CN112023042A - 一种光热和光动力协同治疗试剂及其制备方法和应用 - Google Patents

一种光热和光动力协同治疗试剂及其制备方法和应用 Download PDF

Info

Publication number
CN112023042A
CN112023042A CN202010941923.2A CN202010941923A CN112023042A CN 112023042 A CN112023042 A CN 112023042A CN 202010941923 A CN202010941923 A CN 202010941923A CN 112023042 A CN112023042 A CN 112023042A
Authority
CN
China
Prior art keywords
photodynamic
temperature
photo
sensitive
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010941923.2A
Other languages
English (en)
Inventor
张树彪
陈会英
范雪枫
刘建波
宣扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Minzu University filed Critical Dalian Minzu University
Priority to CN202010941923.2A priority Critical patent/CN112023042A/zh
Publication of CN112023042A publication Critical patent/CN112023042A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种光热和光动力协同治疗试剂及其制备方法和应用,属于光热治疗和光动力治疗领域。该方法利用肿瘤微环境敏感化学键组装光热治疗试剂和温敏胶束材料负载的光动力治疗试剂,获得在近红外治疗窗口具有光热和光动力协同作用的治疗试剂。通过光热治疗试剂提供光热治疗,并引起温敏胶束表面亲疏水性转变、体积收缩尺寸减小,稳定动力治疗试剂,促进其在肿瘤组织中的渗透扩散和细胞摄入。通过温敏胶束细胞内环境响应解离,释放光动力治疗试剂。并通过温度升高提高活性氧量子产率,增强光动力治疗效果。本发明所制备的试剂可用于光热和光动力协同治疗,对肿瘤具有明显的抑制作用,具有广阔的应用前景。

Description

一种光热和光动力协同治疗试剂及其制备方法和应用
技术领域
本发明涉及一种光热和光动力协同治疗试剂及其制备方法和应用,具体地说,利用肿瘤微环境敏感化学键组装光热治疗试剂(如金纳米棒但不限于金纳米棒)和温敏胶束材料负载的光动力治疗试剂(如吲哚菁绿但不限于吲哚菁绿),的肿瘤抑制试剂及其制备方法和应用,属于光热治疗和光动力治疗领域。
背景技术
光动力疗法是一种新兴的肿瘤治疗手段,包括三要素:激光、光敏剂和氧气,即采用一定波长的激光,照射肿瘤组织中的光敏剂,激活附近的氧气转变为高毒性的单线态氧,杀伤肿瘤细胞,起到治疗效果。并且,该单线态氧可以激活巨噬细胞、树突状细胞等抗原呈递细胞,改善肿瘤的免疫抑制微环境,进一步抑制肿瘤。与传统放、化疗及手术治疗相比,光动力疗法靶向性强,副作用小,是近年来肿瘤治疗的研究热点。光动力疗法的光敏剂种类很多,其中吲哚菁绿(ICG) 是热门的研究对象,其最大激发波长为765nm,位于600-800nm的光动力治疗“窗口波长”,兼具足够的能量和组织穿透性,广泛应用于光动、光热、影像医学等多个领域。吲哚菁绿本身的血浆半衰期极短,会与血浆蛋白结合经肝代谢,通常采用药物载体进行递送,但常规载体的肿瘤穿透能力不足,使得ICG难以进入肿瘤深度区域,并且由于肿瘤的乏氧微环境,最终限制了其光动力治疗效果。
金纳米棒(GNR)生物相容性好,化学惰性,易于修饰,且具有波长可调的近红外光吸收能力,通过调节纵横比可以使其在650-1000nm的近红外区域具有良好的光热转换性能,广泛应用于光热治疗等领域。光热治疗作用还可以降低肿瘤间质液压,促进纳米药物扩散到达肿瘤组织深部区域。光热疗法与光动力疗法的联合治疗,已显示出良好的治疗效果。尽管如此,常规纳米载体的尺寸仍然限制了其肿瘤扩散渗透速度,导致光动力治疗效果难以满足临床应用需求。
温敏聚合物在低临界温度(LCST)附近随温度变化其亲疏水性改变,并伴随尺寸调变,有利于长循环和肿瘤靶向递送。采用N-异丙基丙烯酰胺、壳寡糖- 硫辛酸衍生物通过自由基聚合原位自组装的共聚物胶束,其LCST约42℃。该共聚物胶束具有氧化还原敏感二硫键交联疏水内核,有利于ICG的装载。利用肿瘤微环境敏感化学键将该共聚物与GNR组装,构建出光热和光动力协同作用的治疗试剂,一方面,GNR光疗有利于降低肿瘤间质液压,增加温敏胶束肿瘤渗透性能,另一方面,温敏胶束在体温条件具有亲水表面实现长循环;蓄积在肿瘤部位后,在GNR光疗温度条件下,转变为疏水表面,且体积收缩尺寸变小,稳定ICG 并促进ICG向肿瘤深度区域递送;细胞摄入后,通过细胞内高浓度代谢产物的还原断开二硫键,释放吲哚菁绿,同时结合温度升高,有效提高活性氧量子产率,进一步提高光动力治疗效果。由此,实现ICG肿瘤靶向的高效深度深度区域递送和光动力治疗。从目前文献的调研结果看,该治疗试剂、设计思路及构建方法尚未有任何报道。
发明内容
本发明所要解决的技术问题在于克服现有光动力治疗试剂的缺陷,提供一种光热和光动力协同作用的试剂及其制备方法。
本发明的目的在于提供一种新型光热和光动力协同作用的试剂,及其制备方法和应用。
