleotides to retinal cones
KR20180016722A (en) 2015-03-10 2018-02-19 더 트러스티스 오브 컬럼비아 유니버시티 인 더 시티 오브 뉴욕 Recombinant GLUT1 adeno-associated viral vector constructs and related methods for restoring GLUT1 expression
JP6836999B2 (en) 2015-03-24 2021-03-03 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Adeno-associated virus mutants and how to use them
EP3277315A2 (en) * 2015-03-30 2018-02-07 Boehringer Ingelheim Vetmedica, Inc. Pcv2 orf2 carrier platform
JP6851319B2 (en) 2015-04-27 2021-03-31 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Dual AAV vector system for CRISPR / Cas9 mediated modification of human disease
WO2016179496A1 (en) 2015-05-07 2016-11-10 Massachusetts Eye And Ear Infirmary Methods of delivering an agent to the eye
WO2016200543A2 (en) 2015-05-13 2016-12-15 The Trustees Of The University Of Pennsylvania Aav-mediated expression of anti-inluenza antibodies and methods of use thereof
MX2018000307A (en) 2015-06-23 2018-05-02 Childrens Hospital Philadelphia Modified factor ix, and compositions, methods and uses for gene transfer to cells, organs and tissues.
US10676735B2 (en) 2015-07-22 2020-06-09 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
ES2945427T3 (en) * 2015-07-30 2023-07-03 Massachusetts Eye & Ear Infirmary Ancestral AAV sequences and their uses
IL295616A (en) 2015-07-31 2022-10-01 Us Health Modified cells and methods of therapy
IL288662B2 (en) 2015-08-25 2023-09-01 Univ Duke Compositions and methods of improving specificity in genomic engineering using rna-guided endonucleases
CN108137664B (en) * 2015-08-31 2021-11-26 宾夕法尼亚州大学信托人 AAV-EPO for treatment of companion animals
KR20180055872A (en) 2015-09-24 2018-05-25 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 Composition and method for treating complement-mediated diseases
WO2017062750A1 (en) 2015-10-09 2017-04-13 The Trustees Of The University Of Pennsylvania Compositions and methods useful in treating stargardt's disease and other ocular disorders
EP3362571A4 (en) 2015-10-13 2019-07-10 Duke University Genome engineering with type i crispr systems in eukaryotic cells
US20200181644A1 (en) * 2015-10-22 2020-06-11 University Of Florida Research Foundation, Incorporated Synthetic combinatorial aav3 capsid library
US11253576B2 (en) 2015-10-22 2022-02-22 University Of Massachusetts Methods and compositions for treating metabolic imbalance in neurodegenerative disease
EP3364996B1 (en) 2015-10-22 2021-08-25 University of Massachusetts Prostate-targeting adeno-associated virus serotype vectors
JP2019501115A (en) 2015-10-28 2019-01-17 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Intrathecal administration of adeno-associated virus vector for gene therapy
WO2017075335A1 (en) 2015-10-28 2017-05-04 Voyager Therapeutics, Inc. Regulatable expression using adeno-associated virus (aav)
WO2017096162A1 (en) 2015-12-02 2017-06-08 Voyager Therapeutics, Inc. Assays for the detection of aav neutralizing antibodies
CN115957350A (en) 2015-12-11 2023-04-14 宾夕法尼亚州大学信托人 Gene therapy for the treatment of familial hypercholesterolemia
US11015173B2 (en) 2015-12-11 2021-05-25 The Trustees Of The University Of Pennsylvania Scalable purification method for AAV1
WO2017100704A1 (en) 2015-12-11 2017-06-15 The Trustees Of The University Of Pennsylvania Scalable purification method for aavrh10
US11015174B2 (en) 2015-12-11 2021-05-25 The Trustees Of The University Of Pennsylvania Scalable purification method for AAV8
WO2017160360A2 (en) 2015-12-11 2017-09-21 The Trustees Of The University Of Pennsylvania Scalable purification method for aav9
SG10201913266UA (en) 2015-12-11 2020-02-27 Massachusetts Eye & Ear Infirmary Materials and methods for delivering nucleic acids to cochlear and vestibular cells
CN108602859B (en) * 2015-12-14 2023-05-26 北卡罗来纳大学教堂山分校 Modified capsid proteins to enhance parvoviral vector delivery
AU2016370590B2 (en) 2015-12-14 2023-11-02 The Trustees Of The University Of Pennsylvania Composition for treatment of Crigler-Najjar syndrome
CN109069668B (en) 2015-12-14 2023-04-18 宾夕法尼亚州大学信托人 Gene therapy for eye diseases
GB2545763A (en) 2015-12-23 2017-06-28 Adverum Biotechnologies Inc Mutant viral capsid libraries and related systems and methods
EP3411059A4 (en) * 2016-02-02 2019-10-16 University Of Massachusetts Method to enhance the efficiency of systemic aav gene delivery to the central nervous system
SG10201912758TA (en) 2016-02-03 2020-02-27 Univ Pennsylvania Gene therapy for treating mucopolysaccharidosis type i
US11446398B2 (en) 2016-04-11 2022-09-20 Obsidian Therapeutics, Inc. Regulated biocircuit systems
IL262211B2 (en) 2016-04-15 2024-01-01 Univ Pennsylvania Gene therapy for treating mucopolysaccharidosis type ii
SG10202009852PA (en) 2016-04-15 2020-11-27 Univ Pennsylvania Novel aav8 mutant capsids and compositions containing same
WO2017181105A1 (en) 2016-04-15 2017-10-19 University Of Massachusetts Methods and compositions for treating metabolic imbalance
WO2017180936A1 (en) 2016-04-15 2017-10-19 The Trustees Of The University Of Pennsylvania Compositions for treatment of wet age-related macular degeneration
WO2017184463A1 (en) 2016-04-17 2017-10-26 The Trustees Of The University Of Pennsylvania Compositions and methods useful for prophylaxis of organophosphates
WO2017189964A2 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
EP3448874A4 (en) 2016-04-29 2020-04-22 Voyager Therapeutics, Inc. Compositions for the treatment of disease
PT3445773T (en) 2016-05-13 2023-03-13 4D Molecular Therapeutics Inc Adeno-associated virus variant capsids and methods of use thereof
JP7066635B2 (en) 2016-05-18 2022-05-13 ボイジャー セラピューティクス インコーポレイテッド Modulatory polynucleotide
US11951121B2 (en) 2016-05-18 2024-04-09 Voyager Therapeutics, Inc. Compositions and methods for treating Huntington's disease
