CN112016180B - 一种铁路轨道基础装备质量状况分析方法 - Google Patents

一种铁路轨道基础装备质量状况分析方法 Download PDF

Info

Publication number
CN112016180B
CN112016180B CN201910451540.4A CN201910451540A CN112016180B CN 112016180 B CN112016180 B CN 112016180B CN 201910451540 A CN201910451540 A CN 201910451540A CN 112016180 B CN112016180 B CN 112016180B
Authority
CN
China
Prior art keywords
signal
railway track
quality condition
data
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910451540.4A
Other languages
English (en)
Other versions
CN112016180A (zh
Inventor
关炜炜
卢申林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Desheng Railway Equipment Co ltd
Original Assignee
Zhejiang Desheng Railway Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Desheng Railway Equipment Co ltd filed Critical Zhejiang Desheng Railway Equipment Co ltd
Priority to CN201910451540.4A priority Critical patent/CN112016180B/zh
Publication of CN112016180A publication Critical patent/CN112016180A/zh
Application granted granted Critical
Publication of CN112016180B publication Critical patent/CN112016180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明借助设置在铁路轨道基础装备上传感器监测得到此处铁路轨道基础装备的工作所产生的信号,铁路轨道基础装备的质量状况分为多种,这不同质量状况下工作发出的信号,会明显不同,因此,根据不同的实测信号值,可以准确地得知该处铁路轨道基础装备此时的质量状况,为对铁路轨道基础装备的实时监测提供可能。

Description

一种铁路轨道基础装备质量状况分析方法
技术领域
本发明涉及铁路轨道部件安全监测技术领域,尤其是涉及一种铁路轨道基础装备质量状况分析方法。
背景技术
目前,我国铁路轨道以及轨道相关辅助装备部件,比如道岔、辙叉等等,在长时间的运行和使用过程中会产生磨耗、开裂、腐蚀甚至剥落等安全隐患,对于铁路轨道的运营管理部分,需要经常性地对铁路轨道以及其相关辅助部件进行安全检查,这一安全检查需要在全路网上进行,需要耗费大量的人力物力,而且还只能在没有列车经过的时候进行检修,这就导致检修的效率十分低下,完全不能满足我国日益增长的铁路轨道运力需求。因此,开发一种新的铁路轨道质量状况的分析、监测以及预警方法,以适应现代化铁路轨道运输的需要,实现在铁路轨道车辆运行过程中,对铁路轨道的质量状况结合传感器以及物联网进行无人化远程系统监测、评估和预测判断,及时发现铁路轨道的故障以及安全隐患,采取相应措施,避免事故发生,同时提高监测的效率并降低监测的成本。
发明内容
针对上述现有技术存在的问题,本发明的目的在于提供一种铁路轨道基础装备质量状况分析方法,以实现对铁路轨道基础装备的质量状况结合传感器以及物联网进行无人化远程系统监测、评估和分析判断。
为实现上述目的,本发明所采用的技术方案为:
一种铁路轨道基础装备质量状况分析方法,其特征在于,包括以下步骤:
1)在铁路轨道基础装备上设置若干传感器,所述传感器用于采集铁路轨道基础装备工作时产生的信号;采集信号按照一定规律或者间隔时间,汇总后按照记录时间成为时域数据储存起来;
2)将步骤1)采集到的信号数据绘制得到信号图;按照信号数据对应时间轴做图,横轴为时间,随着时间的推移,一个个信号值记录在时域图上,竖轴为信号值大小,可以得到信号数据时域图,而将时域数据经过傅里叶变换,就能得到信号值的频率相关图形,即为信号频域图。
3)选取若干处铁路轨道基础装备实测质量状况出现特征时产生的信号,记为特征信号值;并且实测数据量越大,结果将更趋于稳定准确,所以大数据采集相关实测数据,对应一一记录存储起来。
4)将步骤3)所测得的特征信号值带入到步骤2)绘制得到的信号图中,根据特征信号值在所述信号图上所处的位置对所述信号图进行区域划分;利用大量的实测数据标记当时实测对应质量状况后,信号图上的区域分布初步划分完成,分别是各类质量状况对应信号值的区间,比如,一般正常信号值对应区间,微小的尚可以容忍的裂纹区间,超出容忍范围的裂纹区间;微小的尚可以容忍的剥落区间,超出容忍范围的剥落区间等等。
5)对拟分析质量状况的铁路轨道基础装备进行信号采集,将采集信号带入上述经过区域划分的图中,得到对应质量状况的分析结果;基础数据采集标记越多,对应的质量状况分析就会越精确。
进一步的,在步骤2)中所述信号图包括但不限于信号数据对应时间轴的时域图、将信号时域数据经过傅里叶变换得到的信号频域图;用于质量状况分析既可以用信号时域图,也可以用信号频域图。
进一步的,在步骤3)中所述质量状况出现特征时,出现的特征包括但不限于以下情况:正常、断裂、磨耗、裂纹、剥落、腐蚀、变形、压溃、核伤等,对应的范围可以分为许多等级,如微小的,中度的,超出容忍范围的,具体不同的线路国家及主管部门规定和根据相关法律法规铁路维修规定而定
进一步的,对信号时域数据进行降噪处理,处理方法有低通滤波、相关滤波、时域平均滤波、小波滤波。
进一步的,在步骤2)中绘制信号频域图后还需要对信号频域图进行标准化处理。
进一步的,所述的标准化处理为对信号数据进行拟合修正处理,参与拟合修正的参数包括天气、气温、列车载重重量、列车速度。
进一步的,步骤3)中对实际工作工况,不同天气、气温、列车载重重量、列车速度下进行实测质量状况出现特征的若干处铁路轨道基础装备,它们分别对应相应的特征信号值。
进一步的,根据特征信号值在所述信号图不同位置,将所述信号图划分为与质量状况特征相对应不同的区间;在信号频域图上,不同的质量状况特征,是会集中反映在一块频率区域之内,所以很方便就能识别归类。
铁路轨道基础装备为轨道交通基础装备,包括但不限于钢轨、轨枕、轨道板、垫板、扣件、尖轨、辙叉、护轨、导轨、基本轨、接头夹板、紧固件。
本发明借助设置在铁路轨道基础装备上传感器监测得到此处铁路轨道基础装备的工作所产生的信号,铁路轨道基础装备的质量状况分为多种,这不同质量状况下工作发出的信号,会明显不同,因此,根据不同的实测信号值,可以准确地得知该处铁路轨道基础装备此时的质量状况,为对铁路轨道基础装备道的实时监测提供可能。
本发明首先将设置在铁路轨道基础装备各处的传感器所采集到的数据汇总传输上来,采用这些原始数据统称信号时域数据,这些信号时域数据还存在有诸多的噪音,为了降低噪音的干扰,还需要对这一信号时域数据进行去噪音处理,降噪的方法有低通滤波、相关滤波、时域平均滤波、小波滤波,对降噪后的信号时域数据进行傅里叶变换,绘制得到信号频域图;由于频域图会受到天气、温度、列车载重重量、速度的影响,还需要对这频域图进行标准化处理,标准化处理为对频域图进行拟合修正处理,参与拟合修正的参数包括天气、气温、列车载重重量、列车速度,将这些常见的影响因素作为影响因子带入到拟合算法中对频域图进行拟合修正标准化处理,本发明所使用的拟合修正算法属于是现有技术中常见和常用的拟合修正算法,是在数据处理领域中比较常用的修正算法之一。经过拟合修正后的信号曲线即为在铁路轨道基础装备上的各种工作工况下的标准频域图,为了给这频域图进行区域划分,本发明还对铁路轨道基础装备上的各质量状况进行实地测量。根据现有的判断铁路轨道基础装备质量状况的行业标准,将在铁路轨道基础装备上实际选取正常工作的轨道区域、需要预警的带有微小瑕疵的异常轨道区域以及超出容忍范围的需要立即更换的轨道区域,分别在这多种轨道区域上进行信号的实际大量测量,分别得到与质量状况相对应的多种信号特征值,而后再对上述已经得到的信号频域图进行比对,确定已经实际测量得到的正常工作信号值、需要预警的信号值以及需要立即更换的信号值分别位于该信号频域图的哪些区间段,上述多种信号特征值所处的频域图上的区间段即分别为正常工作的信号区间、需要预警的微小质量状况信号区间以及需要立即更换的超出容忍范围的信号区间,这样就可以把整个频域图划分为不同区域,不同区域中的信号值即反映了轨道的不同实际质量状况和具体的质量状况。完成区域划分的频域图即可以用于对铁路轨道基础装备的实时监测和轨道质量状况预警分析,只需要在铁路轨道基础装备上设置信号传感器即可,将信号传感器监测得到的数据实时处理分析后与频域图进行比对,确定该信号值落入哪个区间内,在哪个区间内即为此时轨道的质量状况,比如:如果铁路轨道基础装备的实时信号值落入了正常工作的信号区间,此时的铁路轨道基础装备即为正常质量状况;如果轨道的实际信号值落入了需要预警的异常信号区间,此时的铁路轨道基础装备即为需要预警的异常质量状况,而且可以指向具体哪个异常的质量状况,细分至具体哪种,是微小的断裂、磨耗、裂纹、剥落、腐蚀、变形、压溃、核伤的哪一种表征;如果铁路轨道基础装备的信号值落入了需要立即更换的超出容忍范围信号区间,那么铁路轨道基础装备此时的质量状况即为需要立即更换的状态,具体是断裂、磨耗、裂纹、剥落、腐蚀、变形、压溃、核伤中的哪一种也可以直接得出判断,以此实现了对铁路轨道基础装备的实时在线监测和分析,节约了大量的人力物力,并具有很高的监测效率。
具体实施方式
为了进一步理解本发明,下面将结合实施例和对比例对本发明的实施方案作进一步详细的描述,但是本发明的实施方式并不限于此。
为了使本发明的目的、技术方案更加清楚明白,以下结合实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。下面对本发明的应用过程作详细的描述。
一种辙叉的质量状况分析方法,包括以下步骤:
1)在辙叉上设置若干加速度传感器,所述加速度传感器用于采集列车经过辙叉时振动冲击产生的加速度信号;采集加速度信号按照一定规律或者间隔时间,汇总后按照记录时间成为加速度时域数据储存起来;
2)将步骤1)采集到的加速度信号数据绘制得到加速度信号图;按照加速度信号数据对应时间轴做图,可以得到加速度信号数据时域图,采集到的加速度信号反映在时域图上为一个个的波形冲击,对应每一次振动冲击值,连起来在时域图上,形成类似心电图一样的波形图,信号值的大小和区间可以反映在时域图上,而将这些采集到的时域数据经过傅里叶变换,就能得到加速度信号值的频率相关图形,即为加速度信号频域图。
3)选取若干处辙叉实测质量状况出现特征时产生的加速度信号,记为特征加速度信号值;并且实测数据量越大,结果将更趋于稳定准确,所以大数据采集相关实测数据,每种辙叉质量状况特征数据起码采集记录10次及以上,并且对应一一记录存储起来。
4)将步骤3)所测得的特征加速度信号值带入到步骤2)绘制得到的加速度信号频域图中,根据特征加速度信号值在所述信号图上所处的位置对所述加速度信号频域图进行区域划分;利用大量的实测数据标记当时实测对应质量状况后,加速度信号频域图上的区域分布初步划分完成,分别是各类质量状况对应加速度信号值的区间,比如,一般正常加速度信号值对应区间,微小的尚可以容忍的裂纹区间,超出容忍范围的裂纹区间;微小的尚可以容忍的剥落区间,超出容忍范围的剥落区间等等。
5)对拟分析质量状况的辙叉进行加速度信号采集,将采集加速度信号带入上述经过区域划分的图中,得到对应质量状况的分析结果;基础数据采集标记越多,对应的质量状况分析就会越精确。
在步骤2)中所述加速度信号图包括但不限于加速度信号数据对应时间轴的加速度时域图、将信号时域数据经过傅里叶变换得到的加速度信号频域图;用于质量状况分析采用加速度信号频域图。
在步骤3)中所述质量状况出现特征时,出现的特征包括但不限于以下情况:正常、断裂、磨耗、裂纹、剥落、腐蚀、变形、压溃、核伤等,对应的范围可以分为许多等级,如微小的,中度的,超出容忍范围的,具体不同的线路国家及主管部门规定和根据相关法律法规铁路维修规定而定
对加速度信号时域数据进行降噪处理,处理方法有低通滤波、相关滤波、时域平均滤波、小波滤波。
在步骤2)中绘制加速度信号频域图后还需要对加速度信号频域图进行标准化处理。
标准化处理为对加速度信号数据进行拟合修正处理,参与拟合修正的参数包括天气、气温、列车载重重量、列车速度。
步骤3)中对实际工作工况,不同天气、气温、列车载重重量、列车速度下进行实测质量状况出现特征的若干处辙叉,它们分别对应相应的特征信号值。
根据特征加速度信号值在所述加速度信号图不同位置,将所述加速度信号图划分为与质量状况特征相对应不同的区间;在加速度信号频域图上,不同的质量状况特征,是会集中反映在一块频率区域之内,所以很方便就能识别归类。
本发明借助设置在辙叉上加速度传感器监测得到此处辙叉在列车经过时受到的振动冲击所产生的加速度信号,辙叉的质量状况分为多种,这不同质量状况下工作发出的信号,会明显不同,因此,根据不同的实测加速度信号值,可以准确地得知该处辙叉列车经过时的质量状况,为对辙叉的实时监测提供可能。
本发明首先将设置在铁路辙叉各处的传感器所采集到的加速度数据汇总传输上来,采用这些原始数据统称加速度信号时域数据,这些加速度信号时域数据还存在有诸多的噪音,为了降低噪音的干扰,还需要对这一加速度信号时域数据进行去噪音处理,降噪的方法有低通滤波、相关滤波、时域平均滤波、小波滤波,对降噪后的加速度信号时域数据进行傅里叶变换,绘制得到加速度信号频域图;由于频域图会受到天气、温度、列车载重重量、速度的影响,还需要对这频域图进行标准化处理,标准化处理为对频域图进行拟合修正处理,参与拟合修正的参数包括天气、气温、列车载重重量、列车速度,将这些常见的影响因素作为影响因子带入到拟合算法中对频域图进行拟合修正标准化处理,本发明所使用的拟合修正算法属于是现有技术中常见和常用的拟合修正算法,是在数据处理领域中比较常用的修正算法之一。经过拟合修正后的加速度信号曲线即为在辙叉上的各种工作工况下的标准频域图,为了给这频域图进行区域划分,本发明还对辙叉上的各质量状况进行实地测量。根据现有的判断辙叉质量状况的行业标准,将在辙叉上实际选取正常工作的轨道区域、需要预警的带有微小瑕疵的异常轨道区域以及超出容忍范围的需要立即更换的轨道区域,分别在这多种轨道区域上进行信号的实际大量测量,分别得到与质量状况相对应的多种加速度信号特征值,而后再对上述已经得到的加速度信号频域图进行比对,确定已经实际测量得到的正常工作加速度信号值、需要预警的信号值以及需要立即更换的加速度信号值分别位于该加速度信号频域图的哪些区间段,上述多种信号特征值所处的频域图上的区间段即分别为正常工作的加速度信号区间、需要预警的微小质量状况加速度信号区间以及需要立即更换的超出容忍范围的加速度信号区间,这样就可以把整个频域图划分为不同区域,不同区域中的加速度信号值即反映了轨道的不同实际质量状况和具体的质量状况。完成区域划分的频域图即可以用于对辙叉的实时监测和轨道质量状况预警分析,只需要在辙叉上设置加速度信号传感器即可,将加速度信号传感器监测得到的数据实时处理分析后与频域图进行比对,确定该加速度信号值落入哪个区间内,在哪个区间内即为此时辙叉的质量状况,比如:如果辙叉的实时信号值落入了正常工作的信号区间,此时的辙叉即为正常质量状况;如果辙叉的实际信号值落入了需要预警的异常信号区间,此时的辙叉即为需要预警的异常质量状况,而且可以指向具体哪个异常的质量状况,细分至具体哪种,是微小的断裂、磨耗、裂纹、剥落、腐蚀、变形、压溃、核伤的哪一种表征;如果辙叉的信号值落入了需要立即更换的超出容忍范围加速度信号区间,那么辙叉此时的质量状况即为需要立即更换的状态,具体是断裂、磨耗、裂纹、剥落、腐蚀、变形、压溃、核伤中的哪一种也可以直接得出判断,以此实现了对辙叉的实时在线监测和分析,节约了大量的人力物力,并具有很高的监测效率。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

Claims (6)

1.一种铁路轨道基础装备质量状况分析方法,其特征在于,包括以下步骤:
1)在铁路轨道基础装备上设置若干传感器,所述传感器用于采集铁路轨道基础装备工作时产生的信号;
2)将步骤1)采集到的信号数据绘制得到信号图;
3)选取若干处铁路轨道基础装备实测质量状况出现特征时产生的信号,记为特征信号值;
4)将步骤3)所测得的特征信号值带入到步骤2)绘制得到的信号图中,根据特征信号值在所述信号图上所处的位置对所述信号图进行区域划分;
5)对拟分析质量状况的铁路轨道基础装备进行信号采集,将采集信号带入上述经过区域划分的信号图中,得到对应质量状况的分析结果;
所述步骤3)出现的特征包括但不限于以下情况:正常、断裂、磨耗、裂纹、剥落、腐蚀、变形、压溃、核伤;所述步骤3)中对实际工作工况,不同天气、气 温、列车载重重量、列车速度下进行实测质量状况出现特征的若干处铁路轨道基础装备,它 们分别对应相应的特征信号值。
2.根据权利要求1所述的方法,其特征在于,在步骤2)中所述信号图包括但不限于信号数据对应时间轴的信号时域图、将信号时域数据经过傅里叶变换得到的信号频域图。
3.根据权利要求2所述的方法,其特征在于,对信号时域数据进行降噪处理,处理方法有低通滤波、相关滤波、时域平均滤波、小波滤波。
4.根据权利要求2所述的方法,其特征在于,在步骤2)中绘制信号频域图后还需要对信号频域图进行标准化处理。
5.根据权利要求4所述的方法,其特征在于,所述的标准化处理为对信号数据进行拟合修正处理,参与拟合修正的参数包括天气、气温、列车载重重量、列车速度。
6.根据权利要求1所述的方法,其特征在于,根据特征信号值在所述信号图不同位置,将所述信号图划分为与质量状况特征相对应不同的区间。
CN201910451540.4A 2019-05-28 2019-05-28 一种铁路轨道基础装备质量状况分析方法 Active CN112016180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910451540.4A CN112016180B (zh) 2019-05-28 2019-05-28 一种铁路轨道基础装备质量状况分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910451540.4A CN112016180B (zh) 2019-05-28 2019-05-28 一种铁路轨道基础装备质量状况分析方法

Publications (2)

Publication Number Publication Date
CN112016180A CN112016180A (zh) 2020-12-01
CN112016180B true CN112016180B (zh) 2023-12-15

Family

ID=73500779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910451540.4A Active CN112016180B (zh) 2019-05-28 2019-05-28 一种铁路轨道基础装备质量状况分析方法

Country Status (1)

Country Link
CN (1) CN112016180B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561705A1 (fr) * 1992-03-20 1993-09-22 Societe Nationale Des Chemins De Fer Francais Procédé et dispositif de localisation d'un véhicule sur une voie et application à l'analyse et à l'expertise de la géométrie d'une voie ferrée
CN102416970A (zh) * 2011-10-12 2012-04-18 北京安通伟业铁路工务技术有限公司 一种钢轨断裂在线监测系统及其敲击检测方法
CN102530028A (zh) * 2012-01-19 2012-07-04 重庆安谐新能源技术有限公司 铁路轨道实时监测系统及其数据处理方法
CN202491817U (zh) * 2012-01-19 2012-10-17 重庆安谐新能源技术有限公司 铁路轨道实时监测系统
WO2012152575A1 (en) * 2011-05-06 2012-11-15 Siemens Aktiengesellschaft A method for railway monitoring based on fiber optics
CN105241660A (zh) * 2015-11-09 2016-01-13 西南交通大学 基于健康监测数据的高铁大型桥梁性能评定方法
CN105897488A (zh) * 2016-06-13 2016-08-24 中南大学 一种无线电信号数据的可视化方法
CN106018557A (zh) * 2016-07-28 2016-10-12 南京理工大学 一种基于小波分析的轨道表面凹陷检测方法
CN106323442A (zh) * 2016-08-18 2017-01-11 南京发艾博光电科技有限公司 一种基于分布式光纤振动传感系统的铁路健康监测方法
CN107063339A (zh) * 2017-02-06 2017-08-18 中国科学院、水利部成都山地灾害与环境研究所 铁道沿线落石与行车信号分类分级判断识别方法
CN107451004A (zh) * 2017-07-01 2017-12-08 南京理工大学 一种基于定性趋势分析的道岔故障诊断方法
CN107621626A (zh) * 2017-10-09 2018-01-23 中国矿业大学(北京) 基于深度卷积神经网络的雷达信号铁路路基病害检测方法
CN108681747A (zh) * 2018-05-11 2018-10-19 武汉理工大学 基于深度学习的旋转机械故障诊断与状态监测系统及方法
CN108845028A (zh) * 2018-03-26 2018-11-20 中国铁路总公司 一种高速铁路钢轨波磨动态检测方法和装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561705A1 (fr) * 1992-03-20 1993-09-22 Societe Nationale Des Chemins De Fer Francais Procédé et dispositif de localisation d'un véhicule sur une voie et application à l'analyse et à l'expertise de la géométrie d'une voie ferrée
WO2012152575A1 (en) * 2011-05-06 2012-11-15 Siemens Aktiengesellschaft A method for railway monitoring based on fiber optics
CN102416970A (zh) * 2011-10-12 2012-04-18 北京安通伟业铁路工务技术有限公司 一种钢轨断裂在线监测系统及其敲击检测方法
CN102530028A (zh) * 2012-01-19 2012-07-04 重庆安谐新能源技术有限公司 铁路轨道实时监测系统及其数据处理方法
CN202491817U (zh) * 2012-01-19 2012-10-17 重庆安谐新能源技术有限公司 铁路轨道实时监测系统
CN105241660A (zh) * 2015-11-09 2016-01-13 西南交通大学 基于健康监测数据的高铁大型桥梁性能评定方法
CN105897488A (zh) * 2016-06-13 2016-08-24 中南大学 一种无线电信号数据的可视化方法
CN106018557A (zh) * 2016-07-28 2016-10-12 南京理工大学 一种基于小波分析的轨道表面凹陷检测方法
CN106323442A (zh) * 2016-08-18 2017-01-11 南京发艾博光电科技有限公司 一种基于分布式光纤振动传感系统的铁路健康监测方法
CN107063339A (zh) * 2017-02-06 2017-08-18 中国科学院、水利部成都山地灾害与环境研究所 铁道沿线落石与行车信号分类分级判断识别方法
CN107451004A (zh) * 2017-07-01 2017-12-08 南京理工大学 一种基于定性趋势分析的道岔故障诊断方法
CN107621626A (zh) * 2017-10-09 2018-01-23 中国矿业大学(北京) 基于深度卷积神经网络的雷达信号铁路路基病害检测方法
CN108845028A (zh) * 2018-03-26 2018-11-20 中国铁路总公司 一种高速铁路钢轨波磨动态检测方法和装置
CN108681747A (zh) * 2018-05-11 2018-10-19 武汉理工大学 基于深度学习的旋转机械故障诊断与状态监测系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于盲源分离的铁路货车轴承声发射信号特征提取与智能诊断研究;李先武;《中国优秀硕士学位论文全文数据库》(第2期);C033-95 *
大型公铁两用斜拉桥健康监测数据的时域峰值统计及频域融合处理;施洲;蒲黔辉;岳青;张同刚;;中国铁道科学(02);55-63 *

Also Published As

Publication number Publication date
CN112016180A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Molodova et al. Automatic detection of squats in railway infrastructure
CN102548828B (zh) 用于检测铁轨缺陷,特别是铁轨顶部缺陷的方法和设备
CN110426005B (zh) 基于imf能量比的高速铁路钢轨波磨声学诊断方法
CN106198062A (zh) 轨道交通工具故障车载声学检测系统及检测方法
CN110222437A (zh) 列车车列健康状态的评估方法、装置及存储介质
CN108731953B (zh) 一种列车轮对的多边形故障在线检测方法
Molodova et al. Monitoring the railway infrastructure: Detection of surface defects using wavelets
Kundu et al. A review on condition monitoring technologies for railway rolling stock
AU2019338073B2 (en) Device and method for detecting railway equipment defects
CN112016180B (zh) 一种铁路轨道基础装备质量状况分析方法
Oßberger et al. Insights towards condition monitoring of fixed railway crossings
CN107782548B (zh) 一种基于对轨道交通工具零部件检测系统
CN112014593B (zh) 一种铁路轨道基础装备质量状况监测评估装置和方法
CN112012060B (zh) 一种铁路轨道基础装备质量状况预测判断方法
Huang Integrated railway remote condition monitoring
CN112013895B (zh) 一种铁路轨道基础装备质量状况监测和评估方法
CN110956164A (zh) 一种基于噪声信号的列车车轮损伤识别方法
CN115931399A (zh) 一种实时在线检测高速列车轮多边形故障的方法
CN115805971A (zh) 一种在线监测列车车轮多边形故障的方法
Papaelias et al. Advanced wayside condition monitoring of rolling stock wheelsets
CN109211556B (zh) 一种轨道交通工具零部件检测系统
Asplund et al. Assessment of the data quality of wayside wheel profile measurements.
CN113032907A (zh) 基于波形相关关系的晃车病害数据偏差纠正方法及系统
Cantini et al. Optimization of in-service UT inspections intervals based on wheelset loads moni-toring–SMARTSET®
Xu et al. Dynamic Diagnosis Method for Continuous and Equidistant Wheel Burn Based on Axle Box Acceleration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Lu Shenlin

Inventor after: Guan Weiwei

Inventor before: Guan Weiwei

Inventor before: Lu Shenlin

CB03 Change of inventor or designer information