本发明提供了一种光热和光动力协同治疗试剂的制备方法,其特征在于,包括如下步骤:
(1)制备具有肿瘤微环境敏感化学键的光热治疗制剂;所述肿瘤微环境敏感化学键包括二硫键和苯硼酸酯建;当光热治疗制剂为金纳米棒时,所述肿瘤微环境敏感化学键为苯硼酸酯键;
(2)制备包载光动力治疗试剂的,具有二硫键交联内核的温敏胶束材料;
(3)光热治疗制剂表面负载温敏胶束材料,得到具有光热和光动力协同治疗试剂。
进一步地,上述技术方案中,步骤(1)所述光热治疗制剂包括金纳米棒;所述金纳米棒的制备方法为种子生长法,具体包括如下步骤:
1)将0.1~0.40mL NaBH4溶液(1mM)剧烈搅拌下加入到1~5mL HAuCl4 (1mM)和1~5mL CTAB(0.4M)混合溶液中,搅拌1~5min后立即停止反应,室温静置10~60min;
2)取步骤1)所得溶液100~300μL加入含1.0~4.0g CTAB、2~6mLAgNO3 (4mM)、0.3~0.9mL抗坏血酸(0.1M)和100~600μL浓HCl的20~80mL HAuCl4 (1mM)溶液中,搅拌均匀,静置12h;产物于7000r/min,30min离心1~3次,固体重新溶于10~50mL去离子水中;
3)取1~10mL步骤2)所得溶液加入0.1~0.5M NaOH溶液调节pH至10,分3次等体积加入总量为10~30μL 10%~20%的TEOS甲醇溶液,静置4~16h;
4)向步骤3)所得溶液中加入含10~30μL 10%~30%的三氨丙基乙氧基硅烷和苯硼酸衍生物的甲醇溶液,静置4~16h;甲醇溶液洗涤离心,得到苯硼酸修饰的金纳米棒。
进一步地,上述技术方案中,步骤(2)所述温敏胶束材料的制备方法,包括如下步骤:
1)0.1~1.0g壳寡糖,加入5~15mL水溶解,加入硫辛酸琥珀酸酯衍生物, 4~60℃搅拌反应4~48h后,透析,冻干;
2)称取0.1~1.0g步骤1)所得产物,溶于10~20mL含0.1~0.5g光动力治疗试剂的DMSO中,与10~20mL质量比1:1~3:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用二硫代苏糖醇DTT或者三(2-羰基乙基)磷盐酸盐TPEC进行还原,然后经空气氧化,形成具有二硫键交联内核的温敏胶束材料。
进一步地,上述技术方案中,所述壳寡糖的分子量为MW=500~5000Da。
进一步地,上述技术方案中,所述光动力治疗试剂包括吲哚菁绿。
进一步地,上述技术方案中,步骤(3)所述光热和光动力协同治疗试剂的制备方法,包括如下步骤:将步骤(1)所述光热治疗制剂按照体积比1:10~1:20 在缓慢搅拌条件下滴加到步骤(2)所述温敏胶束材料中,室温静置12~24h,获得光热治疗制剂表面负载温敏胶束材料的光热和光动力协同治疗试剂。
本发明还提供了根据上文所述制备方法制备得到的光热和光动力协同治疗试剂。
进一步地,上述技术方案中,所述光热和光动力协同治疗试剂的光照射波长为750~1350nm的近红外光。
本发明还提供了所述光热和光动力协同治疗试剂在制备肿瘤抑制剂中的应用。
进一步地,上述技术方案中,所述肿瘤包括MCF-7乳腺癌肿瘤。
所述光热治疗试剂构筑单元在近红外光疗窗口(750~1350nm)具有吸收,可以通过光热转换引起温度升高,通过控制光密度和照射时间,使温度升高到适宜温度用于光热治疗。
所述光热和光动力协同作用治疗试剂可以对肿瘤组织特殊微环境响应,如含邻羟基过表达代谢产物和pH等,引起温敏胶束从光热治疗试剂解离,降低尺寸,有利于肿瘤渗透扩散和细胞摄入。
所述光热和光动力协同作用治疗试剂通过温度升高,可通过降低肿瘤间质液压等途径,促进胶束的肿瘤扩散和渗透。
所述温敏胶束具有热疗温度条件下的低临界溶解温度,表面亲疏水性转变,体积收缩尺寸降低,有效避免胶束的外渗并促进肿瘤细胞摄入,另一方面通过体积收缩降低胶束内氧含量从而有利于光动力治疗试剂的稳定。
所述温敏胶束具有氧化还原敏感二硫键交联内核,在肿瘤细胞内高浓度谷胱甘肽环境下二硫键断键促进胶束解离,有利于光动力治疗试剂的释放。
利用高于体温的热疗温度,提高光动力治疗试剂的光量子产率,增强光动力治疗效果。
与现有技术相比,本发明具有以下优点:
采用N-异丙基丙烯酰胺、壳寡糖-硫辛酸衍生物通过自由基聚合原位自组装共聚物胶束,其LCST约42℃。该共聚物胶束具有氧化还原敏感二硫键交联疏水内核,有利于ICG的装载和细胞外的稳定。利用肿瘤微环境敏感化学键将该温敏胶束与GNR组装,构建出光热和光动力协同作用的治疗试剂。利用GNR光疗降低肿瘤间质液压,增加温敏胶束肿瘤渗透;利用温敏胶束在体温条件的亲水性实现长循环;利用温敏胶束在光疗温度的疏水转变和体积收缩尺寸变小,稳定ICG 并促进ICG的肿瘤渗透和细胞摄入;通过细胞内高浓度代谢产物的还原断开二硫键,释放吲哚菁绿,并利用升高的温度,提高活性氧量子产率,增强光动力治疗效果。
通过光热治疗试剂提供光热治疗,并引起温敏胶束表面亲疏水性转变、体积收缩尺寸减小,稳定动力治疗试剂,促进其在肿瘤组织中的渗透扩散和细胞摄入。通过温敏胶束细胞内环境响应解离,释放光动力治疗试剂。并通过温度升高提高活性氧量子产率,增强光动力治疗效果。本发明所制备的试剂可用于光热和光动力协同治疗,对肿瘤具有明显的抑制作用,具有广阔的应用前景。
附图说明
图1为光热和光动力协同治疗试剂示意图。
图2为实施例1所制备的温敏胶束的FTIR谱图。
图3为实施例2所制备的金纳米棒的UV-vis吸收光谱(A)和SEM表征结果 (B)。
图4为实施例3所制备的光热和光动力治疗试剂的UV-vis吸收光谱。
图5为实施例3所制备的光热和光动力治疗试剂的活性氧量子产率测定结果。
