CN112014759A - 基于分布式集群分析电池性能的方法及系统 - Google Patents

基于分布式集群分析电池性能的方法及系统 Download PDF

Info

Publication number
CN112014759A
CN112014759A CN202010713309.0A CN202010713309A CN112014759A CN 112014759 A CN112014759 A CN 112014759A CN 202010713309 A CN202010713309 A CN 202010713309A CN 112014759 A CN112014759 A CN 112014759A
Authority
CN
China
Prior art keywords
battery
data
voltage
grouped
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010713309.0A
Other languages
English (en)
Other versions
CN112014759B (zh
Inventor
曾志鹏
杨凯乐
陈立珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Measurement Road Shenzhen Energy Storage Technology Co ltd
Original Assignee
Measurement Road Shenzhen Energy Storage Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Measurement Road Shenzhen Energy Storage Technology Co ltd filed Critical Measurement Road Shenzhen Energy Storage Technology Co ltd
Priority to CN202010713309.0A priority Critical patent/CN112014759B/zh
Publication of CN112014759A publication Critical patent/CN112014759A/zh
Application granted granted Critical
Publication of CN112014759B publication Critical patent/CN112014759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种基于分布式集群分析电池性能的方法及系统,该方法包括:采集分布式电站下的电池管理系统中的电池数据;对每个电池管理系统的电池数据进行分组,获得多个分组电池数据;计算各个分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据,目标分组电池数据包括目标单体电池电压;计算目标单体电池电压的平均电压;根据平均电压计算目标单体电池电压在同一时刻的方差;当方差大于预设方差阈值时,计算各个目标单体电池电压与平均电压的欧几里得距离并根据欧几里得距离确定目标单体电池的性能是否发生异常。通过上述方式,本发明能够大幅降低人工成本,提高维护效率,延长分布式电站的寿命。

