CN112017839A - 一种耐腐蚀性医用磁铁的制备及其检测方法 - Google Patents

一种耐腐蚀性医用磁铁的制备及其检测方法 Download PDF

Info

Publication number
CN112017839A
CN112017839A CN201910470828.6A CN201910470828A CN112017839A CN 112017839 A CN112017839 A CN 112017839A CN 201910470828 A CN201910470828 A CN 201910470828A CN 112017839 A CN112017839 A CN 112017839A
Authority
CN
China
Prior art keywords
magnet
corrosion
resistant medical
coating
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910470828.6A
Other languages
English (en)
Inventor
吕毅
汤博
钱旦
韩力
王晓洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Magnet Medical Technology Co ltd
Original Assignee
Xi'an Magnet Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Magnet Medical Technology Co ltd filed Critical Xi'an Magnet Medical Technology Co ltd
Priority to CN201910470828.6A priority Critical patent/CN112017839A/zh
Publication of CN112017839A publication Critical patent/CN112017839A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Materials For Medical Uses (AREA)
  • Electromagnetism (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental Sciences (AREA)

Abstract

本发明公开了一种耐腐蚀性医用磁铁的制备及其检测方法,所述钕铁硼本体的棱角均经过倒圆角处理,其外表面涂覆有防护涂层;所述防护涂层为厚度为25um派瑞林涂层;该磁铁加工时不充磁不镀层,涂层加工完毕后,磁铁再进行充磁;最后将其浸泡于胆汁胃液混合液中进行检测其耐蚀性。本发明可满足短期植入的要求,而且此涂层符合生物相容性要求,能直接用于人体。

Description

一种耐腐蚀性医用磁铁的制备及其检测方法
技术领域
本发明涉及磁性材料技术领域,更具体涉及一种耐腐蚀性医用磁铁的制备及其检测方法。
背景技术
磁外科(Magnetic Surgery,MS)是利用特殊设计的磁性医疗器械或设备,将磁性物质间“非接触性”磁场力转化为临床诊疗中能够发挥特定功能的力,从而完成组织压榨、器官锚定、管腔导航、间隙扩张、可控示踪等功能的新兴综合性技术学科。
经过磁外科不断的成长壮大,磁应用在临床上已经得到了相关专家机构的认可,磁铁的下一步防护,安全性是磁外科现阶段发展的难中之难。
磁铁在不经过处理情况下应用到临床会对病人带来二次伤害,磁材料本身有毒性。目前磁铁涂层都是金属涂层包括镍,锌,氮化钛等,但是和防护时间和磁铁使用的环境有很大关系,磁铁在胆汁胃液等体液中易受到腐蚀,故现有的磁铁不能长时间体内存留,从而导致大部分手术很难进行。
综上所述,目前亟需设计一种克服上述技术问题的耐腐蚀性医用磁铁的制备及其检测方法。
发明内容
为了克服现有技术中存在的不足,本发明的目的在于提供一种耐腐蚀性强的适用于人体体内植入的磁铁,其采用派瑞林涂层,可满足短期植入的要求,而且此种涂层符合生物相容性要求,能直接用于人体。
为了实现上述目的,本发明采取的技术方案是:
一种耐腐蚀性医用磁铁的制备方法,其包括如下步骤:
1)选用一圆环形的未充磁的N45钕铁硼的作为磁铁本体,对该磁铁本体进行倒圆角处理;
2)将上述倒圆角后的磁铁本体浸泡于酸溶液中进行酸洗,去除磁铁表面锈迹即可取出;
3)利用物理气相沉积法在步骤2)的磁铁本体的表面形成镀膜层,得到镀膜磁铁;所述镀膜层为10-30um的派瑞林涂层;
4)待所述镀膜磁铁冷却后,用充磁机对其进行充磁,即可得到耐腐蚀性医用磁铁。
如上所述的一种耐腐蚀性医用磁铁的制备方法,其中,所述镀膜层为25um的派瑞林涂层,其选用派瑞林C粉作为涂层材料。
如上所述的一种耐腐蚀性医用磁铁的制备方法,其中,所述步骤3)中的沉积温度为500℃;其所选取的设备为型号为ZRHC-1300的气相沉积炉。
如上所述的一种耐腐蚀性医用磁铁的制备方法,其中,所述充磁采用分离式充磁方式。
一种耐腐蚀性医用磁铁的检测方法,其特征在于,具体步骤如下:
选用纯胆汁、纯胃液以及胆汁和胃液按照1:1的比例混合的混合液体作为浸泡液;将不同规格的多块耐腐蚀性医用磁铁进行浸泡;该浸泡液每周更换一次;连续浸泡45天即可取出。
如上所述的一种耐腐蚀性医用磁铁的检测方法,其中,所述浸泡液储存于恒温箱内,其型号为HH-US_B。
与现有技术相比,本发明产生的有益效果主要体现在:
本发明的一种耐腐蚀性医用磁铁的制备方法,其选用未充磁未镀膜的磁铁,其待涂层工艺完成后在进行分别充充磁操作;从而大大提高该磁铁的耐腐蚀性;
本发明的一种耐腐蚀性医用磁铁的制备方法,选用厚度为25um的派瑞林作为涂层,该涂层材料有良好的生物相容性,能适用于医疗环境,从而有效避免医疗风险;
本发明的一种耐腐蚀性医用磁铁的检测方法,完全模拟人体体内的环境和温度,体外进行模拟体温循环进行磁铁浸泡,浸泡完毕后对涂层的外观,尺寸,拉伸强度,耐蚀性再进一步测试。
附图说明
图1是本发明的一种耐腐蚀性医用磁铁的结构示意图;
附图标记说明:
1、钕铁硼本体;2、派瑞林涂层
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的一种耐腐蚀性医用磁铁,包括钕铁硼本体1;所述钕铁硼本体1的棱角均经过倒圆角处理,其外表面涂覆有防护涂层;所述防护涂层为厚度为25um派瑞林涂层2。
具体的,为避免棱边处最先腐蚀的,磁铁棱边必须倒圆角,以降低其棱角遭到快速腐蚀;同时,为了进一步提高其耐蚀性,故在该磁铁的外表面涂覆有厚度为25um的派瑞林涂层2,该涂层材料有良好的生物相容性,能适用于医疗环境,从而有效避免医疗风险。
实施例1
本发明的一种耐腐蚀性医用磁铁的制备方法,其包括如下步骤:
1)选用一圆环形的未充磁的N45钕铁硼的作为磁铁本体,对该磁铁本体进行倒圆角处理;
2)将上述倒圆角后的磁铁本体浸泡于酸溶液中进行酸洗,去除磁铁表面锈迹即可取出;
3)利用物理气相沉积法在步骤2)的磁铁本体的表面形成镀膜层,得到镀膜磁铁;所述镀膜层为10um的派瑞林涂层;
4)待所述镀膜磁铁冷却后,用充磁机对其进行充磁,即可得到耐腐蚀性医用磁铁。
实施例2
本发明的一种耐腐蚀性医用磁铁的制备方法,其包括如下步骤:
1)选用一圆环形的未充磁的N45钕铁硼的作为磁铁本体,对该磁铁本体进行倒圆角处理;
2)将上述倒圆角后的磁铁本体浸泡于酸溶液中进行酸洗,去除磁铁表面锈迹即可取出;
3)利用物理气相沉积法在步骤2)的磁铁本体的表面形成镀膜层,得到镀膜磁铁;所述镀膜层为25um的派瑞林涂层;
4)待所述镀膜磁铁冷却后,用充磁机对其进行充磁,即可得到耐腐蚀性医用磁铁。
实施例3
本发明的一种耐腐蚀性医用磁铁的制备方法,其包括如下步骤:
1)选用一圆环形的未充磁的N45钕铁硼的作为磁铁本体,对该磁铁本体进行倒圆角处理;
2)将上述倒圆角后的磁铁本体浸泡于酸溶液中进行酸洗,去除磁铁表面锈迹即可取出;
3)利用物理气相沉积法在步骤2)的磁铁本体的表面形成镀膜层,得到镀膜磁铁;所述镀膜层为30um的派瑞林涂层;
4)待所述镀膜磁铁冷却后,用充磁机对其进行充磁,即可得到耐腐蚀性医用磁铁。
作为最佳实施例,本发明的一种耐腐蚀性医用磁铁的制备方法,所述镀膜层为25um的派瑞林涂层,其选用派瑞林C粉作为涂层原料。
作为最佳实施例,本发明的一种耐腐蚀性医用磁铁的制备方法,所述步骤3)中的沉积温度为500℃;其所选取的设备为型号为ZRHC-1300的气相沉积炉;其特点是沉积温度保持500℃左右,覆盖层附着力强。
具体的,本发明的一种耐腐蚀性医用磁铁的制备方法,所述充磁采用分离式充磁方式;涂层加工完毕后,带涂层磁铁需分离式充磁,避免碰撞导致涂层破损;分离式充磁指的是充磁卡具上面是一个孔对应一个磁铁,避免吸引碰撞。
实验步骤如下:
本发明的一种耐腐蚀性医用磁铁的检测方法,关于其耐蚀性的监测,具体步骤如下:
选用胆汁、胃液以及二者的混合液体作为浸泡液;将不同规格的多块耐腐蚀性医用磁铁进行浸泡;该浸泡液每周更换一次;连续浸泡45天即可取出。
作为优选的实施例,一种耐腐蚀性医用磁铁的检测方法,所述浸泡液储存于恒温箱内,其型号为HH-US_B。
从而完全模拟人体体内的环境和温度,体外进行模拟体温循环进行磁铁浸泡,浸泡完毕后对涂层的外观,尺寸,拉伸强度,耐蚀性再进一步测试。
本发明的一种耐腐蚀性医用磁铁的检测方法,所述浸泡液为纯胆汁、纯胃液以及胆汁和胃液按照1:1的比例混合的混合液体;使用的是恒温箱保持37℃,恒温水浴箱型号:HH-US_B。
实验对比分析:
为了阐明上述方法制成的磁铁耐蚀性高,故本申请的以下四组实验来具体阐明:
第一组:关于磁铁
取六种同规格的磁铁进行加工,其分别为裸磁不倒角、裸磁倒角、裸磁倒圆角、充磁不倒角、充磁圆角和充磁倒圆角;
将上述各类磁铁均经过37℃的胆汁胃液混合液体作为浸泡液进行连续45天浸泡后取出;实验员经过仔细观察发现:最先受到腐蚀的是不倒角磁铁,最后一个受到腐蚀的是倒圆角磁铁。
故第一组实验得出如下结论:倒圆角的磁铁,耐蚀性优于同等规格的其他磁铁。
第二组:关于涂层
基于第一组实验,选取同样为倒圆角的磁铁且其表面涂层均为10um;其表面涂层不同,分别为镀镍镀层磁铁、镀锌涂层磁铁、氮化钛涂层磁铁、氧化钛涂层磁铁、氮化钽涂层磁铁、金属钛涂层磁铁、聚四氟乙烯涂层磁铁、PEEK涂层磁铁、派瑞林涂层磁铁;
将上述各类磁铁均经过37℃的胆汁胃液混合液体作为浸泡液进行连续45天浸泡后取出;实验员经过仔细观察发现:派瑞林涂层的磁铁为最后一个受到腐蚀。
故第二组实验得出如下结论:涂覆派瑞林涂层的倒圆角的磁铁,耐蚀性较高;
第三组:关于涂层厚度
基于第二组和第一组实验的结过;选取不同涂层厚度的涂覆有派瑞林涂层的倒圆角的磁铁;其分别为派瑞林10微米、派瑞林15微米、派瑞林20微米、派瑞林25微米、派瑞林30微米;
将上述各类磁铁均经过37℃的胆汁胃液混合液体作为浸泡液进行连续45天浸泡后取出;实验员经过仔细观察发现:派瑞林涂层的厚度为10、15和20的,其均不同程度的遭到腐蚀,且呈涂层厚度越小,耐蚀性越差;相比较,派瑞林涂层厚度在25微米,试验条件下肉眼观察已经没有腐蚀,其中。30微米的效果一致。
故第三组实验得出如下结论:派瑞林涂层厚度在25微米以上的倒圆角的磁铁,耐蚀性较高;
第四组:关于涂层厚度
基于上述实验一至三的结论,选取同规格的派瑞林涂层30微米厚度的倒圆角磁铁;其分别为先充磁再做派瑞林30微米涂层和先做30微米派瑞林涂层再充磁的两组进行对比;
同等实验条件下,将上述各类磁铁均经过37℃的胆汁胃液混合液体作为浸泡液进行连续45天浸泡后取出;实验员经过仔细观察发现:先做涂层再充磁的效果好于先充磁在做涂层的效果。
故第四组实验得出如下结论:先做涂层再充磁的磁铁,其耐蚀效果好。
完成了上述四组实验后,可得出基于下述流程制成的磁铁耐蚀性较高,可适用于医疗中使用;
1)选用一圆环形的未充磁的N45钕铁硼的作为磁铁本体,对该磁铁本体进行倒圆角处理;
2)将上述倒圆角后的磁铁本体浸泡于酸溶液中进行酸洗,去除磁铁表面锈迹即可取出;
3)利用物理气相沉积法在步骤2)的磁铁本体的表面形成镀膜层,得到镀膜磁铁;所述镀膜层为25um的派瑞林涂层;
4)待所述镀膜磁铁冷却后,用充磁机对其进行充磁,即可得到耐腐蚀性医用磁铁。
基于上述制备方法下制得的磁铁耐蚀性极高;可满足医疗环境中的磁外科手术的需要。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (6)

1.一种耐腐蚀性医用磁铁的制备方法,其特征在于,其包括如下步骤:
1)选用一圆环形的未充磁的N45钕铁硼的作为磁铁本体,对该磁铁本体进行倒圆角处理;
2)将上述倒圆角后的磁铁本体浸泡于酸溶液中进行酸洗,去除磁铁表面锈迹即可取出;
3)利用物理气相沉积法在步骤2)的磁铁本体的表面形成镀膜层,得到镀膜磁铁;所述镀膜层为10-30um的派瑞林涂层;
4)待所述镀膜磁铁冷却后,用充磁机对其进行充磁,即可得到耐腐蚀性医用磁铁。
2.根据权利要求1所述的一种耐腐蚀性医用磁铁的制备方法,其特征在于:
所述镀膜层为25um的派瑞林涂层,其选用派瑞林C粉作为涂层材料。
3.根据权利要求1所述的一种耐腐蚀性医用磁铁的制备方法,其特征在于:
所述步骤3)中的沉积温度为500℃;其所选取的设备为型号为ZRHC-1300的气相沉积炉。
4.根据权利要求1所述的一种耐腐蚀性医用磁铁的制备方法,其特征在于:
所述充磁采用分离式充磁方式。
5.一种根据权利要求1所述的耐腐蚀性医用磁铁的检测方法,其特征在于,具体步骤如下:
选用纯胆汁、纯胃液以及胆汁和胃液按照1:1的比例混合的混合液体作为浸泡液;将不同规格的多块耐腐蚀性医用磁铁进行浸泡;该浸泡液每周更换一次;连续浸泡45天即可取出。
6.根据权利要求5所述的一种耐腐蚀性医用磁铁的检测方法,其特征在于:
所述浸泡液储存于恒温箱内,其型号为HH-US_B。
CN201910470828.6A 2019-05-31 2019-05-31 一种耐腐蚀性医用磁铁的制备及其检测方法 Pending CN112017839A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910470828.6A CN112017839A (zh) 2019-05-31 2019-05-31 一种耐腐蚀性医用磁铁的制备及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910470828.6A CN112017839A (zh) 2019-05-31 2019-05-31 一种耐腐蚀性医用磁铁的制备及其检测方法

Publications (1)

Publication Number Publication Date
CN112017839A true CN112017839A (zh) 2020-12-01

Family

ID=73501119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910470828.6A Pending CN112017839A (zh) 2019-05-31 2019-05-31 一种耐腐蚀性医用磁铁的制备及其检测方法

Country Status (1)

Country Link
CN (1) CN112017839A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299708A (zh) * 2001-01-22 2001-06-20 孙泉 钕铁硼永磁表面聚对二甲苯耐蚀涂层制备预清洗工艺
CN101071672A (zh) * 2007-04-17 2007-11-14 安泰科技股份有限公司 一种用于批量小件烧结钕铁硼磁体的充磁方法
CN102005278A (zh) * 2010-11-11 2011-04-06 湖南航天稀土磁有限责任公司 一种微型粘结永磁体及其制备方法
CN102140666A (zh) * 2011-01-14 2011-08-03 成都图南电子有限公司 一种粘接钕铁硼磁体涂覆方法及其制备得到的多层结构
CN102368438A (zh) * 2011-11-02 2012-03-07 宁波韵升高科磁业有限公司 一种钕铁硼磁体的表面复合防护方法
CN203366891U (zh) * 2013-07-19 2013-12-25 杭州杭天磁业有限公司 外表带派瑞林涂层的磁体
US20160213898A1 (en) * 2015-01-22 2016-07-28 Medtronic Xomed, Inc. Corrosion-resistant magnetic article
CN205645430U (zh) * 2016-05-05 2016-10-12 宁波金坦磁业有限公司 钕铁硼磁体的充磁架

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299708A (zh) * 2001-01-22 2001-06-20 孙泉 钕铁硼永磁表面聚对二甲苯耐蚀涂层制备预清洗工艺
CN101071672A (zh) * 2007-04-17 2007-11-14 安泰科技股份有限公司 一种用于批量小件烧结钕铁硼磁体的充磁方法
CN102005278A (zh) * 2010-11-11 2011-04-06 湖南航天稀土磁有限责任公司 一种微型粘结永磁体及其制备方法
CN102140666A (zh) * 2011-01-14 2011-08-03 成都图南电子有限公司 一种粘接钕铁硼磁体涂覆方法及其制备得到的多层结构
CN102368438A (zh) * 2011-11-02 2012-03-07 宁波韵升高科磁业有限公司 一种钕铁硼磁体的表面复合防护方法
CN203366891U (zh) * 2013-07-19 2013-12-25 杭州杭天磁业有限公司 外表带派瑞林涂层的磁体
US20160213898A1 (en) * 2015-01-22 2016-07-28 Medtronic Xomed, Inc. Corrosion-resistant magnetic article
CN205645430U (zh) * 2016-05-05 2016-10-12 宁波金坦磁业有限公司 钕铁硼磁体的充磁架

Similar Documents

Publication Publication Date Title
Jia et al. Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: a pH-responsive design
Cipriano et al. Anodization of magnesium for biomedical applications–Processing, characterization, degradation and cytocompatibility
Zhang et al. The effect of enzymes on the in vitro degradation behavior of Mg alloy wires in simulated gastric fluid and intestinal fluid
Hoehlinger et al. Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy
Galván et al. In vitro corrosion behaviour of surgical 316LVM stainless steel modified by Si+ ion implantation–An electrochemical impedance spectroscopy study
Bundy et al. In vivo and in vitro studies of the stress‐corrosion cracking behavior of surgical implant alloys
CN102776435A (zh) 一种可降解Fe-Mn-C三元铁合金材料及应用
Zhou et al. A composite coating with physical interlocking and chemical bonding on WE43 magnesium alloy for corrosion protection and cytocompatibility enhancement
Matykina et al. Electrochemical anisotropy of nanostructured titanium for biomedical implants
PARO The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium Grade 4
CN105862106B (zh) 一种钛及钛合金表面双色膜层的制备方法
Kim et al. Electrochemical corrosion behavior of a non-vascular, bi-stent combination, surgical esophageal nitinol stent in phosphate-buffered saline solution
CN112017839A (zh) 一种耐腐蚀性医用磁铁的制备及其检测方法
Fabiano et al. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications
Paprottka et al. Comparative study of the corrosion behavior of peripheral stents in an accelerated corrosion model: experimental in vitro study of 28 metallic vascular endoprostheses
Liu et al. Corrosion behavior of micro-arc oxidized magnesium with calcium phosphate coating in flowing simulated body fluids
Marashi‐Najafi et al. Corrosion resistance and in vitro evaluation of the pulsed current electrodeposited hydroxyapatite coatings on Nitinol shape memory alloy
Saigal et al. Electrical stimulation via a biocompatible conductive polymer directs retinal progenitor cell differentiation
Corbett Laboratory corrosion testing of medical implants
Nie et al. Microstructures, mechanical behavior, cellular response, and hemocompatibility of bulk ultrafine‐grained pure tantalum
CN104404519A (zh) 一种医用钛合金接骨板的金相腐蚀液及腐蚀方法
Meng et al. Effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy
CN109537025B (zh) 含抗腐蚀涂层的金属复合材料、可降解镁合金接骨螺钉及应用
CN111982797A (zh) 一种金属体外降解的动态模拟实验方法
Brown et al. Metal allergy and metallurgy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201201

RJ01 Rejection of invention patent application after publication