AU2017284198B2 (en) 2016-06-13 2023-09-28 The University Of North Carolina At Chapel Hill Optimized CLN1 genes and expression cassettes and their use
WO2017218852A1 (en) 2016-06-15 2017-12-21 University Of Massachusetts Recombinant adeno-associated viruses for delivering gene editing molecules to embryonic cells
US11197936B2 (en) 2016-07-08 2021-12-14 The Trustees Of The University Of Pennsylvania Methods and compositions for treatment of disorders and diseases involving RDH12
WO2018022511A1 (en) 2016-07-25 2018-02-01 The Trustees Of The University Of Pennsylvania Compositions comprising a lecithin cholesterol acyltransferase variant and uses thereof
IL263801B2 (en) * 2016-07-26 2024-01-01 Biomarin Pharm Inc Novel adeno-associated virus capsid proteins
KR102508820B1 (en) 2016-07-29 2023-03-13 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Adeno-associated viral virions with variant capsids and methods of use thereof
WO2018044933A1 (en) 2016-08-30 2018-03-08 The Regents Of The University Of California Methods for biomedical targeting and delivery and devices and systems for practicing the same
US10457940B2 (en) 2016-09-22 2019-10-29 University Of Massachusetts AAV treatment of Huntington's disease
WO2018064624A1 (en) * 2016-09-29 2018-04-05 University Of Florida Research Foundation, Incorporated Aavrh.10 variants with host antibody escape capabilities and altered tissue targeting properties
AU2017341849B2 (en) 2016-10-13 2024-03-21 University Of Massachusetts AAV capsid designs
GB2605883B (en) 2016-10-18 2023-03-15 Univ Minnesota Tumor infiltrating lymphocytes and methods of therapy
US11192925B2 (en) 2016-10-19 2021-12-07 Adverum Biotechnologies, Inc. Modified AAV capsids and uses thereof
WO2018100054A1 (en) 2016-12-01 2018-06-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Pharmaceutical compositions for the treatment of retinal degenerative diseases
JP2020510648A (en) 2017-02-20 2020-04-09 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Gene therapy to treat familial hypercholesterolemia
CA3054131C (en) 2017-02-21 2021-05-25 University Of Florida Research Foundation, Incorporated Modified aav capsid proteins and uses thereof
WO2018160573A1 (en) 2017-02-28 2018-09-07 The Trustees Of The University Of Pennsylvania Influenza vaccines based on aav vectors
JOP20190200A1 (en) 2017-02-28 2019-08-27 Univ Pennsylvania Compositions useful in treatment of spinal muscular atrophy
SG10201912976WA (en) 2017-02-28 2020-02-27 Univ Pennsylvania Adeno-associated virus (aav) clade f vector and uses therefor
WO2018160849A1 (en) 2017-03-01 2018-09-07 The Trustees Of The University Of Pennsylvania Gene therapy for ocular disorders
US11613739B2 (en) 2017-04-14 2023-03-28 Regenxbio Inc. Treatment of mucopolysaccharidosis II with recombinant human iduronate-2-sulfatase (IDS) produced by human neural or glial cells
EP3634986A4 (en) 2017-04-24 2021-09-08 The Trustees of The University of Pennsylvania Gene therapy for ocular disorders
US11752181B2 (en) 2017-05-05 2023-09-12 Voyager Therapeutics, Inc. Compositions and methods of treating Huntington's disease
JP2020518258A (en) 2017-05-05 2020-06-25 ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. Amyotrophic lateral sclerosis (ALS) treatment composition and method
CA3061968A1 (en) 2017-05-10 2018-11-15 Massachusetts Eye And Ear Infirmary Methods and compositions for modifying assembly-activating protein (aap)-dependence of viruses
JP7273730B2 (en) 2017-05-11 2023-05-15 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Gene therapy for neuronal ceroid lipofuscinosis
CN108103082B (en) * 2017-05-11 2021-07-13 北京锦篮基因科技有限公司 Adeno-associated virus mediated LCAT gene expression vector and application thereof
US11793887B2 (en) 2017-05-31 2023-10-24 The Trustees Of The University Of Pennsylvania Gene therapy for treating peroxisomal disorders
EP3638316A4 (en) 2017-06-14 2021-03-24 The Trustees Of The University Of Pennsylvania Gene therapy for ocular disorders
JOP20190269A1 (en) 2017-06-15 2019-11-20 Voyager Therapeutics Inc Aadc polynucleotides for the treatment of parkinson's disease
JP2020530307A (en) 2017-06-30 2020-10-22 インティマ・バイオサイエンス,インコーポレーテッド Adeno-associated virus vector for gene therapy
US11890329B2 (en) 2017-07-06 2024-02-06 The Trustees Of The University Of Pennsylvania AAV9-mediated gene therapy for treating mucopolysaccharidosis type I
CN111132626B (en) 2017-07-17 2024-01-30 沃雅戈治疗公司 Track array guidance system
WO2019028306A2 (en) 2017-08-03 2019-02-07 Voyager Therapeutics, Inc. Compositions and methods for delivery of aav
JP2020534788A (en) 2017-08-28 2020-12-03 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Adeno-associated virus capsid mutant and how to use it
FI3684423T3 (en) * 2017-09-20 2023-06-15 4D Molecular Therapeutics Inc Adeno-associated virus variant capsids and methods of use thereof
CA3076036A1 (en) 2017-09-22 2019-03-28 The Trustees Of The University Of Pennsylvania Gene therapy for treating mucopolysaccharidosis type ii
WO2019079242A1 (en) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
AU2018352236A1 (en) 2017-10-16 2020-04-23 The Curators Of The University Of Missouri Treatment of amyotrophic lateral sclerosis (ALS)
EP4317185A3 (en) 2017-10-18 2024-04-17 REGENXBIO Inc. Fully-human post-translationally modified antibody therapeutics
MX2020003945A (en) 2017-10-18 2020-11-09 Regenxbio Inc Treatment of ocular diseases and metastatic colon cancer with human post-translationally modified vegf-trap.
MX2020005451A (en) 2017-11-27 2020-08-27 4D Molecular Therapeutics Inc Adeno-associated virus variant capsids and use for inhibiting angiogenesis.
MX2020005673A (en) 2017-11-30 2020-12-03 Univ Pennsylvania Gene therapy for mucopolysaccharidosis iiib.
