CN1120156A - 压电气体传感器 - Google Patents

压电气体传感器 Download PDF

Info

Publication number
CN1120156A
CN1120156A CN95100968A CN95100968A CN1120156A CN 1120156 A CN1120156 A CN 1120156A CN 95100968 A CN95100968 A CN 95100968A CN 95100968 A CN95100968 A CN 95100968A CN 1120156 A CN1120156 A CN 1120156A
Authority
CN
China
Prior art keywords
sensor
piezoelectric crystal
formula
coating
multinomial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95100968A
Other languages
English (en)
Inventor
G·福伊希特
A·施雷彻尔
G·福兰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of CN1120156A publication Critical patent/CN1120156A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • G01N2291/0257Adsorption, desorption, surface mass change, e.g. on biosensors with a layer containing at least one organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/19Halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/206664Ozone or peroxide

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明涉及由压电晶体和含聚亚芳硫醚的涂层构成的传感器,其涂层包含至少一种具有式I重复单元的聚亚芳体系,它至少含有一个硫醚基,
-[(Ar1)n-X]m-[(Ar2)i-Y]j-[(Ar3)k-Z]l-[(Ar4)o-W]p- (I)
其中Ar1,Ar2,Ar3和Ar4是具有6至18个碳原子的相同或不同的芳基体系;W,X,Y和Z是相同或不同的连接基团,它选自-SO2-,-S-,-SO-,-O-,-CO-,-CO2,具有1至6个C原子的亚烷基和-NR1-,其中R1是具有1至6个C原子的烷基或亚烷基,并且必须至少一个是连接基-S-;n,m,i,j,k,l,o,p是相同或不同的整数0,1,2,3或4,其总数至少为2。

Description

压电气体传感器
现有技术中已知(JP84-123975)可使用由聚苯硫醚和Au电极构成的电导传感器测定过度反应的气体如SO2F2和SOF2。从而使SO2经形成的交联链进入该聚合物中。检测在这种情况下产生的电导变化。但用这种传感器不能测定臭氧,卤素或含过氧的化合物。原则性的问题是Au电极抗待检测气体的耐蚀性。
众所周知(分析化学,57(13),2634-8,1985)可用压电1,4-聚丁二烯涂层传感器测定臭氧。这种传感器的缺点是通过用毛刷涂层制造聚合物涂层会损伤接触的表面。同样地,用这种方法层的均匀性不能再现,发现经检测的强波动变化的频率变化范围为2000至10000Hz。此外,通过ppb范围的吸收臭氧量观测到的频率变化非常小。
已知产生振动的电频发生器使用了由石英或钛酸铅/锆陶瓷组成的压电元件。选择共振频率以检测质量变化并由接通的外部频率发生器增强共振频率。
已知基本振动(周期T)和谐波振荡器质量m之间的相互关系为: T = 2 π m · s K - - - - ( 1 ) 式(1)中的S为偏转,K为振动质量的回转力。按照振动频率和振幅之间的关系也得出公式(2)
F2=1/T2=常数/m                (2)增加振动质量如通过化学吸收法引起压电材料谐振频率的频率位移。公式(2)中的常数为压电活性材料的材料常数(声阻抗、剪切模量)。
例如石英时得出频率变化Δf的下列函数:
Δf=-2,3·106·F2·Δm/A      (3)式中A为振动面积,F为基本振动,Δm为质量变化。若振动面(例如石英片)带有涂层,则由于根据关系式(3)的质量增加,体系的频率改变。若涂层对环境介质中一种或多种物质有吸收特性,具有频率改变的振动体系在发生吸收时起反应。通过适当地选择吸收剂可在宽的极限内调节传感器的特性(选择性、灵敏度、可恢复性、可累积性)。
本发明的任务是提供检测臭氧、卤素和过氧化合物的传感器,它是耐蚀性的,可重复制备的,具有高吸收能力并迅速将检测气体转变成不挥发的化合物。
令人惊奇地发现,通过采用合适的涂层技术和后处理技术在压电晶体中添加聚亚芳基硫醚消除了上述缺点,得到了所希望的特性。由此获得定量地检测卤素,过氧化合物和臭氧用的检测器。
本发明的主题是由压电晶体和含有聚亚芳基硫醚的涂层构成的传感器。
本发明可使用的聚合物是具有式1重复单元的聚亚芳基体系,它至少含有一个硫醚基,
-[(Ar1)n-X]m-[(Ar2)i-Y]j-[(Ar3)k-Z]l-[(Ar4)o-W]p-       (I)其中Ar1,Ar2,Ar3和Ar4是具有6至18个碳原子的相同或不同的芳基体系;W,X,Y和Z是相同或不同的连接基团,它选自-SO2-,-S-,-SO-,-O-,-CO-,-CO2-,具有1至6个C原子的亚烷基(Alkylen或Alkyliden)和-NR1-,其中R1为具有1至6个C原子的烷基或亚烷基,并且必须至少是一个连接基团-S-;n,m,i,j,k,l,o,p是相同或不同的整数0,1,2,3或4,其总数至少为2。
亚芳基体系涉及简单的亚芳基如亚苯基或亚萘基或对一,间一,或邻位连接的亚芳基体系如亚联苯基。
本发明优选使用的聚合物是具有式(II-VIII)重复单元的聚亚芳基:
Figure A9510096800071
本发明特别优选的是具有式(VIII)重复单元的聚亚苯基硫醚(pps)。具有式II-VI重复单元的聚亚芳基的合成描述于Chimis 28(9),567中,具有式VII重复单元的聚亚芳基的合成描述于US4016145,具有式VIII重复单元的聚亚芳基的合成描述于US3919177,4038262和4282347中。
对于本发明适用的是具有式1重复单元的直链和支链聚亚芳基体系,具有的平均分子量为10000至200000,优选地为15000至150000。也可使用具有式1重复单元的各种聚亚芳基的混合物。
本发明可使用具有压电效果的所有晶体。
按照本发明优选的是无机压电晶体如碱土金属钛酸盐,钛酸铅/锆和石英,特别优选的是碱土金属钛酸盐,尤其是钛酸钡和石英。
按照本发明可使用具有基本振动的压电晶体,其频率范围为20KHz至100MHz,优选为0.1MHz至50MHz,特别优选0.1MHz至30MHz。也可使用用于检测的谐振动,其频率范围为1MHz至1000MHz,优选30MHz至500MHz。
按照本发明可通过普通的涂层方法将聚亚芳基硫醚涂在压电晶体的一侧或两侧上。优选的涂层方法(使用聚合物或单体溶液)如旋转涂层,浸渍涂层或喷雾方法。所有的有机物质适合用作溶剂,只要能以足够的浓度溶解各种聚合物或单体即可,例如己内酰胺,1-氯萘,1-甲氧基萘、异喹啉、2-甲氧基萘或2,4,6-三氯苯酚。使用单体溶液时可通过普通的表面聚合技术如激光诱导或提高温度实现随后的聚合。
按照本发明,涂覆的聚合物层的后处理是通过在商业上通用的干燥装置中于空气,保护气体或真空中在0至350℃的温度下干燥实现的,优选的温度为30~300℃,更优选地为50~250℃。
按照本发明,为了获得更厚的聚合物层,可多次重复涂覆和干燥步骤。
按照本发明干燥后压电晶体的涂层范围为1ng/cm2至100mg/cm2,优选5ng/cm2至10mg/cm2,更优选10ng/cm2至2mg/cm2
涂覆后检查压电晶体的振动性能。
可用(3)检查涂覆后的吸收层质量。
按照本发明将如此制备的传感器放入一个具有确定体积流量的试验气体流的循环室中。不需要恒温(Thermostatisierung)。该传感器频率或者直接算出或者与稳定的基准频率混合然后算出(用频率或频率变化对时间作图)。信号变化可直接通过后面连接的信息处理机按质量变化换算并由仪器读数示出。该传感器特别适合于检测臭氧、氯、溴、氟,过氧化氢和过酸。
本发明的传感器可应用于劳动保持的领域内,排放以及作为过滤控制器。
下面借助实施例详细描术本发明。实施例1:
除去市售的HC-18石英保持壳并将其浸渍在200℃氯萘中PPS(MW:30000,Tm288℃)的饱和溶液中。接着将该传感器在一个市售的真空干燥箱中于120℃干燥5小时。涂层传感器的振动强度是用一个晶体管化的振动器,使振动石英在0.1和30MHz之间并联谐振并用带有可接通的预分频器(Vorteiler)和恒温的选通时间基准(Torzeitbasis)的10MHz频率计数器(分辨率0.1Hz)测定的。
在传感器表面上涂覆50μgpps产生8KHz的频率变化。使该传感器在H2O2饱和的水蒸汽中运行8小时。检测每隔2小时的频率变化。调整约2小时后的线性频率一时间函数关系,如由下表得知。表1传感器试验试验参数:T=120℃,E=作用时间,Fo(基础频率)=12.7MHzΔf:经实验气体作用的频率变化。1.PPS涂层传感器曝露于水蒸汽Δf=25Hz(4种传感器信号的平均值)E=120分钟2.曝露于过氧化氢蒸汽(由30%(m/m)H2O2的水溶液产生)。Δf=870Hz(4种传感器信号的平均值)E=120分钟3.曝露于过氧化氢蒸汽Δf=166Hz(4种传感器信号的平均值)E=120分钟4.曝露于过氧化氢蒸汽Δf=147Hz(4种传感器信号的平均值)5.曝露于过氧化氢蒸汽Δf=169Hz(4种传感器信号的平均值)6.曝露于过氧化氢蒸汽Δf=160Hz(4种传感器信号的平均值)
通过ESCA分析,测定传感器的化学吸收效果。在S 2P光谱上可观察到硫醚部分氧化成砜连接基团。实施例2:
按实施例1制备传感器。试验参数:
传感器涂层:                    50μg
温度:                          22℃
聚合物涂层后的基础频率:        12.7MHz
臭氧浓度:                      0.11cm3臭氧/m3空气
流量:                          0.01m3/h
试验时间:                      27小时
试验期间传感器显示的线性时间频率减少梯度为-2Hz/h。实施例3:检测氯
按照实施例1制备用于氯的有效检测层。不过本例中使用的振动石英的基础频率更高,约18MHz。试验参数:
聚合物涂层的基础频率:      18MHz
经PPS涂层的频率变化:       1.9KHz
传感器涂层:                振动石英上10μgPPS
温度:                      室温
检测气体:                  氯
流量:                      0.002m3/h
试验时间:                  10分钟
由于环境的过度浸蚀,保持短的试验时间以保护测量仪器。测量时总频率减少15KHz。从而频率变化是呈线性的,梯度为1.5KHz/分。

Claims (10)

1.由压电晶体和含聚亚芳硫醚的涂层构成的传感器。
2.按照权利要求1的传感器,其特征在于,涂层包含至少一种具有式I重复单元的聚亚芳体系,
-[(Ar1)n-X]m-[(Ar2)i-Y]j-[(Ar3)k-Z]l-[(Ar4)o-W]p-    (I)该体系包含至少一个硫醚基团,其中Ar1,Ar2,Ar3和Ar4是具有6至18个碳原子的相同或不同的芳基体系;W,X,Y和Z是相同或不同的连接基团,它选自-SO2-,-S-,-SO-,-O-,-CO-,-CO2-,具有1至6个C原子的亚烷基(Alkylen或Alkyliden)和-NR1-,其中R1是具有1至6个C原子的烷基或亚烷基,并且必须至少一个是连接基-S-;n,m,i,j,k,l,o,p是相同或不同的整数0,1,2,3或4,其总数至少为2。
3.按照权利要求1或2的传感器,其特征在于,涂层包含至少一种具有式II,III,IV,V,VI,VII或VIII重复单元的聚亚芳:
Figure A9510096800021
Figure A9510096800022
Figure A9510096800031
4.按照权利要求1、2或3一项或多项的传感器,其特征在于涂层包含具有式VIII重复单元的聚亚芳。
5.按照权利要求1至4一项或多项的传感器,其特征在于,压电晶体具有的基础振动频率范围为20KHz至100MHz,优选为0.1MHz至50MHz。
6.按照权利要求1至5一项或多项的传感器,其特征在于,压电晶体具有的谐振频率范围为1MHz至1000MHz,优选30MHz至500MHz。
7.按照权利要求1至6一项或多项的传感器,其特征在于,用碱土金属钛酸盐,钛酸铅锆或石英作为压电晶体。
8.按照权利要求1至7一项或多项的传感器,其特征在于用石英作为压电晶体。
9.按照权利要求1的传感器在检测卤素、过氧化合物或臭氧中的应用。
10.按照权利要求1的传感器在劳动保护领域、排放测量中以及作为过滤控制器的应用。
CN95100968A 1994-01-29 1995-01-27 压电气体传感器 Pending CN1120156A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4402671A DE4402671A1 (de) 1994-01-29 1994-01-29 Leitfähigkeitssensor
DEP4402671.4 1994-01-29

