CN112018853A - 纯电动汽车电池充电保护方法及装置 - Google Patents

纯电动汽车电池充电保护方法及装置 Download PDF

Info

Publication number
CN112018853A
CN112018853A CN202010922203.1A CN202010922203A CN112018853A CN 112018853 A CN112018853 A CN 112018853A CN 202010922203 A CN202010922203 A CN 202010922203A CN 112018853 A CN112018853 A CN 112018853A
Authority
CN
China
Prior art keywords
condition
battery
current
voltage
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010922203.1A
Other languages
English (en)
Inventor
刘星
沈祖英
刘现军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jiangling Group New Energy Automobile Co Ltd
Original Assignee
Jiangxi Jiangling Group New Energy Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jiangling Group New Energy Automobile Co Ltd filed Critical Jiangxi Jiangling Group New Energy Automobile Co Ltd
Priority to CN202010922203.1A priority Critical patent/CN112018853A/zh
Publication of CN112018853A publication Critical patent/CN112018853A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种纯电动汽车电池充电保护方法及装置,该方法包括以下步骤:当电池开始充电时,清空系统内部存储信息;采集任一电池单体的电压及电流信息,并判断电池单体的电流是否稳定;若电池单体的电流稳定,则采集电池单体的第一电压值,T秒后,采集电池单体的第二电压值;根据第一电压值和第二电压值计算所述电池单体的电压差值,并记录系统内所有的电池单体在预设采样周期内的电压差值;当任一电池单体在预设采样周期内的电压差值大于阈值时,进行故障锁存,禁止充电。该方法通过判断电流稳定时的压降情况来判断是否故障,避免了电流波动导致的压差异常,准确率高;通过判断充电过程中单体电压异常跌落,锁定故障,提升安全性。