图6为实施例3所制备的光热和光动力治疗试剂的体外肿瘤抑制效果;图中,(A)为红外热像仪成像结果,(B)流式细胞仪测试结果。
图7为实施例3所制备的光热和光动力治疗试剂的体内肿瘤抑制效果。
具体实施方式
下面通过具体实施例和附图对本发明进行详细说明。应当理解,此处所描述的具体实施例和附图仅用以解释本发明,并不用于限定本发明。
实施例1
1.0g壳寡糖(MW=1000Da),加入15mL水溶解,加入等摩尔硫辛酸N- 羟基琥珀酰亚胺衍生物,4℃搅拌反应12h后,透析(MWCO=500Da),冻干。称取1.0g产物,溶于20mL含0.5g吲哚菁绿的DMSO中,与20mL的N-异丙基丙烯酰胺水溶液(与上述壳寡糖产物按质量比1:1投料)通过自由基聚合原位形成温敏胶束,再采用与硫辛酸N-羟基琥珀酰亚胺衍生物等摩尔的三(2-羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。所述二硫键交联内核的温敏胶束的FTIR谱图如图2所示。波长为3418cm-1附近的吸收峰为N-H伸缩振动峰,1653cm-1和1558cm-1处为酰胺羰基峰。
实施例2
将0.16mL NaBH4溶液(1mM)剧烈搅拌下加入到2.5mL HAuCl4(1mM) 和2.5mL CTAB(0.4M)混合溶液中,搅拌2min后立即停止反应,室温静置30min,取160μL加入含1.4g CTAB、4mL AgNO3(4mM)、0.64mL抗坏血酸(0.1M) 和300μL浓HCl的50mL HAuCl4(1mM)溶液中,搅拌均匀,静置12h。产物离心清洗2次(7000r/min,30min),重新溶于25mL的去离子水。取2mL加入0.1M NaOH溶液调节pH至10,分3次等体积加入总量为30μL 10%的TEOS 甲醇溶液,静置16h。加入含20μL三氨丙基乙氧基硅烷和苯硼酸衍生物的甲醇溶液(10%),静置16h。甲醇溶液洗涤离心,得到苯硼酸修饰金纳米棒。所制备的金纳米棒的UV-vis吸收光谱和SEM表征结果如图3所示。所制备金棒在 520nm和810nm有两个吸收峰,其中520nm为横向峰值,810nm为纵向峰值。 SEM结果表面金棒长度约为75nm,直径约为15nm,表面包裹着一层薄膜外壳。
实施例3
将实施例2制备的苯硼酸修饰金纳米棒,按照体积比1:10在缓慢搅拌条件下滴加到实施例1制备的温敏胶束中,室温静置24h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。图4为所述光热和光动力协同作用治疗试剂的UV-vis吸收光谱;图5为所述光热和光动力协同作用治疗试剂的活性氧量子产率测定结果。负载ICG之后金纳米棒的紫外吸收峰发生了蓝移;ICG 的紫外吸收峰在740nm。37℃到47℃的活性氧测试结果表明,在43℃活性氧量子产率最高。
实施例4
1.0g壳寡糖(MW=5000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL 含0.5g吲哚菁绿的DMSO中,与20mL质量比1:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2-羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例5
将0.16ml NaBH4溶液(1mM)剧烈搅拌下加入到2.5mL HAuCl4(1mM)和 2.5ml CTAB(0.4M)混合溶液中,搅拌2min后立即停止反应,室温静置30min,取160μL加入含1.4g CTAB、4mLAgNO3(4mM)、0.64mL抗坏血酸(0.1M) 和300μL浓HCl的50mLHAuCl4(1mM)溶液中,搅拌均匀,静置12h。产物离心清洗2次(7000r/min,30min),重新溶于25ml的去离子水。取2mL加入0.1MNaOH溶液调节pH至10,分3次等体积加入总量为30μL 15%的TEOS甲醇溶液,静置16h。加入含20μL三氨丙基乙氧基硅烷和苯硼酸衍生物的甲醇溶液 (10%),静置16h。甲醇溶液洗涤离心,得到苯硼酸修饰金纳米棒。
实施例6
将实施例5制备的苯硼酸修饰金纳米棒,按照体积比1:10在缓慢搅拌条件下滴加到实施例4制备的温敏胶束中,室温静置24h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例7
1.0g壳寡糖(MW=1000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL 含0.5g吲哚菁绿的DMSO中,与20mL质量比2:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2-羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例8
将0.16ml NaBH4溶液(1mM)剧烈搅拌下加入到2.5mL HAuCl4(1mM)和 2.5ml CTAB(0.4M)混合溶液中,搅拌2min后立即停止反应,室温静置30min,取160μL加入含1.4g CTAB、4mLAgNO3(4mM)、0.64mL抗坏血酸(0.1M) 和300μL浓HCl的50mLHAuCl4(1mM)溶液中,搅拌均匀,静置12h。产物离心清洗2次(7000r/min,30min),重新溶于25ml的去离子水。取2mL加入0.1MNaOH溶液调节pH至10,分3次等体积加入总量为30μL 15%的TEOS甲醇溶液,静置16h。加入含10μL三氨丙基乙氧基硅烷和苯硼酸衍生物的甲醇溶液 (10%),静置16h。甲醇溶液洗涤离心,得到苯硼酸修饰金纳米棒。