CA3083416A1 (en) 2017-11-30 2019-06-06 The Trustees Of The University Of Pennsylvania Gene therapy for mucopolysaccharidosis iii a
CN111936171A (en) 2017-12-19 2020-11-13 阿库斯股份有限公司 AAV-mediated delivery of therapeutic antibodies to the inner ear
US10806802B2 (en) 2018-01-18 2020-10-20 University Of Guelph Adeno-associated virus particle with mutated capsid and methods of use thereof
US10610606B2 (en) 2018-02-01 2020-04-07 Homology Medicines, Inc. Adeno-associated virus compositions for PAH gene transfer and methods of use thereof
WO2019161365A1 (en) 2018-02-19 2019-08-22 Homology Medicines, Inc. Adeno-associated virus compositions for restoring f8 gene function and methods of use thereof
KR20210010434A (en) * 2018-02-27 2021-01-27 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 Novel adeno-associated virus (AAV) vectors with reduced capsid deamidation and uses thereof
AU2019228504A1 (en) * 2018-02-27 2020-09-10 The Trustees Of The University Of Pennsylvania Novel adeno-associated virus (AAV) vectors, AAV vectors having reduced capsid deamidation and uses therefor
US20210032660A1 (en) * 2018-03-29 2021-02-04 Asklepios Biopharmaceutical, Inc. Liver tropic recombinant aav6 vectors that evade neutralization
BR112020020223A2 (en) 2018-04-05 2021-01-19 Genethon RECOMBINANT HYBRID ADENO-ASSOCIATED VIRUS SOROTYPE BETWEEN AAV9 AND AAVRH74 WITH TROPISM BY REDUCED LIVER
WO2019212921A1 (en) 2018-04-29 2019-11-07 Regenxbio Inc. Scalable clarification process for recombinant aav production
CA3098566A1 (en) 2018-04-29 2019-11-07 Zhuchun WU Systems and methods of spectrophotometry for the determination of genome content, capsid content and full/empty ratios of adeno-associated virus particles
JP7253274B2 (en) 2018-05-08 2023-04-06 ラトガース,ザ ステート ユニバーシティ オブ ニュー ジャージー AAV compatible laminin-linker polymeric protein
TW202005978A (en) 2018-05-14 2020-02-01 美商拜奧馬林製藥公司 Novel liver targeting adeno-associated viral vectors
JP2021523914A (en) 2018-05-15 2021-09-09 ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. Compositions and Methods for Treating Parkinson's Disease
TW202015742A (en) 2018-05-15 2020-05-01 美商航海家醫療公司 Compositions and methods for delivery of aav
EP3806888B1 (en) 2018-06-12 2024-01-31 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
EP3807404A1 (en) 2018-06-13 2021-04-21 Voyager Therapeutics, Inc. Engineered 5' untranslated regions (5' utr) for aav production
CA3102817A1 (en) 2018-06-14 2019-12-19 Claire G. ZHANG Anion exchange chromatography for recombinant aav production
GB201811368D0 (en) 2018-07-11 2018-08-29 Ucb Biopharma Sprl Antibody
MX2021000810A (en) 2018-07-24 2021-04-28 Voyager Therapeutics Inc Systems and methods for producing gene therapy formulations.
EP3833745A1 (en) 2018-08-10 2021-06-16 REGENXBIO Inc. Scalable method for recombinant aav production
US10842885B2 (en) 2018-08-20 2020-11-24 Ucl Business Ltd Factor IX encoding nucleotides
SG11202102058UA (en) 2018-08-30 2021-03-30 Tenaya Therapeutics Inc Cardiac cell reprogramming with myocardin and ascl1
US20210395776A1 (en) 2018-09-28 2021-12-23 Voyager Therapeutics, Inc. Frataxin expression constructs having engineered promoters and methods of use thereof
US20230040603A1 (en) 2018-10-01 2023-02-09 The Trustees Of The University Of Pennsylvania Compositions useful for treating gm1 gangliosidosis
WO2020072849A1 (en) 2018-10-04 2020-04-09 Voyager Therapeutics, Inc. Methods for measuring the titer and potency of viral vector particles
SG11202103425YA (en) 2018-10-05 2021-05-28 Voyager Therapeutics Inc Engineered nucleic acid constructs encoding aav production proteins
US20210371470A1 (en) 2018-10-12 2021-12-02 Voyager Therapeutics, Inc. Compositions and methods for delivery of aav
CA3116701A1 (en) 2018-10-15 2020-04-23 Voyager Therapeutics, Inc. Expression vectors for large-scale production of raav in the baculovirus/sf9 system
UY38407A (en) 2018-10-15 2020-05-29 Novartis Ag TREM2 STABILIZING ANTIBODIES
WO2020081415A1 (en) 2018-10-15 2020-04-23 Regenxbio Inc. Method for measuring the infectivity of replication defective viral vectors and viruses
US20210386788A1 (en) 2018-10-24 2021-12-16 Obsidian Therapeutics, Inc. Er tunable protein regulation
CN113518628A (en) 2019-01-04 2021-10-19 阿尔特拉吉尼克斯制药公司 Gene therapy constructs for treating wilson's disease
SG11202107645RA (en) 2019-01-18 2021-08-30 Voyager Therapeutics Inc Methods and systems for producing aav particles
US20220133909A1 (en) * 2019-01-23 2022-05-05 University Of Florida Research Foundation, Incorporated Highly efficient transduction and lateral spread in the retina by a novel aav virus enhanced by rational design
KR20210130158A (en) 2019-01-31 2021-10-29 오레곤 헬스 앤드 사이언스 유니버시티 Methods Using Transcription-Dependent Directed Evolution of AAV Capsids
TW202045730A (en) 2019-02-22 2020-12-16 賓州大學委員會 Recombinant adeno-associated virus for treatment of grn-associated adult-onset neurodegeneration
MX2021010149A (en) 2019-02-25 2021-09-14 Novartis Ag Compositions and methods to treat bietti crystalline dystrophy.
JP2022520875A (en) 2019-02-25 2022-04-01 ノバルティス アーゲー Compositions and Methods for Treating Bietti Crystallin Retinopathy
JP2022525848A (en) 2019-02-26 2022-05-20 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Composition useful for the treatment of Krabbe disease
CA3135843A1 (en) 2019-04-03 2020-10-08 Regenxbio Inc. Gene therapy for eye pathologies
TW202102526A (en) 2019-04-04 2021-01-16 美商銳進科斯生物股份有限公司 Recombinant adeno-associated viruses and uses thereof
DK3953483T3 (en) 2019-04-11 2023-12-18 Regenxbio Inc SIZE CHROMATOGRAPHY METHODS FOR CHARACTERIZING COMPOSITIONS OF RECOMBINANT ADENO-ASSOCIATED VIRUS
TW202332458A (en) 2019-04-19 2023-08-16 美商銳進科斯生物股份有限公司 Adeno-associated virus vector formulations and methods
CA3136872A1 (en) * 2019-04-23 2020-10-29 Inserm (Institut National De La Sante Et De La Recherche Medicale) New adeno-associated virus (aav) variants and uses thereof for gene therapy
EP3959323A1 (en) 2019-04-24 2022-03-02 REGENXBIO Inc. Fully-human post-translationally modified antibody therapeutics
WO2020222858A1 (en) * 2019-04-27 2020-11-05 Ocugen, Inc. Adeno-associated virus vector mediated gene therapy for ophthalmic diseases
SG11202111102SA (en) * 2019-04-29 2021-11-29 Univ Pennsylvania Novel aav capsids and compositions containing same
EP3966227A1 (en) 2019-05-07 2022-03-16 Voyager Therapeutics, Inc. Compositions and methods for the vectored augmentation of protein destruction, expression and/or regulation
EP3997225A1 (en) 2019-07-10 2022-05-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of epilepsy
US20230137971A1 (en) 2019-07-11 2023-05-04 Tenaya Therapeutics Inc. Cardiac cell reprogramming with micrornas and other factors
US20230042103A1 (en) 2019-07-26 2023-02-09 Regenxbio Inc. Engineered nucleic acid regulatory element and methods of uses thereof
WO2021021674A1 (en) 2019-07-26 2021-02-04 Akouos, Inc. Methods of treating hearing loss using a secreted target protein
US20220280608A1 (en) 2019-08-26 2022-09-08 Regenxbio Inc. Treatment of diabetic retinopathy with fully-human post-translationally modified anti-vegf fab
WO2021040736A1 (en) 2019-08-30 2021-03-04 Obsidian Therapeutics, Inc. Tandem cd19 car-based compositions and methods for immunotherapy
US20220333133A1 (en) 2019-09-03 2022-10-20 Voyager Therapeutics, Inc. Vectorized editing of nucleic acids to correct overt mutations
US20220348937A1 (en) 2019-09-06 2022-11-03 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
US20220340643A1 (en) 2019-09-13 2022-10-27 Rutgers, The State University Of New Jersey Aav-compatible laminin-linker polymerization proteins
US20220347298A1 (en) 2019-10-04 2022-11-03 Ultragenyx Pharmaceutical Inc. Methods for improved therapeutic use of recombinant aav
MX2022004146A (en) 2019-10-07 2022-09-19 Regenxbio Inc Adeno-associated virus vector pharmaceutical composition and methods.
US20220403414A1 (en) * 2019-10-16 2022-12-22 Wuxi Apptec (Shanghai) Co., Ltd. Novel aav variant
US20230016983A1 (en) 2019-11-19 2023-01-19 lNSERM (INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE) Antisense oligonucleotides and thier use for the treatment of cancer
KR20220107222A (en) 2019-11-28 2022-08-02 리젠엑스바이오 인크. Microdystrophin gene therapy constructs and uses thereof
CA3164189A1 (en) 2019-12-10 2021-06-17 Takeda Pharmaceutical Company Limited Adeno associated virus vectors for the treatment of hunter disease
CA3161367A1 (en) * 2019-12-10 2021-06-17 Homology Medicines, Inc. Adeno-associated virus compositions and methods of use thereof
TW202140791A (en) 2020-01-13 2021-11-01 美商霍蒙拉奇醫藥公司 Methods of treating phenylketonuria
AU2021211416A1 (en) 2020-01-22 2022-08-11 Regenxbio Inc. Treatment of mucopolysaccharidosis I with fully-human glycosylated human alpha-L-iduronidase (IDUA)
EP4096631A1 (en) 2020-01-29 2022-12-07 RegenxBio Inc. Treatment of mucopolysaccharidosis ii with recombinant human iduronate-2-sulfatase (ids) produced by human neural or glial cells
IL294638A (en) 2020-01-29 2022-09-01 Regenxbio Inc Treatment of mucopolysaccharidosis iva
WO2021155337A1 (en) 2020-02-02 2021-08-05 The Trustees Of The University Of Pennsylvania Compositions useful for treating gm1 gangliosidosis
EP4103724A1 (en) 2020-02-14 2022-12-21 Ultragenyx Pharmaceutical Inc. Gene therapy for treating cdkl5 deficiency disorder
WO2021168509A1 (en) * 2020-02-25 2021-09-02 Children's Medical Research Institute Adeno-associated virus capsid polypeptides and vectors
WO2021188892A1 (en) 2020-03-19 2021-09-23 Ultragenyx Pharmaceutical Inc. Compositions and methods for reducing reverse packaging of cap and rep sequences in recombinant aav
CA3175034A1 (en) 2020-03-27 2021-09-30 UCB Biopharma SRL Autonomous knob domain peptides
WO2021202532A1 (en) 2020-03-31 2021-10-07 Ultragenyx Pharmaceutical Inc. Gene therapy for treating propionic acidemia
KR20220167380A (en) * 2020-04-13 2022-12-20 매사추세츠 아이 앤드 이어 인퍼머리 How to make and use a vaccine against coronavirus
CA3180222A1 (en) 2020-04-15 2021-10-21 Voyager Therapeutics, Inc. Tau binding compounds
JP2023526311A (en) 2020-05-12 2023-06-21 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Compositions Useful for Treating Krabbe Disease
BR112022022212A2 (en) 2020-05-12 2022-12-13 Univ Pennsylvania COMPOSITIONS FOR SPECIFIC DRG REDUCTION OF TRANSGENE EXPRESSION
TW202208405A (en) 2020-05-13 2022-03-01 美商阿科奧斯公司 Compositions and methods for treating slc26a4-associated hearing loss
WO2021231538A2 (en) 2020-05-13 2021-11-18 Akouos, Inc. Compositions and methods for treating kcnq4-associated hearing loss
AU2021282257A1 (en) 2020-05-26 2022-12-01 Shape Therapeutics Inc. High throughput engineering of functional AAV capsids
WO2021247995A2 (en) 2020-06-04 2021-12-09 Voyager Therapeutics, Inc. Compositions and methods of treating neuropathic pain
TW202214695A (en) 2020-06-17 2022-04-16 賓州大學委員會 Compositions and methods for treatment of gene therapy patients
JP2023540429A (en) 2020-07-10 2023-09-25 アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) Methods and compositions for treating epilepsy
IL299762A (en) 2020-07-13 2023-03-01 Univ Pennsylvania Compositions useful for treatment of charcot-marie-tooth disease
CN117120619A (en) 2020-07-27 2023-11-24 沃雅戈治疗公司 Compositions and methods for treating neurological disorders associated with a deficiency in glucosylceramidase beta
US20230285596A1 (en) 2020-07-27 2023-09-14 Voyager Therapeutics, Inc Compositions and methods for the treatment of niemann-pick type c1 disease
US20220145328A1 (en) 2020-07-30 2022-05-12 Shape Therapeutics Inc. STABLE CELL LINES FOR INDUCIBLE PRODUCTION OF rAAV VIRIONS
CA3190399A1 (en) 2020-08-24 2022-03-03 James M. Wilson Viral vectors encoding glp-1 receptor agonist fusions and uses thereof in treating metabolic diseases
TW202227633A (en) 2020-08-26 2022-07-16 賓州大學委員會 Recombinant adeno-associated virus for treatment of grn-associated adult-onset neurodegeneration
EP4214242A1 (en) 2020-09-15 2023-07-26 RegenxBio Inc. Vectorized antibodies for anti-viral therapy
WO2022060915A1 (en) 2020-09-15 2022-03-24 Regenxbio Inc. Vectorized lanadelumab and administration thereof
WO2022061002A1 (en) 2020-09-18 2022-03-24 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Novel adeno-associated viral (aav) vectors to treat hereditary methylmalonic acidemia (mma) caused by methylmalonyl-coa mutase (mmut) deficiency
WO2022076549A1 (en) 2020-10-07 2022-04-14 Regenxbio Inc. Formulations for suprachoroidal administration such as high viscosity formulations
WO2022076750A2 (en) 2020-10-07 2022-04-14 Regenxbio Inc. Recombinant adeno-associated viruses for cns or muscle delivery
WO2022076711A2 (en) 2020-10-07 2022-04-14 Regenxbio Inc. Adeno-associated viruses for ocular delivery of gene therapy
WO2022076591A1 (en) 2020-10-07 2022-04-14 Regenxbio Inc. Formulations for suprachoroidal administration such as formulations with aggregate formation
CA3194861A1 (en) 2020-10-07 2022-04-14 Regenxbio Inc. Formulations for suprachoroidal administration such as gel formulations
US20230364206A1 (en) 2020-10-07 2023-11-16 Regenxbio Inc. Gene therapy for ocular manifestations of cln2 disease
US11781156B2 (en) 2020-10-09 2023-10-10 Tenaya Therapeutics, Inc. Plakophillin-2 gene therapy methods and compositions
US20230365955A1 (en) 2020-10-09 2023-11-16 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of fabry disease
EP4229186A1 (en) 2020-10-18 2023-08-23 The Trustees of The University of Pennsylvania Improved adeno-associated virus (aav) vector and uses therefor
WO2022094157A1 (en) 2020-10-28 2022-05-05 Regenxbio Inc. Vectorized anti-cgrp and anti-cgrpr antibodies and administration thereof
CN116528892A (en) 2020-10-28 2023-08-01 再生生物股份有限公司 Supported anti-TNF-alpha antibodies for ocular indications
WO2022094078A1 (en) 2020-10-28 2022-05-05 The Trustees Of The University Of Pennsylvania Compositions useful in treatment of rett syndrome
WO2022094295A1 (en) 2020-10-29 2022-05-05 Regenxbio Inc. Vectorized tnf-alpha antagonists for ocular indications
WO2022094255A2 (en) 2020-10-29 2022-05-05 Regenxbio Inc. Vectorized factor xii antibodies and administration thereof