Description

纯电动汽车电池充电保护方法及装置
技术领域
本发明涉及纯电动汽车电池领域,特别是涉及一种纯电动汽车电池充电保护方法及装置。
背景技术
电动汽车已成为世界范围内新型汽车的主流,电动汽车的动力源为电池。电池为整车提供驱动力,其安全性能极大地影响整车性能。
基于锂离子电池的工作原理,充电过程中,锂晶枝的累积生长是造成锂电池内部短路失效的主要风险,导致的直接现象就是单体电压的下降。
当电池串并联成组后,一般通过电池管理系统采集电池电压电流等信息,然而电池管理系统一般对电池电压的上下限等进行检测监控,而不会对电池的压降进行监测。使得系统容易发生误报,且无法提前预警,在电池出现压降时无法及时介入,继续充电导致电池恶化,造成严重事故。
发明内容
本发明的一个目的在于提出一种纯电动汽车电池充电保护方法,以解决现有技术电池管理系统不会对电池的压降进行监测,使得系统容易发生误报,且无法提前预警,在电池出现压降时无法及时介入,继续充电导致电池恶化,造成严重事故的问题。
本发明提出一种纯电动汽车电池充电保护方法,所述纯电动汽车电池充电保护方法包括以下步骤:
当电池开始充电时,清空系统内部存储的预设时间内的电流信息,同时清空单体电压备份信息;
采集任一电池单体的电压及电流信息,并判断所述电池单体的电流是否稳定;
若所述电池单体的电流稳定,则采集所述电池单体的第一电压值,T秒后,采集所述电池单体的第二电压值,T为电流及电压采样周期的整数倍;
根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值,并记录系统内所有的所述电池单体在预设采样周期内的电压差值;
当任一所述电池单体在预设采样周期内的电压差值大于阈值时,进行故障锁存,禁止充电。
根据本发明提出的纯电动汽车电池充电保护方法,具有以下有益效果:
(1)该纯电动汽车电池充电保护方法通过监控电池充电过程中单体电池的电压下降情况,确认充电过程中的异常电芯,并切断电池高压回路,防止电池进一步恶化产生事故,提高电池系统的安全性;
(2)通过判断所述单体电池的电流稳定时的压降情况来判断是否故障,避免了所述单体电池的电流波动导致的压差异常,准确率高;
(3)通过判断充电过程中所述单体电池电压的异常跌落,锁定故障,提升安全性。
另外,根据本发明提供的纯电动汽车电池充电保护方法,还可以具有如下附加的技术特征:
进一步地,当电池处于慢充状态时,判断所述电池单体的电流是否稳定的步骤具体包括:
判断所述电池单体是否同时满足条件一、条件二、条件三,所述条件一为检测到CC,CP信号正常且无电池系统故障,所述条件二为采集的电流变化小于第一预设电流,所述条件三为主动请求电流变化小于第二预设电流;
如同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
进一步地,判断所述电池单体是否同时满足所述条件一、所述条件二、所述条件三的步骤之后,所述方法还包括:
如不同时满足所述条件一、所述条件二、所述条件三,则延时继续判断,直到同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
进一步地,当电池处于快充状态时,判断所述电池单体的电流是否稳定的步骤具体包括:
判断所述电池单体是否同时满足条件四、条件五、条件六,所述条件四为检测到CC2信号正常且无电池系统故障,所述条件五为采集的电流变化小于第三预设电流;所述条件六为主动请求电流变化小于第四预设电流;
如同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定。
进一步地,判断所述电池单体是否同时满足条所述条件四、所述条件五、所述条件六的步骤之后,所述方法还包括:
如不同时满足所述条件四、所述条件五、所述条件六,则延时继续判断,直到同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定。
进一步地,根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值步骤中,采样下式计算所述电池单体的电压差值ΔU;
ΔU=U0-U1,
其中,U0为所述第一电压值,U1所述第二电压值。
进一步地,ΔU阈值随所述电池单体的电压值区间不同而不同,对于三元锂电池,电压小于3.6V或电压大于4.0V时,阈值取30mv,电压在3.6V-4.0V的范围内时,阈值取15mv;对于磷酸铁锂电池,电压小于3.2V或电压大于3.5V时,阈值取30mv,电压在3.2V-3.5V区间,阈值取15mv。
本发明的另一个目的在于提出一种纯电动汽车电池充电保护装置,以解决现有技术电池管理系统不会对电池的压降进行监测,使得系统容易发生误报,且无法提前预警,在电池出现压降时无法及时介入,继续充电导致电池恶化,造成严重事故的问题。
一种纯电动汽车电池充电保护装置,包括:
清空模块,用于当电池开始充电时,清空系统内部存储的前第一预设时间内的电流信息,同时清空单体电压备份信息;
采集判断模块,用于采集任一电池单体的电压及电流信息,并判断所述电池单体的电流是否稳定;