Publications (1)

Publication Number Publication Date
CN1120156A true CN1120156A (zh) 1996-04-10

Family

ID=6508990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95100968A Pending CN1120156A (zh) 1994-01-29 1995-01-27 压电气体传感器

Country Status (18)

Country Link
US (1) US6171867B1 (zh)
EP (1) EP0665427B1 (zh)
JP (1) JP3653113B2 (zh)
KR (1) KR950033480A (zh)
CN (1) CN1120156A (zh)
AT (1) ATE195180T1 (zh)
AU (1) AU688431B2 (zh)
BR (1) BR9500359A (zh)
CA (1) CA2141265A1 (zh)
CZ (1) CZ21695A3 (zh)
DE (2) DE4402671A1 (zh)
DK (1) DK0665427T3 (zh)
ES (1) ES2150508T3 (zh)
IL (1) IL112464A0 (zh)
MY (1) MY130289A (zh)
PL (1) PL306978A1 (zh)
RU (1) RU95101040A (zh)
TW (1) TW365086B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045013A (zh) * 2018-01-15 2019-07-23 罗门哈斯电子材料有限责任公司 声波传感器和感测气相分析物的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619227C2 (de) * 1996-05-13 2001-06-07 Axiva Gmbh Ozonsammler zur Bestimmung von integralen Ozonbelastungen
US6368867B1 (en) * 1998-01-29 2002-04-09 International Business Machines Corporation Monitor for verification of ozone reaction
US20040203172A1 (en) * 2003-04-14 2004-10-14 Urs Corporation Method and apparatus for a chemical sensor
US20050016276A1 (en) * 2003-06-06 2005-01-27 Palo Alto Sensor Technology Innovation Frequency encoding of resonant mass sensors
US7232545B2 (en) * 2003-09-16 2007-06-19 Steris Inc. Sensor for determining concentration of fluid sterilant
US7541002B2 (en) 2004-05-12 2009-06-02 Steris Corporation Apparatus for determining the efficiency of a vaporizer in a decontamination system
US20050276721A1 (en) * 2004-05-25 2005-12-15 Steris Inc. Method and apparatus for controlling the concentration of a sterilant chemical in a fluid
US7431886B2 (en) * 2004-09-24 2008-10-07 Steris Corporation Method of monitoring operational status of sensing devices for determining the concentration of chemical components in a fluid
US20060105466A1 (en) * 2004-11-12 2006-05-18 Steris Inc. Sensor for determining concentration of ozone
US20060188399A1 (en) * 2005-02-04 2006-08-24 Jadi, Inc. Analytical sensor system for field use
US20080196478A1 (en) * 2007-02-20 2008-08-21 Honeywell International Inc. Transition metals doped zeolites for saw based CO2 gas sensor applications
FR2931701B1 (fr) * 2008-06-02 2010-06-11 Centre Nat Rech Scient Utilisation de nanomateriaux de carbone en tant que materiau de filtration impermeable a l'ozone
US11215586B2 (en) 2017-01-30 2022-01-04 Aromatix, Inc. Ultrasound gas sensor system using machine learning
US10900062B2 (en) 2017-07-14 2021-01-26 American Sterilizer Company Process for determining viability of test microorganisms of biological indicator and sterilization detection device for determining same
US10876144B2 (en) 2017-07-14 2020-12-29 American Sterilizer Company Process for determining viability of test microorganisms of biological indicator and sterilization detection device for determining same
US10889848B2 (en) 2017-07-14 2021-01-12 American Sterilizer Company Process for determining viability of test microorganisms of biological indicator and sterilization detection device for determining same
TWI792000B (zh) * 2019-06-23 2023-02-11 美商羅門哈斯電子材料有限公司 氣體感測器和感測氣相分析物之方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123975A (ja) * 1982-12-29 1984-07-17 Fujitsu Ltd ベクトルデ−タ記憶制御方式
JPS613038A (ja) * 1984-06-16 1986-01-09 Nissin Electric Co Ltd ガスセンサ
DE4314734A1 (de) * 1993-05-04 1994-11-10 Hoechst Ag Filtermaterial und Verfahren zur Entfernung von Ozon aus Gasen und Flüssigkeiten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045013A (zh) * 2018-01-15 2019-07-23 罗门哈斯电子材料有限责任公司 声波传感器和感测气相分析物的方法
CN110045013B (zh) * 2018-01-15 2022-08-26 罗门哈斯电子材料有限责任公司 声波传感器和感测气相分析物的方法

Also Published As

Publication number Publication date
JPH07294404A (ja) 1995-11-10
MY130289A (en) 2007-06-29
DE4402671A1 (de) 1995-08-03
JP3653113B2 (ja) 2005-05-25
IL112464A0 (en) 1995-03-30
EP0665427A2 (de) 1995-08-02
US6171867B1 (en) 2001-01-09
DE59508603D1 (de) 2000-09-07
RU95101040A (ru) 1996-10-27
EP0665427A3 (de) 1997-04-09
ES2150508T3 (es) 2000-12-01
EP0665427B1 (de) 2000-08-02
PL306978A1 (en) 1995-08-07
ATE195180T1 (de) 2000-08-15
CZ21695A3 (en) 1995-09-13
KR950033480A (ko) 1995-12-26
DK0665427T3 (da) 2000-12-27
TW365086B (en) 1999-07-21
BR9500359A (pt) 1997-01-14
AU1143695A (en) 1995-08-10
CA2141265A1 (en) 1995-07-30
AU688431B2 (en) 1998-03-12

Similar Documents

Publication Publication Date Title
CN1120156A (zh) 压电气体传感器
CN1050195C (zh) 聚合物传感器
Buttry Applications of the quartz crystal microbalance to electrochemistry
US5756631A (en) Siloxanes with strong hydrogen bond donating functionalities
Muramatsu et al. In-situ monitoring of microrheology on electrochemical deposition using an advanced quartz crystal analyzer and its application to polypyrrole deposition
Borjas et al. Solvent swelling influences the electrochemical behavior and stability of thin films of nitrated poly (styrene)
Buttry et al. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance
Zhou et al. Reliable CO2 sensors with silicon-based polymers on quartz microbalance transducers
JP2003512621A (ja) 表面弾性波センサの製造方法および表面弾性波センサ
US5866798A (en) Crystal oscillator sensor
Deng et al. Selective detection of aroma components by acoustic wave sensors coated with conducting polymer films
Stokich et al. An instrument for precise measurement of viscoelastic properties of low viscosity dilute macromolecular solutions at frequencies from 20 to 500 kHz
Öztürk et al. Soluble phthalocyanines for the detection of organic solvents: thin film structures with quartz microbalance and capacitance transducers
KR20040111377A (ko) 화학센서 적용을 위한 고차 분지구조 화학 선택성실리콘-기본 고분자
Chang et al. Analysis of the phase transition of polymer blends using quartz crystal analyser
Chang et al. Odorant sensor using lipid-coated SAW resonator oscillator
Avramov Polymer coated rayleigh SAW and STW resonators for gas sensor applications
Chang et al. Development of chemical vapour sensor using SAW resonator oscillator incorporating odorant receptive LB films
Radeva et al. Humidity sensing properties of plasma polymer coated surface transverse wave resonators
Ranucci et al. Poly (ethyleneglycol) s-based hydrogels as coatings for relative humidity sensors
RU2119662C1 (ru) Сенсор паров ароматических углеводородов
Chang et al. Chemical vapour sensor using a SAW resonator
RU2678771C1 (ru) Химический газовый сенсор на основе гидроксиапатита
JPH0446202Y2 (zh)
Fort et al. NO 2 QCM gas sensor based on electrochemical deposition of PEDOT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication