CN112027106A - Unmanned aerial vehicle mooring platform capable of adaptively taking up and paying off and unmanned aerial vehicle positioning method - Google Patents
Unmanned aerial vehicle mooring platform capable of adaptively taking up and paying off and unmanned aerial vehicle positioning method Download PDFInfo
- Publication number
- CN112027106A CN112027106A CN202010896098.9A CN202010896098A CN112027106A CN 112027106 A CN112027106 A CN 112027106A CN 202010896098 A CN202010896098 A CN 202010896098A CN 112027106 A CN112027106 A CN 112027106A
- Authority
- CN
- China
- Prior art keywords
- cable
- mooring
- platform
- unmanned aerial
- aerial vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000006247 magnetic powder Substances 0.000 claims abstract description 15
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000012544 monitoring process Methods 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F3/00—Ground installations specially adapted for captive aircraft
- B64F3/02—Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H75/00—Storing webs, tapes, or filamentary material, e.g. on reels
- B65H75/02—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
- B65H75/34—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
- B65H75/38—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及无人机技术领域,具体涉及一种自适应收放线的无人机系留平台及无人机定位方法。The invention relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle mooring platform and an unmanned aerial vehicle positioning method with an adaptive retractable and unwinding line.
背景技术Background technique
现有无人机为了保证其长时间飞行能力,通常会设置系留平台以对无人机进行持续供能。但随着无人机的升降运动,系留平台的系留线缆很容易出现缠绕冗余的问题,进而影响系留线缆的收放;另外,在无GPS信号场景下,当前系留无人机无法获得准确位置信息而无法安全可靠飞行。In order to ensure the long-term flight capability of existing UAVs, tethered platforms are usually set up to continuously supply the UAVs with energy. However, as the drone moves up and down, the tethered cable of the tethered platform is prone to winding redundancy, which affects the retraction and release of the tethered cable; in addition, in the absence of GPS signals, the current tethered Humans and machines cannot obtain accurate position information and cannot fly safely and reliably.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术中的上述不足,提供了一种能够解决现有技术中系留平台系留线缆容易出故障的问题的自适应收放线的无人机系留平台。Aiming at the above-mentioned deficiencies in the prior art, the present invention provides a UAV tethered platform that can solve the problem that the tethered platform tethered cable is prone to failure in the prior art.
为解决上述技术问题,本发明采用了下列技术方案:In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions:
提供了一种自适应收放线的无人机系留平台,其包括双层框架,双层框架的上端为起降平台,起降平台中部穿设有系留线缆,系留线缆下部穿过出线测量装置并缠绕于绕线盘上,绕线盘与张力控制装置传动连接;张力控制装置包括与线缆末端连接的磁粉离合器和与磁粉离合器传动连接的电机;所述出线测量装置包括与系留线缆铰接的编码器导轮、偏航角传感器和俯仰角传感器;电机分别与控制器和电源模块电连接。Provided is a drone mooring platform with adaptive retraction and release line, which includes a double-layer frame, the upper end of the double-layer frame is a take-off and landing platform, a mooring cable is passed through the middle of the take-off and landing platform, and the lower part of the mooring cable is provided. Passing through the outgoing wire measuring device and winding on the bobbin, the wire reel is drivingly connected with the tension control device; the tension control device includes a magnetic powder clutch connected with the end of the cable and a motor connected with the magnetic powder clutch; the outgoing wire measuring device includes The encoder guide wheel, the yaw angle sensor and the pitch angle sensor are hinged with the mooring cable; the motor is electrically connected with the controller and the power module respectively.
本发明还提供了一种基于上述自适应收放线的无人机系留平台的无人机定位方法,其包括如下步骤:The present invention also provides a UAV positioning method based on the above-mentioned self-adaptive retractable line-based UAV tethered platform, which comprises the following steps:
S1、控制器驱动磁粉离合器,使线缆张紧;S1. The controller drives the magnetic powder clutch to tension the cable;
S2、获取编码器导轮中的编码器线数P、脉冲数S、圈数L和单圈长度D,计算线缆的出线长度d;S2. Obtain the encoder line number P, the pulse number S, the number of turns L and the single-turn length D in the encoder guide wheel, and calculate the cable outlet length d;
S3、获取偏航角传感器和俯仰角传感器监测的监测结果,对监测结果进行滤波优化,得到优化后的角度值;S3. Obtain the monitoring results monitored by the yaw angle sensor and the pitch angle sensor, filter and optimize the monitoring results, and obtain the optimized angle value;
S4、根据优化后的角度值计算无人机所在角度位置;S4. Calculate the angle position of the drone according to the optimized angle value;
S5、根据无人机所在角度位置和线缆的出线长度,得到无人机的具体位置。S5. Obtain the specific position of the drone according to the angular position of the drone and the outgoing length of the cable.