Description

基于分布式集群分析电池性能的方法及系统
技术领域
本发明涉及电池管理技术领域,特别是涉及一种基于分布式集群分析电池性能的方法及系统。
背景技术
现有的电池性能分析大多数是采用人工干预或者电池管理系统进行一些简单的逻辑推断,人为的跟踪电池的历史数据,然后对数据进行粗劣的处理,并且通过肉眼观察电芯是否一致从而得出电芯的优劣情况。
人工干预的方式,由于分布式电池储能系统产生的数据量巨大,人工处理不仅效率低下,而且极易引入人为因素的错误。人工干预的方式大部分发生在电池出现比较大的SOH衰减的时候进行,不能很好的把故障消灭在源头,造成比较大的维护成本。
电池管理系统自检的方式,由于电池管理系统的计算处理能力有限,不能很好地对过往的历史数据进行利用,造成推断出来的结果有较大的偏差,不能由点及面的分析数据,只能单点分析电池数据,并且电池管理系统处理电池历史数据的方式比较单一,计算的结果可靠性不强。
总体来说,现有的电池性能分析的方式会造成比较大的维护成本,计算结果存在较大的偏差,降低了分布式电池储能系统的经济效益。
发明内容
本发明提供一种基于分布式集群分析电池性能的方法及系统,能够准确分析出有问题的单体电池,并进行及时维护,大幅降低了人工成本,提高了维护效率,延长了分布式电站的寿命。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于分布式集群分析电池性能的方法,包括:
采集分布式电站下的电池管理系统中的电池数据;
对每个所述电池管理系统的所述电池数据进行分组,获得多个分组电池数据;
计算各个所述分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据,所述目标分组电池数据包括目标单体电池电压;
计算所述目标单体电池电压的平均电压;
根据所述平均电压计算所述目标单体电池电压在同一时刻的方差;
当所述方差大于预设方差阈值时,计算各个所述目标单体电池电压与所述平均电压的欧几里得距离并根据所述欧几里得距离确定目标单体电池电压是否发生异常。
根据本发明的一个实施例,计算所述目标单体电池电压的平均电压的步骤包括:
对所述目标单体电池电压进行排序;
去掉排序前5%和后5%的所述目标单体电池电压;
计算剩余的所述目标单体电池电压的平均电压。
根据本发明的一个实施例,计算各个所述目标单体电池电压与所述平均电压的欧几里得距离的步骤按照如下公式进行:
Figure BDA0002597325770000021
其中,vi为所述目标单体电池电压,Vavg为所述目标单体电池电压的平均电压,Vgap为各个所述目标单体电池电压与所述平均电压的欧几里得距离。
根据本发明的一个实施例,根据所述欧几里得距离确定目标单体电池电压是否发生异常的步骤包括:
判断所述欧几里得距离是否大于预设距离阈值;
若是,确定目标单体电池电压发生异常并推送给运维人员;
若否,确定所述目标单体电池电压正常并结束流程。
根据本发明的一个实施例,计算各个所述分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据的步骤包括:
计算各个所述分组电池数据的余弦相似度;
判断所述余弦相似度是否大于预设余弦相似度阈值;
若是,确定所述分组电池数据正常并结束流程;
若否,将余弦相似度最低的分组电池数据确定为目标分组电池数据。
根据本发明的一个实施例,当所述分组包括第一分组和第二分组时,计算各个所述分组电池数据的余弦相似度的步骤按照如下公式进行:
Figure BDA0002597325770000031
其中,WAB为余弦相似度,A(v)为所述第一分组中的单体电池的电压集合,B(v)为所述第二分组中的单体电池的电压集合。
根据本发明的一个实施例,根据所述平均电压计算所述目标单体电池电压在同一时刻的方差的步骤之后还包括:
判断所述方差是否大于预设方差阈值;
若是,执行计算各个所述目标单体电池电压与所述平均电压的欧几里得距离的步骤;
若否,确定所述目标分组电池电压正常并结束流程。
根据本发明的一个实施例,对每个所述电池管理系统的所述电池数据进行分组,获得多个分组电池数据之前还包括:
对所述电池数据进行粒度处理;
存储经过粒度处理后的所述电池数据。
根据本发明的一个实施例,采集分布式电站下的电池管理系统中的电池数据之前还包括:
检测所述电池管理系统的连接是否正常;
当所述电池管理系统的连接正常时,检测所述电池管理系统的连接是否有效;
当所述电池管理系统的连接有效时,执行采集所述电池管理系统中的电池数据的步骤。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于分布式集群分析电池性能的系统,执行所述的基于分布式集群分析电池性能的方法,所述系统包括:分布式电站、数据采集平台、数据存储平台、数据处理平台以及数据调度平台,所述分布式电站包括多个电池箱,所述电池箱包括多个用于监控电池数据的电池管理系统,所述数据采集平台与所述分布式电站连接,所述数据存储平台与所述数据采集平台连接,所述数据处理平台与所述数据存储平台连接,所述数据调度平台与所述数据处理平台连接,所述数据处理平台包括多个计算节点,所述调度平台纳管多个所述计算节点。
