CN112018691A - Staggered socket set - Google Patents

Staggered socket set Download PDF

Info

Publication number
CN112018691A
CN112018691A CN202010733983.5A CN202010733983A CN112018691A CN 112018691 A CN112018691 A CN 112018691A CN 202010733983 A CN202010733983 A CN 202010733983A CN 112018691 A CN112018691 A CN 112018691A
Authority
CN
China
Prior art keywords
socket
sockets
angle
elbow
staggered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010733983.5A
Other languages
Chinese (zh)
Inventor
马儒争
许军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shensi Technology Fuzhou Co ltd
Original Assignee
Fuzhou Ouguan Innovation Industrial Design Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou Ouguan Innovation Industrial Design Co ltd filed Critical Fuzhou Ouguan Innovation Industrial Design Co ltd
Priority to CN202010733983.5A priority Critical patent/CN112018691A/en
Publication of CN112018691A publication Critical patent/CN112018691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Joints Allowing Movement (AREA)
  • Connection Or Junction Boxes (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

The invention discloses a staggered socket group, and relates to a cable socket installed in a building. In particular, the present invention relates to a socket or set of sockets capable of reducing the cumulative turning angle of cable lines within a building; the junction of the wall surface where the socket is located and the ground comprises a pseudo-three-dimensional bent pipe, and when the socket is installed on the wall surface, an included angle smaller than 90 degrees is formed between the surface, butted with the cable pipeline, of the socket and the perpendicular line of the ground.