CA3200014A1 (en) 2020-12-01 2022-06-09 James M. Wilson Novel compositions with tissue-specific targeting motifs and compositions containing same
WO2022119890A1 (en) 2020-12-01 2022-06-09 The Trustees Of The University Of Pennsylvania Compositions and uses thereof for treatment of angelman syndrome
PE20240115A1 (en) 2020-12-01 2024-01-22 Akouos Inc CONSTRUCTIONS OF ANTI-VEGF ANTIBODIES AND RELATED METHODS FOR THE TREATMENT OF SYMPTOMS ASSOCIATED WITH VESTIBULAR SCHWANNOMA
CN116761892A (en) 2020-12-16 2023-09-15 再生生物股份有限公司 Method for producing recombinant adeno-associated virus particles
TW202241943A (en) 2020-12-29 2022-11-01 美商銳進科斯生物股份有限公司 Tau-specific antibody gene therapy compositions, methods and uses thereof
WO2022146839A1 (en) 2020-12-29 2022-07-07 Akouos, Inc. Compositions and methods for treating clrn1-associated hearing loss and/or vision loss
EP4281568A1 (en) 2021-01-21 2023-11-29 RegenxBio Inc. Improved production of recombinant polypeptides and viruses
EP4284335A1 (en) 2021-02-01 2023-12-06 RegenxBio Inc. Gene therapy for neuronal ceroid lipofuscinoses
WO2022169774A1 (en) 2021-02-02 2022-08-11 University Of Massachusetts Inverted terminal repeats from aav serotypes 8 and rh.39 in gene therapy vectors
WO2022173605A2 (en) 2021-02-10 2022-08-18 Regenxbio Inc. Treatment of mucopolysaccharidosis ii with recombinant human iduronate-2-sulfatase (ids)
AR124981A1 (en) 2021-02-26 2023-05-24 Takeda Pharmaceuticals Co COMPOSITION AND METHODS FOR THE TREATMENT OF FABRY DISEASE
WO2022221276A1 (en) 2021-04-12 2022-10-20 The Trustees Of The University Of Pennsylvania Compositions useful for treating spinal and bulbar muscular atrophy (sbma)
WO2022226263A1 (en) 2021-04-23 2022-10-27 The Trustees Of The University Of Pennsylvania Novel compositions with brain-specific targeting motifs and compositions containing same
KR20240000580A (en) 2021-04-23 2024-01-02 유니버시티 오브 로체스터 Genome editing and treatment method by direct non-homologous DNA insertion using retroviral integrase-Cas fusion protein
KR20240004564A (en) 2021-04-26 2024-01-11 리젠엑스바이오 인크. Administration of microdystrophin gene therapy for the treatment of dystrophinopathy
EP4334454A2 (en) 2021-05-04 2024-03-13 RegenxBio Inc. Novel aav vectors and methods and uses thereof
EP4337267A1 (en) 2021-05-11 2024-03-20 RegenxBio Inc. Treatment of duchenne muscular dystrophy and combinations thereof
KR20240025645A (en) 2021-06-25 2024-02-27 옥스포드 바이오메디카 솔루션즈 엘엘씨 Adeno-Associated Virus Packaging System
AU2022301302A1 (en) 2021-07-01 2024-01-25 Indapta Therapeutics, Inc. Engineered natural killer (nk) cells and related methods
WO2023004331A1 (en) 2021-07-19 2023-01-26 New York University Auf1 combination therapies for treatment of muscle degenerative disease
WO2023019168A1 (en) 2021-08-11 2023-02-16 Ultragenyx Pharmaceutical Inc. Compositions and methods for treating a muscular dystrophy
WO2023019226A1 (en) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Genetically modified cells for allogeneic cell therapy
IL310691A (en) 2021-08-11 2024-04-01 Sana Biotechnology Inc Genetically modified primary cells for allogeneic cell therapy
AU2022325955A1 (en) 2021-08-11 2024-02-08 Sana Biotechnology, Inc. Genetically modified cells for allogeneic cell therapy to reduce instant blood mediated inflammatory reactions
WO2023019227A1 (en) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Genetically modified cells for allogeneic cell therapy to reduce complement-mediated inflammatory reactions
US20230090654A1 (en) 2021-08-24 2023-03-23 Homology Medicines, Inc. Adeno-associated virus formulations
WO2023028567A2 (en) * 2021-08-25 2023-03-02 Canbridge Pharmaceuticals, Inc. Aav particles comprising a liver-tropic capsid protein and acid alpha-glucosidase (gaa) and their use to treat pompe disease
WO2023056329A1 (en) 2021-09-30 2023-04-06 Akouos, Inc. Compositions and methods for treating kcnq4-associated hearing loss
WO2023056399A1 (en) 2021-10-02 2023-04-06 The Trustees Of The University Of Pennsylvania Novel aav capsids and compositions containing same
WO2023060113A1 (en) 2021-10-05 2023-04-13 Regenxbio Inc. Compositions and methods for recombinant aav production
WO2023060272A2 (en) 2021-10-07 2023-04-13 Regenxbio Inc. Recombinant adeno-associated viruses for cns tropic delivery
WO2023060269A1 (en) 2021-10-07 2023-04-13 Regenxbio Inc. Recombinant adeno-associated viruses for targeted delivery
WO2023077092A1 (en) 2021-10-28 2023-05-04 Regenxbio Inc. Engineered nucleic acid regulatory elements and methods and uses thereof
WO2023077085A2 (en) 2021-10-29 2023-05-04 Oxford Biomedica Solutions Llc Methods and compositions for the purification of adeno-associated virus
WO2023087019A2 (en) 2021-11-15 2023-05-19 The Trustees Of The University Of Pennsylvania Compositions for drg-specific reduction of transgene expression
WO2023102078A2 (en) 2021-12-01 2023-06-08 Shape Therapeutics Inc. Functional aav capsids for intravitreal administration
WO2023102079A1 (en) 2021-12-01 2023-06-08 Shape Therapeutics Inc. Functional aav capsids for systemic administration
WO2023102517A1 (en) 2021-12-02 2023-06-08 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of fabry disease
WO2023106256A1 (en) * 2021-12-06 2023-06-15 学校法人順天堂 Modified adeno-associated virus vector
US20230323395A1 (en) 2021-12-15 2023-10-12 Homology Medicines, Inc. Methods and compositions for the production of adeno-associated virus
WO2023133574A1 (en) 2022-01-10 2023-07-13 The Trustees Of The University Of Pennsylvania Compositions and methods useful for treatment of c9orf72-mediated disorders
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
TW202338086A (en) 2022-01-10 2023-10-01 賓州大學委員會 Compositions useful in treatment of metachromatic leukodystrophy
WO2023147304A1 (en) 2022-01-25 2023-08-03 The Trustees Of The University Of Pennsylvania Aav capsids for improved heart transduction and detargeting of liver
WO2023150647A1 (en) 2022-02-02 2023-08-10 Sana Biotechnology, Inc. Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses
TW202342525A (en) 2022-02-02 2023-11-01 美商阿科奧斯公司 Anti-vegf antibody constructs and related methods for treating vestibular schwannoma associated symptoms