采集模块,用于若所述电池单体的电流稳定,则采集所述电池单体的第一电压值,T秒后,采集所述电池单体的第二电压值,T为电流及电压采样周期的整数倍;
计算记录模块,用于根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值,并记录系统内所有的所述电池单体在预设采样周期内的电压差值;
保护模块,用于当任一所述电池单体在预设采样周期内的电压差值大于阈值时,进行故障锁存,禁止充电。
根据本发明提出的纯电动汽车电池充电保护装置,具有以下有益效果:
(1)该纯电动汽车电池充电保护装置通过监控电池充电过程中单体电池的电压下降情况,确认充电过程中的异常电芯,并切断电池高压回路,防止电池进一步恶化产生事故,提高电池系统的安全性;
(2)通过判断所述单体电池的电流稳定时的压降情况来判断是否故障,避免了所述单体电池的电流波动导致的压差异常,准确率高;
(3)通过判断充电过程中所述单体电池电压的异常跌落,锁定故障,提升安全性。
进一步地,当电池处于慢充状态时,所述采集判断模块用于:
判断所述电池单体是否同时满足条件一、条件二、条件三,所述条件一为检测到CC,CP信号正常且无电池系统故障,所述条件二为采集的电流变化小于第一预设电流,所述条件三为主动请求电流变化小于第二预设电流;
如同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
进一步地,所述采集判断模块还用于:
判断所述电池单体是否同时满足所述条件一、所述条件二、所述条件三,如不同时满足所述条件一、所述条件二、所述条件三,则延时继续判断,直到同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例纯电动汽车电池保护方法的流程图;
图2为本发明第二实施例纯电动汽车电池保护装置的系统框图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
实施例1
请参阅图1,本发明第一实施例提供的一种纯电动汽车电池充电保护方法,包括步骤S101~S105。
S101,当电池开始充电时,清空系统内部存储的前第一预设时间内的电流信息,同时清空单体电压备份信息。
其中,第一预设时间例如是1s。
S102,采集任一电池单体的电压及电流信息,并判断所述电池单体的电流是否稳定。
其中,当电池处于慢充状态时,判断所述电池单体的电流是否稳定的步骤具体包括:
判断所述电池单体是否同时满足条件一、条件二、条件三,所述条件一为检测到CC,CP信号正常且无电池系统故障,所述条件二为采集的电流变化小于第一预设电流,所述条件三为主动请求电流变化小于第二预设电流;第一预设电流例如是1A,第一预设电流例如是2A。
如同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定;
如不同时满足所述条件一、所述条件二、所述条件三,则延时继续判断,直到同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
基于不同时满足所述条件一、所述条件二、所述条件三的情况下,若不满足所述条件一,则延时60S继续判断,若满足所述条件一,则延时30S继续判断,直到同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
判断所述电池单体的电流是否稳定的过程中,通过特定的三个筛选判断条件,提高对电流稳定判断的准确率,有效减少误报。
此外,当电池处于快充状态时,判断所述电池单体的电流是否稳定的步骤具体包括:
判断所述电池单体是否同时满足所述条件四、所述条件五、所述条件六,所述条件四为检测到CC2信号正常且无电池系统故障,所述条件五为采集的电流变化小于第三预设电流;所述条件六为主动请求电流变化小于第四预设电流;
如同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定;
如不同时满足所述条件四、所述条件五、所述条件六,则延时继续判断,直到同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定。
基于不同时满足所述条件四、所述条件五、所述条件六的情况下,若不满足所述条件四,则延时60S继续判断,若满足所述条件四,则延时30S继续判断,直到同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定。
判断所述电池单体的电流是否稳定的过程中,通过特定的三个筛选判断条件,提高对电流稳定判断的准确率,有效减少误报。
S103,若所述电池单体的电流稳定,则采集所述电池单体的第一电压值,T秒后,采集所述电池单体的第二电压值,T为电流及电压采样周期的整数倍。
其中,T例如是1,所述第一电压值记为U0,所述第二电压值记为U1。
S104,根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值,并记录系统内所有的所述电池单体在预设采样周期内的电压差值。