本发明提供的上述自适应收放线的无人机系留平台的主要有益效果在于:The main beneficial effects of the above-mentioned self-adaptive UAV tethered platform provided by the present invention are:
本发明通过设置张力控制装置,实现对系留线缆收放线张力控制,进而能够与出线测量装置配合,实现对系留线缆长度角度信息计算,可减少系留线缆收放对无人机飞行影响,可提供无人机相对空间位置信息。同时可确保系留线缆保持合适张力收放,确保收放过程线缆不冗余;通过出线测量装置结合张力控制装置,避免线缆打滑,通过收放线长度和俯仰偏航角信息,可实时计算系留线缆末端相对起降平台的空间位置信息,提供系留无人机定位控制保障。By setting the tension control device, the invention realizes the tension control of the tethered cable retraction and release line, and can cooperate with the outgoing line measuring device to realize the calculation of the length and angle information of the tethered cable, which can reduce the need for unmanned personnel to retract the tethered cable. It can provide the relative spatial position information of the UAV. At the same time, it can ensure that the tethered cable maintains proper tension and retraction, and ensures that the cable is not redundant during retraction and retraction; the cable outgoing measuring device is combined with the tension control device to prevent the cable from slipping. Real-time calculation of the spatial position information of the end of the tethered cable relative to the take-off and landing platform, providing positioning control guarantee for the tethered UAV.
附图说明Description of drawings
图1是本发明的结构示意图。Figure 1 is a schematic structural diagram of the present invention.
图2是出线装置的结构示意图。FIG. 2 is a schematic diagram of the structure of the outlet device.
图3是无人机定位方法的流程图。FIG. 3 is a flow chart of the UAV positioning method.
图4是俯仰偏航角信息示意图。FIG. 4 is a schematic diagram of pitch and yaw angle information.
其中,1、无人机,2、连接件,3、系留线缆,4、起降平台,5、备用电源,6、升压模块,7、编码器导轮,8、偏航角传感器,9、俯仰角传感器,10、双层框架,11、控制器,12、电源模块,13、绕线盘,14、电机,15、磁粉离合器。Among them, 1. UAV, 2. Connector, 3. Tethered cable, 4. Take-off and landing platform, 5. Backup power supply, 6. Booster module, 7. Encoder guide wheel, 8. Yaw angle sensor , 9, pitch angle sensor, 10, double frame, 11, controller, 12, power module, 13, winding disk, 14, motor, 15, magnetic powder clutch.
具体实施方式Detailed ways
下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with the accompanying drawings:
如图1所示,其为自适应收放线的无人机系留平台的结构示意图。As shown in Figure 1, it is a schematic diagram of the structure of the UAV tethered platform of the adaptive retractable line.