WO2023158836A1 (en) 2022-02-17 2023-08-24 Sana Biotechnology, Inc. Engineered cd47 proteins and uses thereof
WO2023172491A1 (en) 2022-03-07 2023-09-14 Ultragenyx Pharmaceutical Inc. Modified batch aav production systems and methods
WO2023173123A1 (en) 2022-03-11 2023-09-14 Sana Biotechnology, Inc. Genetically modified cells and compositions and uses thereof
TW202346590A (en) 2022-03-13 2023-12-01 美商銳進科斯生物股份有限公司 Modified muscle-specific promoters
WO2023178220A1 (en) 2022-03-16 2023-09-21 Regenxbio Inc. Compositions and methods for recombinant aav production
WO2023183623A1 (en) 2022-03-25 2023-09-28 Regenxbio Inc. Dominant-negative tumor necrosis factor alpha adeno-associated virus gene therapy
WO2023187728A1 (en) 2022-04-01 2023-10-05 Takeda Pharmaceutical Company Limited Gene therapy for diseases with cns manifestations
WO2023196842A1 (en) 2022-04-06 2023-10-12 Regenxbio Inc. Formulations for suprachoroidal administration such as formulations with aggregate formation
WO2023196873A1 (en) 2022-04-06 2023-10-12 Regenxbio Inc. Pharmaceutical composition comprising a recombinant adeno-associated virus vector with an expression cassette encoding a transgene forsuprachoidal administration
WO2023196892A1 (en) 2022-04-06 2023-10-12 The Trustees Of The University Of Pennsylvania Passive immunization with anti- aav neutralizing antibodies to prevent off-target transduction of intrathecally delivered aav vectors
TW202345913A (en) 2022-04-06 2023-12-01 美商銳進科斯生物股份有限公司 Formulations for suprachoroidal administration such as gel formulations
WO2023196893A1 (en) 2022-04-06 2023-10-12 The Trustees Of The University Of Pennsylvania Compositions and methods for treating her2 positive metastatic breast cancer and other cancers
WO2023201308A1 (en) 2022-04-14 2023-10-19 Regenxbio Inc. Gene therapy for treating an ocular disease
WO2023201277A1 (en) 2022-04-14 2023-10-19 Regenxbio Inc. Recombinant adeno-associated viruses for cns tropic delivery
TW202400803A (en) 2022-05-03 2024-01-01 美商銳進科斯生物股份有限公司 Vectorized anti-complement antibodies and complement agents and administration thereof
WO2023215807A1 (en) 2022-05-03 2023-11-09 Regenxbio Inc. VECTORIZED ANTI-TNF-α INHIBITORS FOR OCULAR INDICATIONS
WO2023214346A1 (en) 2022-05-06 2023-11-09 Novartis Ag Novel recombinant aav vp2 fusion polypeptides
WO2023239627A2 (en) 2022-06-08 2023-12-14 Regenxbio Inc. Methods for recombinant aav production
WO2024007020A1 (en) 2022-06-30 2024-01-04 Indapta Therapeutics, Inc. Combination of engineered natural killer (nk) cells and antibody therapy and related methods
WO2024017990A1 (en) 2022-07-21 2024-01-25 Institut National de la Santé et de la Recherche Médicale Methods and compositions for treating chronic pain disorders
WO2024026377A1 (en) 2022-07-27 2024-02-01 Sana Biotechnology, Inc. Methods of transduction using a viral vector and inhibitors of antiviral restriction factors
WO2024044725A2 (en) 2022-08-24 2024-02-29 Regenxbio Inc. Recombinant adeno-associated viruses and uses thereof
WO2024042485A1 (en) 2022-08-25 2024-02-29 Takeda Pharmaceutical Company Limited Composition for use in the treatment of fabry disease
WO2024073669A1 (en) 2022-09-30 2024-04-04 Regenxbio Inc. Treatment of ocular diseases with recombinant viral vectors encoding anti-vegf fab

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138772A1 (en) * 2001-11-13 2003-07-24 Guangping Gao Method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby
US20040197895A1 (en) * 2001-11-09 2004-10-07 Kotin Robert M. Packaging lines for generation of high titers or recombinant aav vectors
EP1486567A1 (en) * 2003-06-11 2004-12-15 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Improved adeno-associated virus (AAV) vector for gene therapy

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886876A (en) 1983-03-31 1989-12-12 Scripps Clinic And Research Foundation Factor VIII coagulant polypeptides
WO1985001961A1 (en) 1983-10-28 1985-05-09 Genetics Institute Production of factor viii and related products
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US5045455A (en) 1984-01-12 1991-09-03 Chiron Corporation Factor VIII:C cDNA cloning and expression
FI86885C (en) 1984-04-20 1992-10-26 Genentech Inc Method for Preparation of Human Recombinant Factor VIII and Nucleic Acid Sequences and Vectors Used thereto
US4965199A (en) 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
EP0182448A3 (en) 1984-08-24 1987-10-28 Genetics Institute, Inc. Production of factor viii and related products
US5595886A (en) 1986-01-27 1997-01-21 Chiron Corporation Protein complexes having Factor VIII:C activity and production thereof
FI98829C (en) 1986-01-27 1997-08-25 Chiron Corp Process for Preparation of Recombinant Protein Complex with Human Factor VIII: C Activity
US5422260A (en) 1986-05-29 1995-06-06 Genetics Institute, Inc. -Legal Affairs Human factor VIII:c muteins
US5451521A (en) 1986-05-29 1995-09-19 Genetics Institute, Inc. Procoagulant proteins
US5149637A (en) 1987-04-06 1992-09-22 Scripps Clinic & Research Foundation Recombinant Factor VIIIC fragments
IE69026B1 (en) 1987-06-12 1996-08-07 Immuno Ag Novel proteins with factor VIII activity process for their preparation using genetically-engineered cells and pharmaceutical compositions containing them
FR2619314B1 (en) 1987-08-11 1990-06-15 Transgene Sa FACTOR VIII ANALOG, PREPARATION METHOD AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
US5004803A (en) 1988-11-14 1991-04-02 Genetics Institute, Inc. Production of procoagulant proteins
HUT64591A (en) 1989-11-17 1994-01-28 Novo Nordisk As Protein complexes with viii/c factor activity and process for their production
SE465222C5 (en) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab A recombinant human factor VIII derivative and process for its preparation
US5661008A (en) 1991-03-15 1997-08-26 Kabi Pharmacia Ab Recombinant human factor VIII derivatives
SE468050C (en) 1991-03-15 1998-02-11 Pharmacia & Upjohn Ab Recombinant human factor VIII derivative
CA2078721A1 (en) 1991-09-24 1993-03-25 Hiroshi Yonemura Process for preparing human coagulation factor viii protein complex
US6174666B1 (en) 1992-03-27 2001-01-16 The United States Of America As Represented By The Department Of Health And Human Services Method of eliminating inhibitory/instability regions from mRNA