其中,所述电池单体在预设采样周期内的电压差值记为ΔU,ΔU=U0-U1。
S105,当任一所述电池单体在预设采样周期内的电压差值大于阈值时,进行故障锁存,禁止充电。
其中,ΔU阈值随所述电池单体的电压值区间不同而不同,对于三元锂电池,电压小于3.6V或电压大于4.0V时,阈值取30mv,电压在3.6V-4.0V的范围内时,阈值取15mv;对于磷酸铁锂电池,电压小于3.2V或电压大于3.5V时,阈值取30mv,电压在3.2V-3.5V区间,阈值取15mv。
压降ΔU阈值根据不同电芯进行调整取值,可实现良好的兼容性,提高该纯电动汽车电池充电保护方法的适用性。
本实施例提供的纯电动汽车电池充电保护方法,有益效果在于:通过监控电池充电过程中单体电池的电压下降情况,确认充电过程中的异常电芯,并切断电池高压回路,防止电池进一步恶化产生事故,提高电池系统的安全性;通过判断所述单体电池的电流稳定时的压降情况来判断是否故障,避免了所述单体电池的电流波动导致的压差异常,准确率高;通过判断充电过程中所述单体电池电压的异常跌落,锁定故障,提升安全性。
实施例2
请参阅图2,本发明第二实施例提供的一种纯电动汽车电池充电保护装置,包括:
清空模块,用于当电池开始充电时,清空系统内部存储的前第一预设时间内的电流信息,同时清空单体电压备份信息;
采集判断模块,用于采集任一电池单体的电压及电流信息,并判断所述电池单体的电流是否稳定;
其中,当电池处于慢充状态时,所述采集判断模块用于:
判断所述电池单体是否同时满足条件一、条件二、条件三,所述条件一为检测到CC,CP信号正常且无电池系统故障,所述条件二为采集的电流变化小于第一预设电流,所述条件三为主动请求电流变化小于第二预设电流;第一预设电流例如是1A,第一预设电流例如是2A。
如同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定;
如不同时满足所述条件一、所述条件二、所述条件三,则延时继续判断,直到同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
基于不同时满足所述条件一、所述条件二、所述条件三的情况下,若不满足所述条件一,则延时60S继续判断,若满足所述条件一,则延时30S继续判断,直到同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
当电池处于快充状态时,所述采集判断模块用于:
判断所述电池单体是否同时满足条件四、条件五、条件六,所述条件四为检测到CC2信号正常且无电池系统故障,所述条件五为采集的电流变化小于第三预设电流;所述条件六为主动请求电流变化小于第四预设电流;
如同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定;
如不同时满足所述条件四、所述条件五、所述条件六,则延时继续判断,直到同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定。
基于不同时满足所述条件四、所述条件五、所述条件六的情况下,若不满足所述条件四,则延时60S继续判断,若满足所述条件四,则延时30S继续判断,直到同时满足所述条件四、所述条件五、所述条件六,则确定所述电池单体电流稳定。
判断所述电池单体的电流是否稳定的过程中,通过特定的三个筛选判断条件,提高对电流稳定判断的准确率,有效减少误报。
采集模块,用于若所述电池单体的电流稳定,则采集所述电池单体的第一电压值,T秒后,采集所述电池单体的第二电压值,T为电流及电压采样周期的整数倍;
其中,T例如是1,所述第一电压值记为U0,所述第二电压值记为U1。
计算记录模块,用于根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值,并记录系统内所有的所述电池单体在预设采样周期内的电压差值;
其中,所述电池单体在预设采样周期内的电压差值记为ΔU,ΔU=U0-U1。
保护模块,用于当任一所述电池单体在预设采样周期内的电压差值大于阈值时,进行故障锁存,禁止充电。
其中,ΔU阈值随单体电压值区间不同而不同,三元锂电池,电压小于3.6V或电压大于4.0V时,阈值取30mv,电压在3.6V-4.0V的范围内时,阈值取15mv;磷酸铁锂电池,电压小于3.2V或电压大于3.5V时,阈值取30mv,电压在3.2V-3.5V区间,阈值取15mv。
根据本实施例提供的纯电动汽车电池充电保护装置:通过监控电池充电过程中单体电池的电压下降情况,确认充电过程中的异常电芯,并切断电池高压回路,防止电池进一步恶化产生事故,提高电池系统的安全性;通过判断所述单体电池的电流稳定时的压降情况来判断是否故障,避免了所述单体电池的电流波动导致的压差异常,准确率高;通过判断充电过程中所述单体电池电压的异常跌落,锁定故障,提升安全性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种纯电动汽车电池充电保护方法,其特征在于,所述纯电动汽车电池充电保护方法包括以下步骤:
当电池开始充电时,清空系统内部存储的预设时间内的电流信息,同时清空单体电压备份信息;