本发明的有益效果是:通过对每个电池管理系统的电池数据进行分组和分析,找出余弦相似度最低的分组电池数据,再计算该分组电池数据中单体电池电压的方差,当方差大于预设方差阈值时,说明该分组中单体电池电压的一致性不好,进一步通过欧几里得距离确定该分组的单体电池电压是否存在异常,一方面能够降低数据计算量,提高数据处理效率,另一方面能够准确分析出有问题的单体电池,并进行及时维护,大幅降低了人工成本,提高了维护效率,延长了分布式电站的寿命。
附图说明
图1是本发明实施例的基于分布式集群分析电池性能的系统架构示意图;
图2是本发明第一实施例的基于分布式集群分析电池性能的方法的流程示意图;
图3是本发明第一实施例的基于分布式集群分析电池性能的方法的具体工作流程示意图;
图4是本发明第二实施例的基于分布式集群分析电池性能的方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
图1是本发明实施例的基于分布式集群分析电池性能的系统架构示意图,请参见图1,该系统包括分布式电站10、数据采集平台20、数据存储平台30、数据处理平台40以及数据调度平台50,数据采集平台20与分布式电站10连接,数据存储平台30与数据采集平台20连接,数据处理平台40与数据存储平台30连接,数据调度平台50与数据处理平台40连接。
其中,分布式电站10包括多个电池箱,每个电池箱包括多个用于监控电池数据的电池管理系统,每个电池管理系统管理至少一个单体电池。本实施例的各个电池管理系统相互独立运行。随着分布式电站10的不断运行,经过多次循环的充放电,每个电池管理系统会出现不同额定容量的衰减、压差、极化程度、SOC值等不一致,由于某个单体电池出现问题而影响整个分布式电站10的充放电容量,即短板效应,因此,通过分析找出有问题的单体电池,进行及时维护不仅能够有效避免其他单体电池的恶化,可以延长其他单体电池的寿命,而且可以提高电池管理系统的充放电容量。
本实施例中,数据采集平台20用于采集分布式电站10下的电池管理系统中的电池数据,数据采集平台20具有负载均衡、流量控制等具有高并发、高吞吐量的特点。数据采集平台20作为服务器,电池管理系统作为客户端,在传输电池数据之前,需要检测数据采集平台20与电池管理系统的连接是否正常,当数据采集平台20与电池管理系统的连接正常时,检测数据采集平台20与电池管理系统的连接是否有效;当数据采集平台20与电池管理系统的连接有效时,电池管理系统实时传送加密压缩后的电池数据给数据采集平台20,数据采集平台20对采集到的电池数据进行解压和解密,然后对电池数据进行粒度处理,把长时间不变的数据丢弃以降低后续计算数据量,再把经过处理后的电池数据存储到数据存储平台。
数据存储平台30对电池数据不作任何处理,直接存储,保证电池数据的完整性和防止数据丢失,方便历史数据的追溯。
数据调度平台50纳管多个计算节点,负责分配任务给各个计算节点,当某个计算节点出现问题时,及时把该计算节点的任务分配给其他计算机电,并汇总各个计算节点的计算结果,当计算结果异常时,推送给运维人员,便于及时进行运维。在具体工作过程中,数据调度平台50对每个电池管理系统的电池数据进行分组,以对每个电池管理系统的电池数据进行进一步的筛选,在多次循环充放电的情况下,能够获知某个分组中的单体电池是否出现短板效应。
数据处理平台40包括多个计算节点,每个计算节点相互独立运行,各个计算节点接受数据调度平台50的任务分配并调用数据存储平台30存储的电池数据,进而对电池数据进行计算处理。具体地,每个计算节点执行以下步骤:计算各个分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据,目标分组电池数据包括目标单体电池电压;计算目标单体电池电压的平均电压;根据平均电压计算目标单体电池电压在同一时刻的方差;当方差大于预设方差阈值时,计算各个目标单体电池电压与平均电压的欧几里得距离并根据欧几里得距离确定目标单体电池电压是否发生异常。
图2是本发明第一实施例的基于分布式集群分析电池性能的方法的流程示意图。需注意的是,若有实质上相同的结果,本发明的方法并不以图2所示的流程顺序为限。如图2所示,该方法包括步骤:
步骤S201:采集分布式电站下的电池管理系统中的电池数据。
在步骤S201中,分布式电站包括多个电池箱,每个电池箱包括多个用于监控电池数据的电池管理系统,电池管理系统管理至少一个单体电池。本实施例的各个电池管理系统相互独立运行。
步骤S202:对每个电池管理系统的电池数据进行分组,获得多个分组电池数据。
在步骤S202中,对电池数据进行分组,多次循环充放电的情况下,能够获知某个分组中的单体电池是否出现短板效应。
步骤S203:计算各个分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据,目标分组电池数据包括目标单体电池电压。
在步骤S203中,首先,计算各个分组电池数据的余弦相似度;例如,当分组包括第一分组和第二分组时,余弦相似度按照如下公式进行计算:
Figure BDA0002597325770000071
其中,WAB为余弦相似度,A(v)为第一分组中的单体电池的电压集合,B(v)为第二分组中的单体电池的电压集合。
然后,判断余弦相似度是否大于预设余弦相似度阈值;
若是,则确定分组电池数据正常并结束流程,若否,则将余弦相似度最低的分组电池数据确定为目标分组电池数据。
步骤S204:计算目标单体电池电压的平均电压。
在步骤S204中,计算目标单体电池电压的平均电压时,首先对目标单体电池电压进行排序;去掉排序前5%和后5%的目标单体电池电压;再计算剩余的目标单体电池电压的平均电压。本实施例中,计算目标单体电池电压的平均电压按照如下公式进行:
Figure BDA0002597325770000081
其中,n为目标单体电池的个数,vn为目标单体电池电压,Vavg为n个目标单体电池电压的平均电压。
步骤S205:根据平均电压计算目标单体电池电压在同一时刻的方差。
在步骤S205中,计算方差按照如下公式进行:
Figure BDA0002597325770000082
Figure BDA0002597325770000083
其中,n为目标单体电池的个数,vn为目标单体电池电压,Vavg为n个目标单体电池电压的平均电压。
步骤S206:当方差大于预设方差阈值时,计算各个目标单体电池电压与平均电压的欧几里得距离并根据欧几里得距离确定目标单体电池电压是否发生异常。
在步骤S206中,当方差大于预设方差阈值时,表明该分组中目标单体电池电压的一致性不好,需要进一步确认目标单体电池电压是否存在异常。本实施例计算各个目标单体电池电压与平均电压的欧几里得距离按照如下公式进行:
Figure BDA0002597325770000084
其中,vi为目标单体电池电压,Vavg为目标单体电池电压的平均电压,Vgap为各个目标单体电池电压与平均电压的欧几里得距离。
根据欧几里得距离确定目标单体电池电压是否发生异常的步骤包括:
判断欧几里得距离是否大于预设距离阈值;
若是,确定目标单体电池电压发生异常并推送给运维人员;
若否,确定目标单体电池电压正常并结束流程。
具体地,本发明实施例的基于分布式集群分析电池性能的方法的具体工作流程如图3所示,首先进入步骤S301:采集分布式电站下的电池管理系统中的电池数据;然后进入步骤S302:对每个电池管理系统的电池数据进行分组,获得多个分组电池数据;接着进入步骤S303:计算各个分组电池数据的余弦相似度;步骤S304:判断余弦相似度是否大于预设余弦相似度阈值;在步骤S304中,若是,则执行步骤S305:计算目标单体电池电压的平均电压,若否,则执行步骤S306:结束流程,在步骤S305之后进入步骤S307:根据平均电压计算目标单体电池电压在同一时刻的方差;步骤S308:判断方差是否大于预设方差阈值,在步骤S308中,若是,执行步骤S309:计算各个目标单体电池电压与第平均电压的欧几里得距离;若否,则执行步骤S306;在步骤S309之后进入步骤S310:判断欧几里得距离是否大于预设距离阈值;在步骤S310中,若是,则先执行步骤S311:确定目标单体电池电压发生异常并推送给运维人员,再执行步骤S306,若否,则执行步骤S306。
本发明第一实施例的基于分布式集群分析电池性能的方法通过对每个电池管理系统的电池数据进行分组和分析,找出余弦相似度最低的分组电池数据,再对该分组电池数据进一步分析,以确定该分组的单体电池电压是否存在异常,一方面能够降低数据计算量,提高数据处理效率,另一方面能够准确分析出有问题的单体电池,并进行及时维护,大幅降低了人工成本,提高了维护效率,延长了分布式电站的寿命。
图4是本发明第二实施例的基于分布式集群分析电池性能的方法的流程示意图。需注意的是,若有实质上相同的结果,本发明的方法并不以图4所示的流程顺序为限。如图4所示,该方法包括步骤:
步骤S401:检测电池管理系统的连接是否正常。
在步骤S401中,当电池管理系统的连接正常时,执行步骤S402;当电池管理系统的连接不正常时,等待连接。
步骤S402:检测电池管理系统的连接是否有效。
在步骤S402中,当电池管理系统的连接有效则执行步骤S403,当当电池管理系统的连接无效,等待连接。
步骤S403:采集分布式电站下的电池管理系统中的电池数据。
在本实施例中,图4中的步骤S403和图2中的步骤S201类似,为简约起见,在此不再赘述。
步骤S404:对电池数据进行粒度处理。
步骤S405:存储经过粒度处理后的电池数据。
步骤S406:对每个电池管理系统的电池数据进行分组,获得多个分组电池数据。
在本实施例中,图4中的步骤S406和图2中的步骤S202类似,为简约起见,在此不再赘述。
步骤S407:计算各个分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据,目标分组电池数据包括目标单体电池电压。
在本实施例中,图4中的步骤S407和图2中的步骤S203类似,为简约起见,在此不再赘述。
步骤S408:计算目标单体电池电压的平均电压。
在本实施例中,图4中的步骤S408和图2中的步骤S204类似,为简约起见,在此不再赘述。
步骤S409:根据平均电压计算目标单体电池电压在同一时刻的方差。
在本实施例中,图4中的步骤S409和图2中的步骤S205类似,为简约起见,在此不再赘述。
步骤S410:当方差大于预设方差阈值时,计算各个目标单体电池电压与平均电压的欧几里得距离并根据欧几里得距离确定目标单体电池电压是否发生异常。
在本实施例中,图4中的步骤S410和图2中的步骤S206类似,为简约起见,在此不再赘述。
本发明第二实施例的基于分布式集群分析电池性能的方法在第一实施例的基础上,通过检测电池管理系统的无效连接以及在存储数据之前对电池数据进行筛除,进一步提高数据处理效率,便于及时发现有问题的单体电池并及时进行维护。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种基于分布式集群分析电池性能的方法,其特征在于,包括:
采集分布式电站下的电池管理系统中的电池数据;
对每个所述电池管理系统的所述电池数据进行分组,获得多个分组电池数据;
计算各个所述分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据,所述目标分组电池数据包括目标单体电池电压;
计算所述目标单体电池电压的平均电压;
根据所述平均电压计算所述目标单体电池电压在同一时刻的方差;
当所述方差大于预设方差阈值时,计算各个所述目标单体电池电压与所述平均电压的欧几里得距离并根据所述欧几里得距离确定目标单体电池电压是否发生异常。
2.根据权利要求1所述的方法,其特征在于,计算所述目标单体电池电压的平均电压的步骤包括:
对所述目标单体电池电压进行排序;
去掉排序前5%和后5%的所述目标单体电池电压;
计算剩余的所述目标单体电池电压的平均电压。
3.根据权利要求1所述的方法,其特征在于,计算各个所述目标单体电池电压与所述平均电压的欧几里得距离的步骤按照如下公式进行:
Figure FDA0002597325760000011
其中,vi为所述目标单体电池电压,Vavg为所述目标单体电池电压的平均电压,Vgap为各个所述目标单体电池电压与所述平均电压的欧几里得距离。
4.根据权利要求1所述的方法,其特征在于,根据所述欧几里得距离确定目标单体电池电压是否发生异常的步骤包括:
判断所述欧几里得距离是否大于预设距离阈值;
若是,确定目标单体电池电压发生异常并推送给运维人员;
若否,确定所述目标单体电池电压正常并结束流程。
5.根据权利要求1所述的方法,其特征在于,计算各个所述分组电池数据的余弦相似度,将余弦相似度最低的分组电池数据确定为目标分组电池数据的步骤包括:
计算各个所述分组电池数据的余弦相似度;
判断所述余弦相似度是否大于预设余弦相似度阈值;
若是,确定所述分组电池数据正常并结束流程;
若否,将余弦相似度最低的分组电池数据确定为目标分组电池数据。
6.根据权利要求5所述的方法,其特征在于,当所述分组包括第一分组和第二分组时,计算各个所述分组电池数据的余弦相似度的步骤按照如下公式进行:
Figure FDA0002597325760000021
其中,WAB为余弦相似度,A(v)为所述第一分组中的单体电池的电压集合,B(v)为所述第二分组中的单体电池的电压集合。
7.根据权利要求1所述的方法,其特征在于,根据所述平均电压计算所述目标单体电池电压在同一时刻的方差的步骤之后还包括:
判断所述方差是否大于预设方差阈值;
若是,执行计算各个所述目标单体电池电压与所述平均电压的欧几里得距离的步骤;
若否,确定所述目标分组电池电压正常并结束流程。
8.根据权利要求1所述的方法,其特征在于,对每个所述电池管理系统的所述电池数据进行分组,获得多个分组电池数据之前还包括:
对所述电池数据进行粒度处理;
存储经过粒度处理后的所述电池数据。
9.根据权利要求1所述的方法,其特征在于,采集分布式电站下的电池管理系统中的电池数据之前还包括:
检测所述电池管理系统的连接是否正常;
当所述电池管理系统的连接正常时,检测所述电池管理系统的连接是否有效;
当所述电池管理系统的连接有效时,执行采集所述电池管理系统中的电池数据的步骤。
10.一种基于分布式集群分析电池性能的系统,其特征在于,执行如权利要求1至9任一项所述的基于分布式集群分析电池性能的方法,所述系统包括:分布式电站、数据采集平台、数据存储平台、数据处理平台以及数据调度平台,所述分布式电站包括多个电池箱,所述电池箱包括多个用于监控电池数据的电池管理系统,所述数据采集平台与所述分布式电站连接,所述数据存储平台与所述数据采集平台连接,所述数据处理平台与所述数据存储平台连接,所述数据调度平台与所述数据处理平台连接,所述数据处理平台包括多个计算节点,所述调度平台纳管多个所述计算节点。
CN202010713309.0A 2020-07-22 2020-07-22 基于分布式集群分析电池性能的方法及系统 Active CN112014759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010713309.0A CN112014759B (zh) 2020-07-22 2020-07-22 基于分布式集群分析电池性能的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010713309.0A CN112014759B (zh) 2020-07-22 2020-07-22 基于分布式集群分析电池性能的方法及系统