实施例9
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例7制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例10
1.0g壳寡糖(MW=1000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.5g吲哚菁绿的DMSO中,与20mL质量比3:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2- 羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例11
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例10制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例12
1.0g壳寡糖(MW=5000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.5g吲哚菁绿的DMSO中,与20mL质量比3:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2- 羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例13
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例12制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例14
1.0g壳寡糖(MW=5000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.5g吲哚菁绿的DMSO中,与20mL质量比2:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2- 羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例15
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例14制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例16
1.0g壳寡糖(MW=1000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.5g吲哚菁绿的DMSO中,与20mL质量比2:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2- 羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例17
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例16制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例18
1.0g壳寡糖(MW=1000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.2g吲哚菁绿的DMSO中,与20mL质量比1:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2- 羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例19
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例18制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例20
1.0g壳寡糖(MW=5000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.2g吲哚菁绿的DMSO中,与20mL质量比1:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2- 羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例21
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例20制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例22
1.0g壳寡糖(MW=1000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.2g吲哚菁绿的DMSO中,与20mL质量比2:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2- 羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例23
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例22制备的温敏胶束中,室温静置12h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
实施例24
1.0g壳寡糖(MW=1000Da),加入15mL水溶解,加入等摩尔硫辛酸琥珀酸酯衍生物,4℃搅拌反应12h后,透析,冻干。称取1.0g产物,溶于20mL含 0.2g吲哚菁绿的DMSO中,加入1.5倍摩尔的羰基二咪唑活,40℃活化2h,再加入等摩尔白皮杉醇40℃反应2h,加入20mL质量比1:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用与硫辛酸琥珀酸酯衍生物等摩尔的三(2-羰基乙基)磷盐酸盐TPEC还原,最后在搅拌条件下经空气氧化24h,形成具有二硫键交联内核的温敏胶束。
实施例25
将实施例8制备的苯硼酸修饰金纳米棒,按照体积比1:20在缓慢搅拌条件下滴加到实施例24制备的温敏胶束中,室温静置24h,获得金纳米棒负载温敏胶束包载吲哚菁绿的光热和光动力协同作用治疗试剂。
应用例1活性氧量子产率测定
称取1,3二苯基异苯并呋喃DPBF溶于DMF配成1mg/ml的溶液。取实施例3的试剂100μl,加入1mL 1%的TPEC作用5min,加入等体积DPBF,于808nm红外激光器下光照,功率2W光斑大小为2cm2(1W/cm2)照射30秒、60秒、90秒、 120秒,用紫外分光光度法测量410nm波长处DPBF吸光度值,根据紫外吸收光谱吸光度值的变化检测试剂的活性氧量子产率。实验结果如图5所示,结果表明,在43℃光热治疗温度条件下,ICG活性氧量子产率最高。
应用例2体外肿瘤抑制效果评价
采用MCF-7乳腺癌细胞(中科院上海细胞库),评价了材料的肿瘤抑制效果。将培养至融合度>80%的MCF-7乳腺癌细胞制备成细胞悬液,在24孔板中进行铺板,至细胞融合度达到80%后,每孔加入10μL实施例2制备的苯硼酸修饰金纳米棒,培养4h后吸去培养基,用200μL PBS洗涤3次,加入500μL高糖双抗血清 DMEM培养基后,采用1W/cm2、808nm激光照射5min,继续培养18-24h后,采用Annexin FITC/PI凋亡双染法考察光热治疗效果。实验结果如图6(A)。
将培养至融合度>80%的MCF-7乳腺癌细胞制备成细胞悬液,在24孔板中进行铺板,至细胞融合度达到80%后,每孔加入10μL实施例3制备的光热和光动力协同作用治疗试剂,培养4h后吸去培养基,用200μL PBS洗涤3次,加入500μL 高糖双抗血清DMEM培养基后,采用1W/cm2、808nm激光照射5min,继续培养18-24h后,采用Annexin FITC/PI凋亡双染法考察治疗效果。实验结果如图6(B)。图A和B结果表明,光热光动力协同作用细胞凋亡率高于光热单独治疗的效果。
应用例3体内肿瘤抑制效果评价
将雌性裸鼠分成随机分成3组(大连医科大学SPF动物实验中心),分别为实验组、对照组和空白对照组,每组6只。4~6周龄约20g后,收集MCF-7细胞并分散在0.1mL的PBS(pH=7.4)中,注射到雌性裸鼠右腋皮下部位,待肿瘤生长至100mm3时,尾静脉一次注射给药(实验组注射实施例3制备的光热和光动力协同作用治疗试剂、对照组注射实施例2制备的金纳米棒、空白对照组注射生理盐水),给药后2h在肿瘤部位进行光照,2W照射5min,一天一次连续照射3天,继续饲养至15天,记录肿瘤大小观察小鼠治疗情况。结果如图7所示,结果表明光热和光动力协同治疗组小鼠肿瘤抑制率最高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光热和光动力协同治疗试剂的制备方法,其特征在于,包括如下步骤:
(1)制备具有肿瘤微环境敏感化学键的光热治疗制剂;所述肿瘤微环境敏感化学键包括二硫键和苯硼酸酯键;
(2)制备包载光动力治疗试剂的、具有二硫键交联内核的温敏胶束材料;
(3)光热治疗制剂表面负载温敏胶束材料,得到具有光热和光动力协同治疗试剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述光热治疗制剂包括金纳米棒;所述金纳米棒的制备方法为种子生长法,具体包括如下步骤:
1)将0.1~0.40mL NaBH4溶液剧烈搅拌下加入到1~5mL HAuCl4和1~5mL CTAB混合溶液中,搅拌1~5min后立即停止反应,室温静置10~60min;
2)取步骤1)所得溶液100~300μL加入含1.0~4.0g CTAB、2~6mLAgNO3、0.3~0.9mL抗坏血酸和100~600μL浓HCl的20~80mL HAuCl4溶液中,搅拌均匀,静置12h;产物于7000r/min,30min离心1~3次,固体重新溶于10~50mL去离子水中;
3)取1~10mL步骤2)所得溶液加入0.1~0.5M NaOH溶液调节pH至10,分3次等体积加入总量为10~30μL 10%~20%的TEOS甲醇溶液,静置4~16h;
4)向步骤3)所得溶液中加入含10~30μL 10%~30%的三氨丙基乙氧基硅烷和苯硼酸衍生物的甲醇溶液,静置4~16h;甲醇溶液洗涤离心,得到苯硼酸修饰的金纳米棒。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述温敏胶束材料的制备方法,包括如下步骤:
1)0.1~1.0g壳寡糖,加入5~15mL水溶解,加入硫辛酸琥珀酸酯衍生物,4~60℃搅拌反应4~48h后,透析,冻干;
2)称取0.1~1.0g步骤1)所得产物,溶于10~20mL含0.1~0.5g光动力治疗试剂的DMSO中,与10~20mL质量比1:1~3:1的N-异丙基丙烯酰胺水溶液通过自由基聚合原位形成温敏胶束,再采用二硫代苏糖醇DTT或者三(2-羰基乙基)磷盐酸盐TPEC进行还原,然后经空气氧化,形成具有二硫键交联内核的温敏胶束材料。