本发明的自适应收放线的无人机系留平台,包括双层框架10,双层框架10的上端为起降平台4,起降平台4可为系留无人机提供不影响系留线缆的安全的起飞和降落平台。The UAV mooring platform of the present invention includes a double-
起降平台4中部穿设有系留线缆3,系留线缆3上端与无人机1下端的连接件2相接,系留线缆3下部穿过出线测量装置并缠绕于绕线盘13上,绕线盘13与张力控制装置传动连接;张力控制装置包括与系留线缆3末端连接的磁粉离合器15和与磁粉离合器15传动连接的电机14;出线测量装置包括与系留线缆3铰接的编码器导轮7、偏航角传感器8和俯仰角传感器9;电机14分别与控制器11和电源模块12电连接。The middle of the take-off and
优选的,电源模块12包括相互连接的升压模块6和备用电源5。当起降平台4外接电源时,外接电源经升压模块6和系留线缆3,可长时间远距离给无人机1供能,同时备份电源5可在外接电源中断时及时提供备份电能。Preferably, the
出线测量装置、控制器11和电源模块12设置于双层框架10的上层;张力控制装置和绕线盘13设置于双层框架10的下层。出线测量装置设置于张力控制装置正上方。通过控制器11调节张力控制装置连接的绕线盘13,可确保系留线缆3保持合适张力收放,确保收放过程线缆不冗余。The outgoing wire measuring device, the
出线测量装置与双层框架10铰接,且可绕铰接部任意水平方向旋转。具体的,出线测量装置可以进行水平方向±180度范围旋转,同时支持垂直方向0-180度旋转。The outgoing wire measuring device is hinged with the double-
本发明还提供了一种基于上述自适应收放线的无人机系留平台的无人机定位方法,其包括如下步骤:The present invention also provides a UAV positioning method based on the above-mentioned self-adaptive retractable line-based UAV tethered platform, which comprises the following steps:
S1、控制器11驱动磁粉离合器15,使线缆张紧。S1. The
具体的,由上位机通过发送指令,确定当前工作模式以及磁粉离合器15的占空比。然后由控制器11利用输出PWM波控制磁粉离合器15,达到控制线缆张力的目的。Specifically, the upper computer determines the current working mode and the duty ratio of the
S2、获取编码器导轮7中的编码器线数P、脉冲数S、圈数L和单圈长度D,计算线缆的出线长度d。S2. Obtain the encoder wire number P, the pulse number S, the number of turns L and the length D of a single turn in the
进一步地,计算系留线缆3的出线长度的方法为:Further, the method for calculating the outgoing length of the tethered
S2-1、计算编码器的中断重装值C,其计算方法为:S2-1. Calculate the interrupt reload value C of the encoder, and the calculation method is as follows:
C=4×P-1;C=4×P-1;
S2-2、根据中断重装值计算线缆的出线长度d,其计算方法为:S2-2. Calculate the outgoing length d of the cable according to the interrupted reassembly value, and the calculation method is as follows:
S3、获取偏航角传感器8和俯仰角传感器9监测的监测结果,对监测结果进行滤波优化,得到优化后的角度值。S3. Obtain the monitoring results monitored by the
监测结果为ADC数据采集转化后的实际值;对监测结果的优化方法为均值滤波法。The monitoring result is the actual value after ADC data acquisition and conversion; the optimization method for the monitoring result is the mean filtering method.
S4、根据优化后的角度值计算无人机1所在角度位置。S4. Calculate the angular position of the
优化后的角度值包括俯仰角传感器9监测到的仰角β,偏航角传感器8监测到的偏航角α。The optimized angle values include the elevation angle β monitored by the
进一步地,计算无人机1所在角度位置的方法为:Further, the method for calculating the angular position of the
S4-1、记方位角为其计算公式为:S4-1, record the azimuth as Its calculation formula is:
S4-2、记俯仰角为θ,其计算公式为:S4-2, record the pitch angle as θ, and its calculation formula is:
S5、根据无人机所在角度位置和线缆的出线长度,得到无人机的具体位置。S5. Obtain the specific position of the drone according to the angular position of the drone and the outgoing length of the cable.
通过收放线长度和俯仰偏航角信息,可得到系留线缆3末端相对起降平台4的极坐标空间位置信息,从而提供系留无人机1的定位控制保障。The polar coordinate space position information of the end of the tethered
上面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。The specific embodiments of the present invention are described above to facilitate those skilled in the art to understand the present invention, but it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, as long as various changes Such changes are obvious within the spirit and scope of the present invention as defined and determined by the appended claims, and all inventions and creations utilizing the inventive concept are within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010896098.9A CN112027106B (en) | 2020-08-31 | 2020-08-31 | A UAV mooring platform and UAV positioning method with self-adaptive take-up and release line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010896098.9A CN112027106B (en) | 2020-08-31 | 2020-08-31 | A UAV mooring platform and UAV positioning method with self-adaptive take-up and release line |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112027106A true CN112027106A (en) | 2020-12-04 |
CN112027106B CN112027106B (en) | 2023-03-07 |
Family
ID=73587440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010896098.9A Expired - Fee Related CN112027106B (en) | 2020-08-31 | 2020-08-31 | A UAV mooring platform and UAV positioning method with self-adaptive take-up and release line |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112027106B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113627392A (en) * | 2021-09-02 | 2021-11-09 | 南京工业职业技术大学 | Rape waterlogging hyperspectral image detection method based on Spark platform and image acquisition device thereof |
CN114426229A (en) * | 2022-01-26 | 2022-05-03 | 北京三一智造科技有限公司 | Method, device and equipment for positioning double-wheel milling mud pipe and operating machine |
CN115313780A (en) * | 2022-09-01 | 2022-11-08 | 宁波九菱电机有限公司 | A motor winding method, system, storage medium and intelligent terminal |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5184011A (en) * | 1991-01-03 | 1993-02-02 | Xerox Corporation | Linear encoder for digital printing applications |
JP2003048194A (en) * | 2001-08-06 | 2003-02-18 | Tamura Electric Works Ltd | Cable cutter |
CN104374357A (en) * | 2014-11-10 | 2015-02-25 | 南京中船绿洲机器有限公司 | Method and device for measuring winch mooring rope unwinding length |
CN105720869A (en) * | 2016-01-14 | 2016-06-29 | 深圳市雷赛智能控制股份有限公司 | Processing method and device for output signal of composite incremental encoder |
US20180029154A1 (en) * | 2013-05-23 | 2018-02-01 | Crc-Evans Pipeline International, Inc. | Rotating welding system and methods |
CN108821036A (en) * | 2018-07-02 | 2018-11-16 | 合肥瀚翔智能科技有限公司 | One kind being tethered at unmanned plane with full-automatic hawser draw off gear |
JP2018189426A (en) * | 2017-04-28 | 2018-11-29 | 株式会社ニコン | Encoder device, driving device, stage device, and robot device |
CN109018420A (en) * | 2018-07-05 | 2018-12-18 | 西南科技大学 | It is a kind of can autonomous positioning unmanned plane tethered platform |
CN109085852A (en) * | 2018-09-20 | 2018-12-25 | 清华四川能源互联网研究院 | A kind of flying robot's system suitable for high-rise non-flat configuration |
CN109131863A (en) * | 2018-09-10 | 2019-01-04 | 哈尔滨工业大学 | The more rotors of culvert type are tethered at unmanned plane and its control system |
CN109189088A (en) * | 2018-08-21 | 2019-01-11 | 中南林业科技大学 | Captive unmanned plane adaptive cruise tracking, terminal and storage medium |
CN208561309U (en) * | 2018-07-12 | 2019-03-01 | 深圳市海创光通信技术有限公司 | Has the function of the motor-driven cable automatic retraction device of cable protection |
CN109911239A (en) * | 2019-04-09 | 2019-06-21 | 珠海市双捷科技有限公司 | It is tethered at unmanned plane unwrapping wire length control device, capstan arrangement and UAV system |
US20190242202A1 (en) * | 2015-07-17 | 2019-08-08 | PATCO Machine & Fab., Inc. | Reel Assemblies with Electronic Control Systems and Sheaves |
-
2020
- 2020-08-31 CN CN202010896098.9A patent/CN112027106B/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5184011A (en) * | 1991-01-03 | 1993-02-02 | Xerox Corporation | Linear encoder for digital printing applications |
JP2003048194A (en) * | 2001-08-06 | 2003-02-18 | Tamura Electric Works Ltd | Cable cutter |
US20180029154A1 (en) * | 2013-05-23 | 2018-02-01 | Crc-Evans Pipeline International, Inc. | Rotating welding system and methods |
CN104374357A (en) * | 2014-11-10 | 2015-02-25 | 南京中船绿洲机器有限公司 | Method and device for measuring winch mooring rope unwinding length |
US20190242202A1 (en) * | 2015-07-17 | 2019-08-08 | PATCO Machine & Fab., Inc. | Reel Assemblies with Electronic Control Systems and Sheaves |
CN105720869A (en) * | 2016-01-14 | 2016-06-29 | 深圳市雷赛智能控制股份有限公司 | Processing method and device for output signal of composite incremental encoder |
JP2018189426A (en) * | 2017-04-28 | 2018-11-29 | 株式会社ニコン | Encoder device, driving device, stage device, and robot device |
CN108821036A (en) * | 2018-07-02 | 2018-11-16 | 合肥瀚翔智能科技有限公司 | One kind being tethered at unmanned plane with full-automatic hawser draw off gear |
CN109018420A (en) * | 2018-07-05 | 2018-12-18 | 西南科技大学 | It is a kind of can autonomous positioning unmanned plane tethered platform |
CN208561309U (en) * | 2018-07-12 | 2019-03-01 | 深圳市海创光通信技术有限公司 | Has the function of the motor-driven cable automatic retraction device of cable protection |
CN109189088A (en) * | 2018-08-21 | 2019-01-11 | 中南林业科技大学 | Captive unmanned plane adaptive cruise tracking, terminal and storage medium |
CN109131863A (en) * | 2018-09-10 | 2019-01-04 | 哈尔滨工业大学 | The more rotors of culvert type are tethered at unmanned plane and its control system |
CN109085852A (en) * | 2018-09-20 | 2018-12-25 | 清华四川能源互联网研究院 | A kind of flying robot's system suitable for high-rise non-flat configuration |
CN109911239A (en) * | 2019-04-09 | 2019-06-21 | 珠海市双捷科技有限公司 | It is tethered at unmanned plane unwrapping wire length control device, capstan arrangement and UAV system |
Non-Patent Citations (2)
Title |
---|
王勋,张代兵,沈林成: "一种基于虚拟力的无人机路径跟踪控制方法", 《机器人》 * |
王小祥: "增量式旋转编码器的简介与应用", 《数字技术与应用》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113627392A (en) * | 2021-09-02 | 2021-11-09 | 南京工业职业技术大学 | Rape waterlogging hyperspectral image detection method based on Spark platform and image acquisition device thereof |
CN114426229A (en) * | 2022-01-26 | 2022-05-03 | 北京三一智造科技有限公司 | Method, device and equipment for positioning double-wheel milling mud pipe and operating machine |
CN114426229B (en) * | 2022-01-26 | 2023-11-24 | 北京三一智造科技有限公司 | Positioning method, device and equipment for double-wheel milling slurry pipe and working machine |
CN115313780A (en) * | 2022-09-01 | 2022-11-08 | 宁波九菱电机有限公司 | A motor winding method, system, storage medium and intelligent terminal |
Also Published As
Publication number | Publication date |
---|---|
CN112027106B (en) | 2023-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112027106B (en) | A UAV mooring platform and UAV positioning method with self-adaptive take-up and release line | |
CN104743129B (en) | For being tethered at the automatic lock take-up and pay-off device of unmanned plane | |
CN205952338U (en) | A cable pay -off and take -up device for mooring unmanned aerial vehicle receive and releases cabin | |
JP6524116B2 (en) | Flight robot equipment | |
WO2019080152A1 (en) | Moorable unmanned aerial vehicle, moorable unmanned aerial vehicle positioning and following control system and control method therefor | |
US10301143B2 (en) | Sensor equipped tether guide with open tether channel | |
CN111650949A (en) | Tethered UAV control system and method | |
WO2020164205A1 (en) | Take-up and pay-off buffering structure for mooring unmanned aerial vehicle and working method therefor | |
CN109384102A (en) | A kind of device and its operating method of the aerial automatic deploying and retracting tow cable of unmanned plane | |
CN214986155U (en) | Staying unmanned aerial vehicle's receive and release system | |
CN109018420B (en) | Unmanned aerial vehicle mooring platform capable of being automatically positioned | |
CN103412572B (en) | The fuzzy control method of floating platform during a kind of aerial long | |
US20190031340A1 (en) | Tether Guide with Two-Sided Open Tether Channel | |
CN212276248U (en) | Ground control system for mooring unmanned aerial vehicle | |
CN109398744A (en) | One kind being tethered at UAV system and its control method | |
CN112224437A (en) | Vehicle-mounted cabled rotorcraft system | |
CN115716549B (en) | A UAV carrying a charging cable for flying and a working method thereof | |
CN211281423U (en) | An underwater inspection system | |
CN205525035U (en) | Unmanned aerial vehicle testing arrangement | |
CN109911239A (en) | It is tethered at unmanned plane unwrapping wire length control device, capstan arrangement and UAV system | |
CN113651195A (en) | Staying unmanned aerial vehicle cable winding and unwinding devices | |
CN113492994A (en) | Interactive synchronous automatic take-up and pay-off system for mooring unmanned aerial vehicle and winch | |
CN216154033U (en) | Tethered following unmanned aerial vehicle | |
CN208224747U (en) | A kind of water sampling system being mounted on unmanned plane | |
CN116980051B (en) | Communication system of water-air dual-purpose unmanned aerial vehicle and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230307 |