采集任一电池单体的电压及电流信息,并判断所述电池单体的电流是否稳定;
若所述电池单体的电流稳定,则采集所述电池单体的第一电压值,T秒后,采集所述电池单体的第二电压值,T为电流及电压采样周期的整数倍;
根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值,并记录系统内所有的所述电池单体在预设采样周期内的电压差值;
当任一所述电池单体在预设采样周期内的电压差值大于阈值时,进行故障锁存,禁止充电。
2.根据权利要求1所述的纯电动汽车电池充电保护方法,其特征在于,当电池处于慢充状态时,判断所述电池单体的电流是否稳定的步骤具体包括:
判断所述电池单体是否同时满足条件一、条件二、条件三,所述条件一为检测到CC,CP信号正常且无电池系统故障,所述条件二为采集的电流变化小于第一预设电流,所述条件三为主动请求电流变化小于第二预设电流;
如同时满足条件一、条件二、条件三,则确定所述电池单体电流稳定。
3.根据权利要求2所述的纯电动汽车电池充电保护方法,其特征在于,判断所述电池单体是否同时满足条件一、条件二、条件三的步骤之后,所述方法还包括:
如不同时满足条件一、条件二、条件三,则延时继续判断,直到同时满足条件一、条件二、条件三,则确定单体电流稳定。
4.根据权利要求1所述的纯电动汽车电池充电保护方法,其特征在于,当电池处于快充状态时,判断所述电池单体的电流是否稳定的步骤具体包括:
判断所述电池单体是否同时满足条件四、条件五、条件六,所述条件四为检测到CC2信号正常且无电池系统故障,所述条件五为采集的电流变化小于第三预设电流;所述条件六为主动请求电流变化小于第四预设电流;
如同时满足条件四、条件五、条件六,则确定单体电流稳定。
5.根据权利要求4所述的纯电动汽车电池充电保护方法,其特征在于,判断所述电池单体是否同时满足条件四、条件五、条件六的步骤之后,所述方法还包括:
如不同时满足条件四、条件五、条件六,则延时继续判断,直到同时满足条件四、条件五、条件六,则确定单体电流稳定。
6.根据权利要求1所述的纯电动汽车电池充电保护方法,其特征在于,根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值步骤中,采样下式计算所述电池单体的电压差值ΔU;
ΔU=U0-U1,
其中,U0为所述第一电压值,U1所述第二电压值。
7.根据权利要求6所述的纯电动汽车电池充电保护方法,其特征在于,ΔU阈值随单体电压值区间不同而不同,对于三元锂电池,电压小于3.6V或电压大于4.0V时,阈值取30mv,电压在3.6V-4.0V的范围内时,阈值取15mv;对于磷酸铁锂电池,电压小于3.2V或电压大于3.5V时,阈值取30mv,电压在3.2V-3.5V区间,阈值取15mv。
8.一种纯电动汽车电池充电保护装置,其特征在于,包括:
清空模块,用于当电池开始充电时,清空系统内部存储的前第一预设时间内的电流信息,同时清空单体电压备份信息;
采集判断模块,用于采集任一电池单体的电压及电流信息,并判断所述电池单体的电流是否稳定;
采集模块,用于若所述电池单体的电流稳定,则采集所述电池单体的第一电压值,T秒后,采集所述电池单体的第二电压值,T为电流及电压采样周期的整数倍;
计算记录模块,用于根据所述第一电压值和所述第二电压值计算所述电池单体的电压差值,并记录系统内所有的所述电池单体在预设采样周期内的电压差值;
保护模块,用于当任一所述电池单体在预设采样周期内的电压差值大于阈值时,进行故障锁存,禁止充电。
9.根据权利要求8所述的纯电动汽车电池充电保护装置,其特征在于,当电池处于慢充状态时,所述采集判断模块用于:
判断所述电池单体是否同时满足条件一、条件二、条件三,所述条件一为检测到CC,CP信号正常且无电池系统故障,所述条件二为采集的电流变化小于第一预设电流,所述条件三为主动请求电流变化小于第二预设电流;
如同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
10.根据权利要求8所述的纯电动汽车电池充电保护装置,其特征在于,所述采集判断模块还用于:
判断所述电池单体是否同时满足所述条件一、所述条件二、所述条件三,如不同时满足所述条件一、所述条件二、所述条件三,则延时继续判断,直到同时满足所述条件一、所述条件二、所述条件三,则确定所述电池单体电流稳定。
CN202010922203.1A 2020-09-04 2020-09-04 纯电动汽车电池充电保护方法及装置 Pending CN112018853A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010922203.1A CN112018853A (zh) 2020-09-04 2020-09-04 纯电动汽车电池充电保护方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010922203.1A CN112018853A (zh) 2020-09-04 2020-09-04 纯电动汽车电池充电保护方法及装置

Publications (1)

Publication Number Publication Date
CN112018853A true CN112018853A (zh) 2020-12-01

Family

ID=73516521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010922203.1A Pending CN112018853A (zh) 2020-09-04 2020-09-04 纯电动汽车电池充电保护方法及装置

Country Status (1)

Country Link
CN (1) CN112018853A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721732A (zh) * 2021-01-21 2021-04-30 重庆金康动力新能源有限公司 一种充电控制方法及相关设备
CN113890141A (zh) * 2021-09-27 2022-01-04 华特数字科技有限公司 一种智能测流机器人的电池状态判断方法、系统及芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425678A (zh) * 2007-10-30 2009-05-06 比亚迪股份有限公司 电池保护方法和系统
JP2012058028A (ja) * 2010-09-07 2012-03-22 Calsonic Kansei Corp 電池容量算出装置および電池容量算出方法
CN105811532A (zh) * 2016-05-17 2016-07-27 深圳慧能泰半导体科技有限公司 一种充电方法、充电控制电路以及充电器
CN110133531A (zh) * 2019-05-24 2019-08-16 上海钧正网络科技有限公司 一种电池监测方法、装置及电子设备
CN111430825A (zh) * 2020-03-31 2020-07-17 潍柴动力股份有限公司 锂电池的内短路处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425678A (zh) * 2007-10-30 2009-05-06 比亚迪股份有限公司 电池保护方法和系统
JP2012058028A (ja) * 2010-09-07 2012-03-22 Calsonic Kansei Corp 電池容量算出装置および電池容量算出方法
CN105811532A (zh) * 2016-05-17 2016-07-27 深圳慧能泰半导体科技有限公司 一种充电方法、充电控制电路以及充电器
CN110133531A (zh) * 2019-05-24 2019-08-16 上海钧正网络科技有限公司 一种电池监测方法、装置及电子设备
CN111430825A (zh) * 2020-03-31 2020-07-17 潍柴动力股份有限公司 锂电池的内短路处理方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721732A (zh) * 2021-01-21 2021-04-30 重庆金康动力新能源有限公司 一种充电控制方法及相关设备
CN113890141A (zh) * 2021-09-27 2022-01-04 华特数字科技有限公司 一种智能测流机器人的电池状态判断方法、系统及芯片

Similar Documents

Publication Publication Date Title
JP4923116B2 (ja) 二次電池システム
CN102565611B (zh) 动力电池的内短路检测方法
CN102749588B (zh) 基于蓄电池soc和soh的故障诊断方法
CN111430825B (zh) 锂电池的内短路处理方法和装置
US20130043876A1 (en) Method for estimating state-of-charge of lithium ion battery
WO2021238319A1 (zh) 储能运行控制方法和装置、空调和网络设备
CN108445343B (zh) 一种动力电池内部短路检测方法及系统
CN111025168A (zh) 一种电池健康状态监控装置及电池荷电状态智能估算方法
CN103487760A (zh) 一种电池健康度的判定方法
CN113391210A (zh) 一种锂电池bms分布式数据分析管理系统
CN112018853A (zh) 纯电动汽车电池充电保护方法及装置
CN109642919A (zh) 接地检测装置以及蓄电系统
CN110931899B (zh) 锂离子动力电池组的故障诊断及失效处理系统以及方法
CN113721156A (zh) 一种用于磷酸铁锂电池的多时间尺度综合预警方法
CN104823351A (zh) 对串联连接的电池元件中的过度放电事件的响应
CN116224075A (zh) 动力电池单体异常预警方法、装置、电子设备和存储介质
CN114563721A (zh) 一种电池系统电流异常变化检测方法
CN116165552A (zh) 一种电池系统过压/欠压故障定位方法
CN103401037A (zh) 一种牵引蓄电池的充电方法
CN105966257B (zh) 一种车用动力电池欠压充电的方法
CN112737000B (zh) 一种电池系统过压故障的控制方法及装置
CN115091981A (zh) 一种电动汽车充检实时安全监测方法及装置
CN115079022A (zh) 用于bms的带自检复位的多级故障报警及保护方法和系统
KR20230076683A (ko) 배터리 관리 시스템 및 배터리 관리 방법
CN111697660A (zh) 一种电池管理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201201