4.根据权利要求3所述的制备方法,其特征在于,所述壳寡糖的分子量为MW=500~5000Da。
5.根据权利要求1或3所述的制备方法,其特征在于,所述光动力治疗试剂包括吲哚菁绿。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述光热和光动力协同治疗试剂的制备方法,包括如下步骤:将步骤(1)所述光热治疗制剂按照体积比1:10~1:20在缓慢搅拌条件下滴加到步骤(2)所述温敏胶束材料中,室温静置12~24h,获得光热治疗制剂表面负载温敏胶束材料的光热和光动力协同治疗试剂。
7.权利要求1~6中任一项所述的制备方法制备得到的光热和光动力协同治疗试剂。
8.根据权利要求7所述的光热和光动力协同治疗试剂,其特征在于,所述光热和光动力协同治疗试剂的光照射波长为750~1350nm的近红外光。
9.权利要求7或8所述的光热和光动力协同治疗试剂在制备肿瘤抑制剂中的应用。
10.根据权利要求9所述的应用,其特征在于,所述肿瘤包括MCF-7乳腺癌肿瘤。
CN202010941923.2A 2020-09-09 2020-09-09 一种光热和光动力协同治疗试剂及其制备方法和应用 Pending CN112023042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010941923.2A CN112023042A (zh) 2020-09-09 2020-09-09 一种光热和光动力协同治疗试剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010941923.2A CN112023042A (zh) 2020-09-09 2020-09-09 一种光热和光动力协同治疗试剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112023042A true CN112023042A (zh) 2020-12-04

Family

ID=73585160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010941923.2A Pending CN112023042A (zh) 2020-09-09 2020-09-09 一种光热和光动力协同治疗试剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112023042A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112618727A (zh) * 2021-01-08 2021-04-09 中国药科大学 一种增强乏氧肿瘤光动力治疗的制剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205081A (zh) * 2013-01-11 2013-07-17 鲁东大学 一种温度敏感性壳聚糖基聚电解质复合胶束的制备方法
CN111419805A (zh) * 2020-05-22 2020-07-17 徐州医科大学 一种基于壳聚糖的环境多重响应型聚合物前药胶束及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205081A (zh) * 2013-01-11 2013-07-17 鲁东大学 一种温度敏感性壳聚糖基聚电解质复合胶束的制备方法
CN111419805A (zh) * 2020-05-22 2020-07-17 徐州医科大学 一种基于壳聚糖的环境多重响应型聚合物前药胶束及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALEJANDRO SOSNIK ET AL: "Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway" *
RUI CHEN ET AL: "Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres" *
SHAN FANG ET AL: "Dual-Stimuli Responsive Nanotheranostics for Multimodal Imaging Guided Trimodal Synergistic Therapy" *
徐闯等: "pH和还原性双响应性壳聚糖纳米粒子作为药物传输载体" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112618727A (zh) * 2021-01-08 2021-04-09 中国药科大学 一种增强乏氧肿瘤光动力治疗的制剂及其制备方法和应用
CN112618727B (zh) * 2021-01-08 2023-04-11 中国药科大学 一种增强乏氧肿瘤光动力治疗的制剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Li et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS‐mediated anticancer therapy
Cao et al. Pt@ polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy
Chen et al. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