WO1994011013A1 (en) 1992-11-13 1994-05-26 Duke University Chimeric blood coagulation proteins
US5563045A (en) 1992-11-13 1996-10-08 Genetics Institute, Inc. Chimeric procoagulant proteins
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
ES2226029T3 (en) 1993-06-10 2005-03-16 Bayer Corporation VECTOR AND MAMMER CELL LINE WITH IMPROVED PRODUCTIVITY.
US5658785A (en) 1994-06-06 1997-08-19 Children's Hospital, Inc. Adeno-associated virus materials and methods
US5681746A (en) 1994-12-30 1997-10-28 Chiron Viagene, Inc. Retroviral delivery of full length factor VIII
AU6486196A (en) 1995-07-11 1997-02-10 Chiron Corporation Novel factor viii:c polypeptide analogs with altered protease sites
EP0931158A1 (en) 1996-09-06 1999-07-28 The Trustees Of The University Of Pennsylvania An inducible method for production of recombinant adeno-associated viruses utilizing t7 polymerase
EP0932694A2 (en) 1996-09-11 1999-08-04 THE UNITED STATES GOVERNMENT as represented by THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Aav4 vector and uses thereof
US6156303A (en) * 1997-06-11 2000-12-05 University Of Washington Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom
CA2304168A1 (en) 1997-09-19 1999-04-01 The Trustees Of The University Of Pennsylvania Methods and cell line useful for production of recombinant adeno-associated viruses
EP1690868A1 (en) 1997-10-31 2006-08-16 Maxygen, Inc. Modification of virus tropism and host range by viral genome shuffling
US6410300B1 (en) * 1998-01-12 2002-06-25 The University Of North Carolina At Chapel Hill Methods and formulations for mediating adeno-associated virus (AAV) attachment and infection and methods for purifying AAV
ES2313784T3 (en) 1998-05-28 2009-03-01 The Government Of The Usa, As Represented By The Secretary, Department Of Health And Human Services VECTOR AAV5 AND USES OF THE SAME.
US6200560B1 (en) 1998-10-20 2001-03-13 Avigen, Inc. Adeno-associated virus vectors for expression of factor VIII by target cells
US6221349B1 (en) 1998-10-20 2001-04-24 Avigen, Inc. Adeno-associated vectors for expression of factor VIII by target cells
WO2000028061A2 (en) 1998-11-05 2000-05-18 The Trustees Of The University Of Pennsylvania Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same
AU780231B2 (en) 1998-11-10 2005-03-10 University Of North Carolina At Chapel Hill, The Virus vectors and methods of making and administering the same
US6498244B1 (en) 1999-05-28 2002-12-24 Cell Genesys, Inc. Adeno-associated virus capsid immunologic determinants
US7314912B1 (en) * 1999-06-21 2008-01-01 Medigene Aktiengesellschaft AAv scleroprotein, production and use thereof
EP1218527A2 (en) * 1999-07-02 2002-07-03 Onyx Pharmaceuticals, Inc. Adenoviral vectors for treating disease
DE19933288A1 (en) * 1999-07-15 2001-01-18 Medigene Ag Structural protein of adeno-associated virus with altered antigenicity, its production and use
CA2373110A1 (en) * 2000-03-14 2001-09-20 Neurologix, Inc. Production of chimeric capsid vectors
EP1267616B1 (en) * 2000-03-31 2007-08-08 The General Hospital Corporation Methods of increasing hair growth by wnt polypeptide
AU2002248297A1 (en) * 2001-01-05 2002-07-16 Children's Hospital, Inc. Aav2 vectors and methods
EP1419245A4 (en) * 2001-07-13 2006-04-05 Univ Iowa Res Found Pseudotyped adeno-associated viruses and uses thereof
US6410330B1 (en) 2001-07-27 2002-06-25 Coulter International Corp. Method for measurement of nucleated red blood cells
US7647184B2 (en) 2001-08-27 2010-01-12 Hanall Pharmaceuticals, Co. Ltd High throughput directed evolution by rational mutagenesis
EP1359217B1 (en) * 2002-04-29 2006-12-13 The Trustees of The University of Pennsylvania Method for direct rescue and amplification of integrated viruses from cellular DNA of tissues
AU2003265855A1 (en) 2002-08-28 2004-03-19 University Of Florida Modified aav
TWI260273B (en) 2002-09-30 2006-08-21 Canon Kk Liquid supply system, fluid communicating structure, ink supply system, and inkjet recording head utilizing the fluid communicating structure
JP2004157072A (en) 2002-11-08 2004-06-03 Japan Science & Technology Agency Highly-sensitive magnetic marker used for immunoreaction measurement
HUE034785T2 (en) * 2003-06-19 2018-02-28 Genzyme Corp AAV virions with decreased immunoreactivity and uses therefor
US9441244B2 (en) * 2003-06-30 2016-09-13 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
ES2874298T3 (en) * 2003-09-30 2021-11-04 Univ Pennsylvania Adeno-associated virus (AAV) clades, sequences, vectors containing the same, and uses thereof
US7892809B2 (en) * 2004-12-15 2011-02-22 The University Of North Carolina At Chapel Hill Chimeric vectors
ES2580044T3 (en) * 2005-04-07 2016-08-18 The Trustees Of The University Of Pennsylvania Method of increasing the function of an AAV vector
US8283151B2 (en) * 2005-04-29 2012-10-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Isolation, cloning and characterization of new adeno-associated virus (AAV) serotypes
ES2400235T3 (en) 2006-04-28 2013-04-08 The Trustees Of The University Of Pennsylvania AAV scalable production method
WO2008027084A2 (en) 2006-04-28 2008-03-06 The Trustees Of The University Of Pennsylvania Modified aav vectors having reduced capsid immunogenicity and use thereof
US20120322861A1 (en) * 2007-02-23 2012-12-20 Barry John Byrne Compositions and Methods for Treating Diseases
US9434928B2 (en) 2011-11-23 2016-09-06 Nationwide Children's Hospital, Inc. Recombinant adeno-associated virus delivery of alpha-sarcoglycan polynucleotides
BR122021020419B1 (en) * 2012-04-18 2023-01-17 The Children's Hospital Of Philadelphia ADENO-ASSOCIATED VIRUS (AAV) VECTOR COMPRISING A VP1 CAPSID PROTEIN, PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME, AND USES THEREOF
PT3024498T (en) * 2013-07-22 2020-03-06 Childrens Hospital Philadelphia Variant aav and compositions, methods and uses for gene transfer to cells, organs and tissues
EP3744730A1 (en) * 2013-10-11 2020-12-02 Massachusetts Eye & Ear Infirmary Methods of predicting ancestral virus sequences and uses thereof
MX2018000307A (en) 2015-06-23 2018-05-02 Childrens Hospital Philadelphia Modified factor ix, and compositions, methods and uses for gene transfer to cells, organs and tissues.
ES2945427T3 (en) * 2015-07-30 2023-07-03 Massachusetts Eye & Ear Infirmary Ancestral AAV sequences and their uses
CN116096734A (en) * 2020-05-13 2023-05-09 沃雅戈治疗公司 Redirection of tropism of AAV capsids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040197895A1 (en) * 2001-11-09 2004-10-07 Kotin Robert M. Packaging lines for generation of high titers or recombinant aav vectors
US20030138772A1 (en) * 2001-11-13 2003-07-24 Guangping Gao Method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby
EP1486567A1 (en) * 2003-06-11 2004-12-15 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Improved adeno-associated virus (AAV) vector for gene therapy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462037A (en) * 2017-01-30 2019-11-15 学校法人日本医科大学 The mutant of adeno-associated virus (AAV) capsid protein
CN111163811A (en) * 2017-08-25 2020-05-15 奥维德医疗公司 Recombinant adeno-associated vector
CN114502737A (en) * 2019-07-15 2022-05-13 梅里特斯英国第二有限公司 Modified AAV capsid proteins for the treatment of arthritic diseases
CN116789739A (en) * 2022-12-08 2023-09-22 广州派真生物技术有限公司 Adeno-associated virus mutant and application thereof
CN116789739B (en) * 2022-12-08 2024-01-26 广州派真生物技术有限公司 Adeno-associated virus mutant and application thereof

Also Published As

Publication number Publication date
ES2525143T3 (en) 2014-12-18
US20210040504A1 (en) 2021-02-11
ES2525067T3 (en) 2014-12-17
EP2359865A1 (en) 2011-08-24
US20200325491A1 (en) 2020-10-15
US8999678B2 (en) 2015-04-07
CN101203613A (en) 2008-06-18
JP2016168047A (en) 2016-09-23
EP2359867A1 (en) 2011-08-24
US11680274B2 (en) 2023-06-20
JP5912147B2 (en) 2016-04-27
CN102994549B (en) 2015-02-11
DE23193601T1 (en) 2024-02-15
JP2008538286A (en) 2008-10-23
US10947561B2 (en) 2021-03-16
US20170191079A1 (en) 2017-07-06
EP4282957A3 (en) 2024-03-13
EP4282956A2 (en) 2023-11-29
US20150159173A1 (en) 2015-06-11
US20230287452A1 (en) 2023-09-14
EP1866422A2 (en) 2007-12-19
US10626415B2 (en) 2020-04-21
JP2012165744A (en) 2012-09-06
US20230416780A1 (en) 2023-12-28
EP2383346B1 (en) 2014-10-08
EP2357010B1 (en) 2013-06-12
EP3603676A1 (en) 2020-02-05
WO2006110689A2 (en) 2006-10-19
CN102994549A (en) 2013-03-27
JP5677681B2 (en) 2015-02-25
US20200208176A1 (en) 2020-07-02
EP1866422B1 (en) 2016-04-06
DE23193606T1 (en) 2024-02-15
US20230272424A1 (en) 2023-08-31
EP2359865B1 (en) 2013-10-02
US20090197338A1 (en) 2009-08-06
EP2383346A1 (en) 2011-11-02
US20230340532A1 (en) 2023-10-26
US20180057841A1 (en) 2018-03-01
JP2015096070A (en) 2015-05-21
ES2434723T3 (en) 2013-12-17
EP4234687A2 (en) 2023-08-30
JP6275769B2 (en) 2018-02-07
US10301648B2 (en) 2019-05-28
ES2426245T3 (en) 2013-10-22
CN117363655A (en) 2024-01-09
WO2006110689A3 (en) 2007-04-05
JP2014204723A (en) 2014-10-30
CN104293835B (en) 2017-07-04
CN104293835A (en) 2015-01-21
EP2359866A1 (en) 2011-08-24
EP3603676A8 (en) 2020-03-25
EP3409296A1 (en) 2018-12-05
ES2580044T3 (en) 2016-08-18
US20240117378A1 (en) 2024-04-11
EP4282957A2 (en) 2023-11-29
EP2357010A1 (en) 2011-08-17
DK2359867T3 (en) 2015-01-05
CN106906241A (en) 2017-06-30
JP6039632B2 (en) 2016-12-07
EP2359867B1 (en) 2014-10-08
JP5702519B2 (en) 2015-04-15
US20190218574A1 (en) 2019-07-18
EP2359866B1 (en) 2013-07-17
CN101203613B (en) 2012-12-12
DK2383346T3 (en) 2015-01-05
CN106906241B (en) 2020-09-11
EP4282956A3 (en) 2024-03-13
EP3085389A1 (en) 2016-10-26
ES2428218T3 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
CN106906241B (en) Method for enhancing function of adeno-associated virus vector
JP4769417B2 (en) Adeno-associated virus (AAV) serotype 9 sequences, vectors containing the same and uses thereof
JP5054975B2 (en) Syngeneic strains of adeno-associated virus (AAV), sequences, vectors containing them and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40042489

Country of ref document: HK

WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201204