Description

Staggered socket set
The present invention is a divisional re-application of the following divisional applications which have issued an authorization notice:
divisional application No. 201811413635.9
Parent application No. 201380031344.2 (PCT/IB2014/067400)
This division is made based on the existence of a "singleness" defect as indicated by the examiner.
Technical Field
The invention relates to various socket forms for smooth cable pipelines in buildings.
Background
Whether a cable pipeline in a building is unblocked or not is influenced by two important parameters: the bending radius of the pipeline during turning and turning; second, the accumulated turning angle on the pipeline.
One PCT application, PCT/CN2007/001172, and its cognate british patent, GB 2450851a, and chinese patent, CN 101427433a, disclose a method of clearing a cable duct. The invention solves the problem that the bending radius of a cable pipeline in a building reaches more than 10 times of the pipe diameter under the limitation of harsh construction conditions. Meanwhile, the 'pseudo-three-dimensional bent pipe' is rotated, so that the accumulated turning angle of the cable pipeline can be reduced to a certain extent.
Figure 1 shows a view of a standard "pseudo-solid elbow" in which the pipe has a bend radius R more than ten times the pipe diameter D.
Fig. 2 is a schematic view of the pseudo-solid bent pipe after being flattened. The pseudo-solid elbow is represented by a thick solid line, a straight line f is an intersection line of two planes to which an OP section and an OQ section of the pseudo-solid elbow belong, a ray m and a ray n are respectively perpendicular to the intersection line f and tangent to circles to which two plane arc pipe sections belong in the two planes, and the two planes to which the pseudo-solid elbow belongs are mutually perpendicular. Here, the cumulative turning angle of the pseudo-solid bent pipe POQ is the sum of two 90 ° angles, i.e., 180 °.
The 'rotation' of the pseudo-solid bent pipe can be decomposed into two steps: rotating along the direction of the ray n by taking the ray m as a rotating shaft; the ray n is taken as a rotating shaft and rotates along the direction of the ray m. The two rotations are not divided in sequence.
Fig. 3 is a plan view of the pseudo-solid elbow after it has been "rotated" as described above and flattened along a new intersection line g. It is noted that two intersection lines f are shown, which reflect the actual positions of the intersection lines f in different planes, the intersection line f perpendicularly intersecting the ray m being in the plane of the tube section OP and the intersection line f perpendicularly intersecting the ray n being in the plane of the tube section OQ. By "spinning", the pipe section PPm and the pipe section QQn become "redundant" parts.
In fig. 3, Ψ m and Ψ n are the turning angles of the planar elbow sections OPm and OQn after the rotation of the pseudo-stereo elbow, respectively, so that the cumulative turning angle Ψ of the effective part after the rotation of the pseudo-stereo elbow is Ψ m + Ψ n. Since Ψ m and Ψ n are both smaller than 90 °, Ψ < 180 °.
However, the reduction in cumulative turn angle that can be achieved by "rotation" is limited by practical considerations, since the maximum achievable "rotation" is limited by the vertical deflection limiting distance allowed for the building body.
This can be clearly seen in fig. 4.
In the figure, the straight line c is parallel to the intersection line f and is separated from the two planes before rotation by a and b, respectively, which are the vertical deflection limit distances allowed by the building body.
To significantly reduce the cumulative turn angle of a cable line, each turn angle on a line must be reviewed.
Disclosure of Invention
The invention reduces the accumulated turning angle of the pipeline by greatly reducing the local turning angle of the outlets at the two ends of the pipeline.
The method claimed by the invention is used for reducing the accumulated turning angle of a cable pipeline connected between sockets on two wall surfaces in a building, the middle section of the cable pipeline is laid on the ground, and the junction of the two wall surfaces and the ground respectively comprises a pseudo-three-dimensional bent pipe, and is characterized in that when the socket is installed on the wall surface, an included angle smaller than 90 degrees is formed between the surface, butted with the cable pipeline, of the socket and the vertical line of the ground.
Fig. 5 shows several examples of typical in-building plumbing arrangements. The pipeline path design adopts the method disclosed in the aforementioned PCT/CN2012/001172 and the patent document of the same family. In the figure, the sockets 101, 102 and 103 are located on one wall, and the socket 100 is located on the other wall; g1 and g2 are the intersection lines of the two wall surfaces and the ground; w1、W2And W3The horizontal spacing between the receptacles 101, 102 and 103, respectively, and the receptacle 100. The conduit between the sockets 100 and 101 comprises four right-angled bends with an accumulated turn angle of 360 °; the cumulative turn angle of the tubing between the sockets 100 and 102 is also 360 °; the situation between the sockets 100 and 103 is different, because the horizontal distance between the sockets 100 and 103 exceeds 4 times of the turning radius R, the section of the straight pipe on the ground is not perpendicular to the wall surface any more, so that the turning angle omega of the two sections of the bent pipe on the ground is enabled to be equal to the turning angle R31And Ω32Both less than 90 °; thus, the cumulative turn radius of this pipe is: 180 degrees + omega3132Less than 360 deg. Extreme conditionsUnder the condition of omega31And Ω32As the angle approaches 0 °, the cumulative turning angle approaches 180 °.
The minimum cumulative turning angle achievable for a conduit between two opposing wall sockets is related to the horizontal separation W of the two sockets as shown in fig. 6. Here, the possible fine spacing between the socket-to-tubing interface and the socket center is ignored; meanwhile, the bending radius of all bent pipes is assumed to be R, and the pseudo-three-dimensional bent pipe is not rotated. When W is less than or equal to 4R, the accumulated turning angle is always 360 degrees; when W > 4R, the cumulative turning angle starts to decrease and gradually approaches the limit value of 180 ° as W increases.
Increasing W in order to reduce the cumulative turning angle is a method that can be fully utilized, but it is often impractical to pursue such a method.
In fig. 7, the angle of rotation Ω of the elbow pipe with the bending radius R of the connection socket 1000Is 90. If the angle of the turn is to be reduced, the angle at which the socket 100 intersects the elbow must be adjusted.
Fig. 8 shows a major improvement of the invention, i.e. the plane where the socket 100 meets the elbow is no longer horizontal, but forms an angle Ω of less than 90 ° with the vertical m of the ground1(ii) a Angle omega1Preferably between 30 ° and 60 °.
Notably, the height of the socket from the ground is typically 30cm to 35 cm; if R ≈ 30cm is selected, the elbow of the connection socket 100 in FIG. 7 is exactly one 90. Whereas in fig. 8, since the turning angle is reduced to Ω smaller than 90 °1A small length of straight tube may need to be added between the socket 100 and the elbow.
Because the original 90-degree bent pipe is changed into a small-section bent pipe and a small-section straight pipe, under the condition that the vertical position of the socket is not changed, the horizontal position of the socket must be translated by a small distance mu; this distance can be estimated: when omega is higher than1At 45 °, μ ≈ (√ 2-1) R ≈ 0.4R.
Figure 9 shows a piping diagram using the socket tilt solution. Comparing with fig. 5, it can be seen that the cumulative turning angles of the three pipes are greatly reduced.
When omega is higher than1At 45 deg., the minimum cumulative turning angle that can be achieved for a line between two opposing wall sockets is related to the horizontal separation W of the two sockets as shown in fig. 10. When W is less than or equal to 4R +2 mu and is approximately equal to 4.8R, the accumulated turning angle is 270 degrees all the time; when W > 4R +2 μ ≈ 4.8R, the cumulative turning angle starts to decrease, and gradually approaches this limit value of 90 ° as W increases.
Ω1Taking different values, the following comparative data (table 1) can be obtained:
Figure BDA0002603214200000041
drawings
Figure 1 shows a view of a standard "pseudo-solid elbow".
Fig. 2 is a schematic view of the pseudo-solid elbow of fig. 1 after it is flattened.
FIG. 3 is a plan view of the pseudo-solid elbow after it has been "rotated" and flattened along a new intersection line g.
Fig. 4 is a view of the pseudo-solid elbow viewed along the intersection line f after "rotation".
Fig. 5 shows several examples of typical in-building plumbing arrangements.
FIG. 6 is a graph of the minimum cumulative turn angle achievable for a conduit between two opposing wall sockets versus the horizontal separation W of the two sockets.
Fig. 7 shows a case where the elbow connected to the socket 100 is turned at an angle of 90 °.
Fig. 8 shows the situation after changing the tilt angle of the socket 100.
Fig. 9 shows an embodiment of the layout of the pipeline with the inclination angles of the sockets 100, 101, 102, 103 changed.
FIG. 10 is a graph of the minimum cumulative turn angle achievable for a conduit between two opposing wall sockets versus the horizontal separation W of the two sockets. Here omega1The value is 45 °.
FIG. 11, five sockets are at an angle of inclination Ω to the vertical line m1Schematic of the piping when arranged. The pipeline in the figure is flattened by taking an intersection line g1 of the wall surface and the ground as an axis; the perpendicular line m is perpendicular to the intersection line g 1.
Fig. 12 is a schematic view of five sockets arranged horizontally. The inclination angle of the left lower side of each socket and the vertical line m is omega1(ii) a The dip angle of the lower right side is omega2;Ω12=90°。
Fig. 13, a dual socket embodiment.
Fig. 14 shows the routing of cables in a conventional jack.
Fig. 15, a bypass elbow next to a conventional jack.
Figure 16 shows a hexagonal socket structure with two triangular "wire passing areas" on top and bottom.
Fig. 17 is a schematic diagram of the piping when a hexagonal socket is used.
Detailed description of the preferred embodiments
The basic principle of the invention is that an inclination angle is formed between a surface of a socket of a wall surface, which is connected with a pipeline, and a vertical line; this can be either a conventional square socket or a two-position rectangular socket angled arrangement or a new socket geometry can be used.
Figure 8 shows a basic embodiment prototype of the invention. In contrast to the prior art of fig. 7, the socket 100 is tilted so that the original turning angle is Ω0The bent pipe is changed into a bent angle omega1The elbow pipe of (2).
Fig. 9 shows the layout of the pipeline after the inclination scheme is adopted. The cumulative turn angles of the conduits from the receptacle 100 to the receptacles 101, 102, 103 are all substantially reduced compared to figure 5. When each socket adopts a 45-degree inclination angle, the accumulated turning angle of each pipeline can be reduced by 90 degrees. The smoothness of the pipeline is greatly improved.
As can be seen from FIG. 10 and Table 1 in the foregoing, with Ω1The accumulated turning angle of the pipeline is reduced by two times, namely 2 omega1(ii) a But the straight tube connecting the elbow and the socket becomes correspondingly longer and flatter. Figure 11 is an embodiment employing a 45 deg. tilt angle. The five adjacent sockets 100 are arranged in two rows after being inclinedThe shape of the letter "M". Two of the sockets are connected by a bend 88, referred to herein as a "bypass bend".
Fig. 12 shows another embodiment. Omega1Approximately equal to 30 degrees, and five sockets are horizontally arranged, staggered in sequence and partially overlapped together. There are two bypass elbows 88 connected to a pair of sockets that are not adjacent to each other.
It should be noted that Ω130 means Ω2Approximately equal to 60 degrees. That is, the angle of the elbow connecting the lower right side is 60 °.
In combination with the advantages and disadvantages of all aspects, the 45 degrees which are symmetrical left and right are considered to be a preferable scheme which has both sides and is convenient to implement.
Fig. 13 is an embodiment of a dual bit socket. There is still a bypass elbow 88 angled at 90 degrees to connect a pair of left and right non-adjacent sockets.
The purpose of the bypass elbows provided in the several embodiments above is to facilitate cable passage between the sockets. Because the space of the conventional square socket is limited; cables, especially those that are relatively hard and thick, are almost impossible to run smoothly. There is no excess space available to reserve some cables in the socket for future use.
Fig. 14 shows a situation where the cables 87 in the conventional jack are crowded at corner corners. In fact, these "transit" cables 87 inevitably interfere with the smooth installation of the power or information outlets.
Although, it is also possible to supplement the socket with a similar bypass elbow, such as the bypass elbow 89 in fig. 15; however, the turn angle of the bypass elbow is 180 ° here, whereas the turn angle of the bypass elbow 88 in the previous embodiment is only 90 °, which is clearly out of order.
In view of the foregoing analysis of the problems with existing sockets, we propose a new socket design.
The internal geometry of the new socket is composed of a square space and two isosceles triangle spaces. The whole appearance is seen, and the new socket is a hexagon with two parallel sides. The waists of both triangles are sides of a hexagon. As shown in fig. 16, the middle square region 1000 of the new jack on the right side has a space size substantially equal to that of the conventional jack 100 on the left side; the new jack has a triangular area above and below, respectively, called the wire passing areas (1001 and 1002).
FIG. 17 is a detail of an embodiment of the tubing after the new receptacle is used. Due to the triangular wire passing area, the novel sockets do not need to be inclined to realize the reduction of the turning angle, and two inclined edges below the sockets just meet the requirement.
At the same time, the turn angle of the bypass elbow 88 connecting these triangular wire passing regions is also much less than 180 °. If the triangle is a regular triangle, then Ω1The bypass bend 88 has a bend angle of 90 °, 45 °.
The existence of the triangular wire passing area provides great convenience for the 'passing' of the cable. The turning angle of the cable is also greatly reduced. Especially for hard and thick cables which are difficult to turn, it is much easier to achieve a 90 ° turn angle than a 180 ° turn angle in a small socket interior space.
Moreover, the presence of the triangular wire passing area and the bypass elbow prevents the socket central space 1000 from being occupied. Similarly, when the "cross-border" cable needs to be adjusted or replaced, the power socket or the information socket which is originally installed may not need to be detached due to the existence of the triangular wire passing area and the bypass bent pipe.

Claims (5)

1. The staggered socket group comprises more than two sockets (100) which are horizontally arranged, sequentially obliquely staggered and partially overlapped, wherein the sockets (100) are arranged on the wall surface; an inclined angle smaller than 90 degrees is formed between the inclined plane and the vertical line of the ground; characterized in that there is at least one bypass elbow (88) connecting two of said sockets (100).
2. The staggered socket set of claim 1, wherein a pseudo-solid elbow is laid at the junction of the wall surface and the ground where at least one of said sockets (100) is located; the pseudo-solid bent pipe is connected with the socket (100) through a small section of straight pipe.
3. The staggered receptacle set of claim 1, wherein the bend radius of the pseudo-solid elbow is greater than 10 pipe diameters.
4. The staggered receptacle set of any of claims 1 to 3, wherein the angle of inclination is a minimum of 30 ° and a maximum of 60 °.
5. The staggered receptacle set of any one of claims 1 to 3 wherein said angle of inclination is 45 °.
CN202010733983.5A 2013-12-31 2013-12-31 Staggered socket set Pending CN112018691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010733983.5A CN112018691A (en) 2013-12-31 2013-12-31 Staggered socket set

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010733983.5A CN112018691A (en) 2013-12-31 2013-12-31 Staggered socket set
CN201380031344.2A CN104904083A (en) 2013-12-31 2013-12-31 Method for reducing accumulated turing angle of conduit
PCT/IB2013/061451 WO2015101811A1 (en) 2013-12-31 2013-12-31 Method for reducing accumulated turning angle of conduit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380031344.2A Division CN104904083A (en) 2013-12-31 2013-12-31 Method for reducing accumulated turing angle of conduit

Publications (1)

Publication Number Publication Date
CN112018691A true CN112018691A (en) 2020-12-01

Family

ID=53493318

Family Applications (12)

Application Number Title Priority Date Filing Date
CN202010715607.3A Pending CN112018688A (en) 2013-12-31 2013-12-31 Regular hexagon socket for reducing accumulated turning angle of pipeline
CN202010715280.XA Pending CN112018687A (en) 2013-12-31 2013-12-31 Hexagonal socket for reducing accumulated turning angle of pipeline
CN202010715608.8A Pending CN112072578A (en) 2013-12-31 2013-12-31 Regular hexagon socket set
CN202010727679.XA Pending CN112018689A (en) 2013-12-31 2013-12-31 Two-position socket set
CN201811413635.9A Active CN109494649B (en) 2013-12-31 2013-12-31 Method for reducing accumulated turning angle of pipeline
CN201380031344.2A Pending CN104904083A (en) 2013-12-31 2013-12-31 Method for reducing accumulated turing angle of conduit
CN202010734133.7A Pending CN112072579A (en) 2013-12-31 2013-12-31 Double-row socket set
CN202010733693.0A Pending CN112018690A (en) 2013-12-31 2013-12-31 Two-position socket set
CN202010727777.3A Pending CN112072584A (en) 2013-12-31 2013-12-31 Staggered socket set
CN202010715606.9A Pending CN112072583A (en) 2013-12-31 2013-12-31 Hexagonal socket set
CN202010715279.7A Pending CN112072582A (en) 2013-12-31 2013-12-31 Double-row socket set
CN202010733983.5A Pending CN112018691A (en) 2013-12-31 2013-12-31 Staggered socket set

Family Applications Before (11)

Application Number Title Priority Date Filing Date
CN202010715607.3A Pending CN112018688A (en) 2013-12-31 2013-12-31 Regular hexagon socket for reducing accumulated turning angle of pipeline
CN202010715280.XA Pending CN112018687A (en) 2013-12-31 2013-12-31 Hexagonal socket for reducing accumulated turning angle of pipeline
CN202010715608.8A Pending CN112072578A (en) 2013-12-31 2013-12-31 Regular hexagon socket set
CN202010727679.XA Pending CN112018689A (en) 2013-12-31 2013-12-31 Two-position socket set
CN201811413635.9A Active CN109494649B (en) 2013-12-31 2013-12-31 Method for reducing accumulated turning angle of pipeline
CN201380031344.2A Pending CN104904083A (en) 2013-12-31 2013-12-31 Method for reducing accumulated turing angle of conduit
CN202010734133.7A Pending CN112072579A (en) 2013-12-31 2013-12-31 Double-row socket set
CN202010733693.0A Pending CN112018690A (en) 2013-12-31 2013-12-31 Two-position socket set
CN202010727777.3A Pending CN112072584A (en) 2013-12-31 2013-12-31 Staggered socket set
CN202010715606.9A Pending CN112072583A (en) 2013-12-31 2013-12-31 Hexagonal socket set
CN202010715279.7A Pending CN112072582A (en) 2013-12-31 2013-12-31 Double-row socket set

Country Status (3)

Country Link
CN (12) CN112018688A (en)
GB (2) GB201512748D0 (en)
WO (2) WO2015101811A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044996A1 (en) 2016-08-30 2018-03-08 Dow Agrosciences Llc Picolinamides as fungicides
WO2018044987A1 (en) 2016-08-30 2018-03-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202308550U (en) * 2011-10-20 2012-07-04 宋戈 Deforming socket
CN202712778U (en) * 2012-09-04 2013-01-30 严海洋 Novel wire box

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2019135A1 (en) * 1990-06-15 1991-12-15 Martin J. J. Lafleur Electrical outlet for wall plugs
JPH09273665A (en) * 1996-02-06 1997-10-21 Haruhisa Ito Wall surface support for protection pipe for wiring and piping
US6736670B2 (en) * 2001-11-16 2004-05-18 Adc Telecommunications, Inc. Angled RJ to RJ patch panel
CN2599848Y (en) * 2003-01-23 2004-01-14 褚大华 Built-in terminal box
CN2650363Y (en) * 2003-09-16 2004-10-20 郭德平 Panel of switch and socket
JP4341051B2 (en) * 2003-11-13 2009-10-07 未来工業株式会社 Wiring box
TWM253074U (en) * 2004-03-09 2004-12-11 Cheng Uei Prec Ind Co Ltd Stacked electrical connector
NL1026990C2 (en) * 2004-09-08 2006-03-09 Wavin Bv Pipe part provided with a socket end part.
CN2812362Y (en) * 2005-01-17 2006-08-30 朱汝钦 Bending pipe
CN101060236A (en) * 2006-04-11 2007-10-24 许军 Pipe direction-changing method and stereo bent pipe
CN201122816Y (en) * 2006-04-11 2008-09-24 许军 Siphon fittings with large bending radius
CN1832282A (en) * 2006-04-11 2006-09-13 许军 Method of bending tube with large bending radius
CN201122772Y (en) * 2007-10-26 2008-09-24 宋勤犊 Honeycomb type socket
HK1128189A2 (en) * 2008-08-26 2009-10-16 Clipsal Australia Pty Ltd Multiple gang wall outlet
CN201408890Y (en) * 2009-03-21 2010-02-17 吴利玲 Hexagonal patch board capable of collecting wire
CN201656195U (en) * 2010-04-09 2010-11-24 闫斐 Portable multipurpose socket
CN201699227U (en) * 2010-06-18 2011-01-05 贺晓洋 Octagonal socket
CN201820891U (en) * 2010-10-22 2011-05-04 人民电器集团有限公司 Wall-mounted socket switch
CN202042661U (en) * 2011-03-04 2011-11-16 梁龙双 Intelligent socket and plug combination capable of being used in multiple directions
CN202210587U (en) * 2011-05-31 2012-05-02 浙江科技学院 Wall socket
CN202121169U (en) * 2011-06-09 2012-01-18 曹沥丹 Energy-saving wall-buried safety power strip
CN202276008U (en) * 2011-10-20 2012-06-13 智英科技股份有限公司 Wiring panel with inclination angle
CN202602040U (en) * 2012-04-20 2012-12-12 湖北工业大学 Rotatable three-dimensional socket assembly
CN202749635U (en) * 2012-06-06 2013-02-20 肖守宇 General supply socket
CN202888480U (en) * 2012-10-23 2013-04-17 安徽贝特电缆科技有限公司 Dual-switch socket
CN202872065U (en) * 2012-11-15 2013-04-10 浙江工业大学 Variable wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202308550U (en) * 2011-10-20 2012-07-04 宋戈 Deforming socket
CN202712778U (en) * 2012-09-04 2013-01-30 严海洋 Novel wire box

Also Published As

Publication number Publication date
GB201512744D0 (en) 2015-08-26
CN112072578A (en) 2020-12-11
CN112018688A (en) 2020-12-01
CN112072584A (en) 2020-12-11
CN112072583A (en) 2020-12-11
CN112018689A (en) 2020-12-01
WO2015101811A1 (en) 2015-07-09
CN112018690A (en) 2020-12-01
WO2015101912A1 (en) 2015-07-09
CN112072582A (en) 2020-12-11
CN104904083A (en) 2015-09-09
CN109494649A (en) 2019-03-19
GB201512748D0 (en) 2015-08-26
CN112072579A (en) 2020-12-11
CN112018687A (en) 2020-12-01
CN109494649B (en) 2020-07-28

Similar Documents

Publication Publication Date Title
CN109494649B (en) Method for reducing accumulated turning angle of pipeline
WO2007115508A1 (en) A method and conduit for passing cable through smoothly
US9362727B2 (en) Cable tray assembly
CN211452021U (en) Novel H-shaped finned tube and H-shaped finned tube heat exchanger
CN202090515U (en) Connecting column of combined building wall board and combined building wall body
CN203836462U (en) Elbow for various pipelines
CN110005895B (en) Reducing elbow and pipeline arrangement and connection method using same
CN210716504U (en) Natural compensation pressure pipeline
CN201122816Y (en) Siphon fittings with large bending radius
TW200306388A (en) A connector
CN207339151U (en) A kind of composite bend easy to wiring
JP2006074856A (en) Bendable unit for multiholed conduit
CN112780849B (en) Method for designing pipes with unequal wall thicknesses and internal transition sections
JPH04126931A (en) Outdoor equipment for separation type air conditioner
JP2006121800A5 (en)
CN106300177B (en) Combined pipeline cross device for floor concealed laying and wiring
CN110805773A (en) Pipeline crossing device
JP2002315127A (en) Structure of cable laying facility
JPS62223556A (en) Method of making working and manufacture drawings for square duct pipeline
JP5793408B2 (en) Offset piping structure
CN108050313A (en) Pipeline bilateral device
KR200197425Y1 (en) Y type adaptor for electric conduit pipe
JP5425729B2 (en) Flexible pipe guiding jig and method for installing flexible pipe guiding jig
JP3015676U (en) Underground wiring pipeline block and underground wiring pipeline
JPS61189113A (en) Parallel type flexible wire tube

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230824

Address after: 350200 Haichuanghui, Big Data Industrial Park, Changle District, Fuzhou City, Fujian Province

Applicant after: Shensi Technology (Fuzhou) Co.,Ltd.

Address before: 350015 11th Floor, Archives Building, 77 Qingzhou Road, Mawei District, Fuzhou City, Fujian Province

Applicant before: Fuzhou Ouguan Innovation Industrial Design Co.,Ltd.