CN108434462B (zh) 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用
Zhang et al. Nano-ROS-generating approaches to cancer dynamic therapy: lessons from nanoparticles
Zhou et al. Bimetallic PdPt-based nanocatalysts for photothermal-augmented tumor starvation and sonodynamic therapy in NIR-II biowindow assisted by an oxygen self-supply strategy
CN107596366B (zh) 一种具有多重刺激响应型药物控释功能的诊断治疗制剂及其制备方法和应用
Ji et al. Activatable photodynamic therapy for prostate cancer by NIR dye/photosensitizer loaded albumin nanoparticles
Chen et al. Injectable hydrogel for NIR-II photo-thermal tumor therapy and dihydroartemisinin-mediated chemodynamic therapy
Xu et al. Multifunctional MoS2 nanosheets with Au NPs grown in situ for synergistic chemo-photothermal therapy
CN108658995A (zh) 一种二硫联吡啶修饰锌酞菁及其制备方法和应用
CN113559064B (zh) 一种新型自供氧脂质体纳米粒及其制备方法与应用
CN114146177B (zh) 一种羟乙基淀粉前药稳定的铜掺杂聚多巴胺纳米药物、其制备和应用
CN114344482B (zh) 一种基于金属有机骨架的多功能纳米粒及其制备方法与应用
Sun et al. A Pd corolla–human serum albumin–indocyanine green nanocomposite for photothermal/photodynamic combination therapy of cancer
Tang et al. pH-Responsive Au@ Pd bimetallic core–shell nanorods for enhanced synergistic targeted photothermal-augmented nanocatalytic therapy in the second near-infrared window
Li et al. A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging
Liang et al. Emerging nitric oxide gas‐assisted cancer photothermal treatment
He et al. Camouflaging multifunctional nanoparticles with bacterial outer membrane for augmented chemodynamic/photothermal/starvation/chemo multimodal synergistic therapy of orthotopic glioblastoma
Zhang et al. A two-pronged strategy to alleviate tumor hypoxia and potentiate photodynamic therapy by mild hyperthermia
Zou et al. Novel NIR-II semiconducting molecule incorporating sorafenib for imaging guided synergetic cancer phototherapy and anti-angiogenic therapy
Zhang et al. A single-wavelength NIR-triggered polymer for in situ generation of peroxynitrite (ONOO−) to enhance phototherapeutic efficacy
Li et al. Gold-based nanoparticles realize photothermal and photodynamic synergistic treatment of liver cancer and improve the anaerobic tumor microenvironment under near-infrared light
Sun et al. A tumor microenvironment-activatable nanoplatform with phycocyanin-assisted in-situ nanoagent generation for synergistic treatment of colorectal cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204