Publications (2)

Publication Number Publication Date
CN112014759A true CN112014759A (zh) 2020-12-01
CN112014759B CN112014759B (zh) 2023-04-14

Family

ID=73498675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010713309.0A Active CN112014759B (zh) 2020-07-22 2020-07-22 基于分布式集群分析电池性能的方法及系统

Country Status (1)

Country Link
CN (1) CN112014759B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253113A (zh) * 2021-02-26 2021-08-13 重庆长安新能源汽车科技有限公司 一种动力电池一致性故障的预测方法
CN113433458A (zh) * 2021-07-16 2021-09-24 北京现代汽车有限公司 电池健康状态的确定方法和装置
CN113552496A (zh) * 2021-06-29 2021-10-26 哈尔滨理工大学 一种基于电压余弦相似性的电池串联模组内短路故障诊断方法
CN113805066A (zh) * 2021-09-20 2021-12-17 哈尔滨工业大学(威海) 一种基于改进欧氏距离相似度的串联电池组多故障诊断方法
CN113805065A (zh) * 2021-09-20 2021-12-17 哈尔滨工业大学(威海) 一种基于余弦相似度的混联电池组多故障诊断方法
CN115360793A (zh) * 2022-09-15 2022-11-18 湖北亿纬动力有限公司 电池组均衡方法、装置、电池系统及存储介质
CN115360793B (zh) * 2022-09-15 2024-06-11 湖北亿纬动力有限公司 电池组均衡方法、装置、电池系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980924A (zh) * 2017-03-08 2017-07-25 蔚来汽车有限公司 基于需求预测的电动车充换电资源推荐方法及装置
JP6370434B1 (ja) * 2017-03-30 2018-08-08 株式会社大和総研 企業情報提供システムおよびプログラム
US20190097865A1 (en) * 2012-12-05 2019-03-28 Origin Wireless, Inc. Apparatus, systems and methods for event recognition based on a wireless signal
CN110133505A (zh) * 2018-02-05 2019-08-16 南京湛研能源科技有限公司 一种基于变参数模型的动力电池充放电状态观测方法
CN111007420A (zh) * 2019-12-26 2020-04-14 智洋创新科技股份有限公司 蓄电池组内单体性能在线筛选方法
US20200151692A1 (en) * 2018-04-18 2020-05-14 Sbot Technologies, Inc. d/b/a Caper Inc. Systems and methods for training data generation for object identification and self-checkout anti-theft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190097865A1 (en) * 2012-12-05 2019-03-28 Origin Wireless, Inc. Apparatus, systems and methods for event recognition based on a wireless signal
CN106980924A (zh) * 2017-03-08 2017-07-25 蔚来汽车有限公司 基于需求预测的电动车充换电资源推荐方法及装置
JP6370434B1 (ja) * 2017-03-30 2018-08-08 株式会社大和総研 企業情報提供システムおよびプログラム
CN110133505A (zh) * 2018-02-05 2019-08-16 南京湛研能源科技有限公司 一种基于变参数模型的动力电池充放电状态观测方法
US20200151692A1 (en) * 2018-04-18 2020-05-14 Sbot Technologies, Inc. d/b/a Caper Inc. Systems and methods for training data generation for object identification and self-checkout anti-theft
CN111007420A (zh) * 2019-12-26 2020-04-14 智洋创新科技股份有限公司 蓄电池组内单体性能在线筛选方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵宇航 等: "基于机器视觉的LTE模块编带系统", 《机电工程技术》 *
高明裕 等: "一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法", 《电子与信息学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253113A (zh) * 2021-02-26 2021-08-13 重庆长安新能源汽车科技有限公司 一种动力电池一致性故障的预测方法
CN113253113B (zh) * 2021-02-26 2022-05-06 重庆长安新能源汽车科技有限公司 一种动力电池一致性故障的预测方法
CN113552496A (zh) * 2021-06-29 2021-10-26 哈尔滨理工大学 一种基于电压余弦相似性的电池串联模组内短路故障诊断方法
CN113552496B (zh) * 2021-06-29 2024-04-02 哈尔滨理工大学 一种基于电压余弦相似性的电池串联模组内短路故障诊断方法
CN113433458A (zh) * 2021-07-16 2021-09-24 北京现代汽车有限公司 电池健康状态的确定方法和装置
CN113805066A (zh) * 2021-09-20 2021-12-17 哈尔滨工业大学(威海) 一种基于改进欧氏距离相似度的串联电池组多故障诊断方法
CN113805065A (zh) * 2021-09-20 2021-12-17 哈尔滨工业大学(威海) 一种基于余弦相似度的混联电池组多故障诊断方法
CN113805065B (zh) * 2021-09-20 2023-08-18 哈尔滨工业大学(威海) 一种基于余弦相似度的混联电池组多故障诊断方法
CN113805066B (zh) * 2021-09-20 2023-08-18 哈尔滨工业大学(威海) 一种基于改进欧氏距离相似度的串联电池组多故障诊断方法
CN115360793A (zh) * 2022-09-15 2022-11-18 湖北亿纬动力有限公司 电池组均衡方法、装置、电池系统及存储介质
CN115360793B (zh) * 2022-09-15 2024-06-11 湖北亿纬动力有限公司 电池组均衡方法、装置、电池系统及存储介质

Also Published As

Publication number Publication date
CN112014759B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
CN112014759B (zh) 基于分布式集群分析电池性能的方法及系统
WO2021169486A1 (zh) 基于充电过程监控电池阻抗异常的方法、系统以及装置
CN111584952B (zh) 用于储能电站电化学电池在线评估的方法和系统
US8340934B2 (en) Method of performance analysis for VRLA battery
WO2016135913A1 (ja) 蓄電池、蓄電池監視方法および監視コントローラ
KR101553451B1 (ko) 에너지 저장 시스템에서 전력 분배 방법 및 장치
CN107368543B (zh) 一种基于mcmc算法的电力采集数据修复方法
CN108957331A (zh) 电池性能检测方法及电池性能检测系统
CN114977414B (zh) 一种基于多簇并联储能的电池存储智能管理系统
CN112946483A (zh) 电动汽车电池健康的综合评估方法及存储介质
CN112964996A (zh) 电池检测方法、装置、设备及存储介质
CN115951230B (zh) 一种锂电池储能箱的异常检测方法及系统
CN112684400B (zh) 小电量台区的电能表运行误差数据监测方法及系统
CN116125300A (zh) 一种电池包异常监测方法、装置、电子设备及存储介质
CN111460656A (zh) 一种电力机房通信电源运行寿命评估方法和系统
CN108254689A (zh) 电池组反极单体电池检测方法和系统
CN107145986A (zh) 一种充电电量预测方法及装置
CN113900035A (zh) 电池检测方法、装置、设备及存储介质
CN112014758B (zh) 基于电池管理系统的事件信息分析电池性能的方法及系统
KR20140038622A (ko) 전력저장시스템의 충방전 분배장치 및 그 방법
CN117096976A (zh) 铅酸电池电量监控系统、方法、电子设备和存储介质
CN105225065A (zh) 基于电子健康档案系统的二次锂电池监控系统及其管理方法
CN116879763A (zh) 一种基于卡尔曼滤波算法的电池故障预警方法
CN105868409A (zh) 数据采集系统
CN109376959A (zh) 一种配电终端检修时间预估方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant