CN112013788B - 基于叶片局部前缘曲线特征标定转动中心的方法 - Google Patents

基于叶片局部前缘曲线特征标定转动中心的方法 Download PDF

Info

Publication number
CN112013788B
CN112013788B CN202011134900.7A CN202011134900A CN112013788B CN 112013788 B CN112013788 B CN 112013788B CN 202011134900 A CN202011134900 A CN 202011134900A CN 112013788 B CN112013788 B CN 112013788B
Authority
CN
China
Prior art keywords
blade
leading edge
data set
curve
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011134900.7A
Other languages
English (en)
Other versions
CN112013788A (zh
Inventor
殷鸣
王宗平
郑昊天
谢罗峰
刘浩浩
殷国富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202011134900.7A priority Critical patent/CN112013788B/zh
Publication of CN112013788A publication Critical patent/CN112013788A/zh
Application granted granted Critical
Publication of CN112013788B publication Critical patent/CN112013788B/zh
Priority to US17/392,551 priority patent/US12013226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2504Calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/72Maintenance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于叶片局部前缘曲线特征标定转动中心的方法,该方法通过获取转动前后两次叶片局部前缘曲线特征,并根据两次叶片局部前缘曲线特征中的极大值求解出形心坐标,再根据形心坐标求解出转动中心,实现转动中心坐标标定,与现有技术的点标定方法,曲线标定的结果更加准确,更符合真实的转动中心,并将该方法应用于叶片截面曲线特征检测中,叶片的检测结果也更加精确。

Description

基于叶片局部前缘曲线特征标定转动中心的方法
技术领域
本发明属于叶片检测领域,具体涉及一种基于叶片局部前缘曲线特征标定转动中心的方法。
背景技术
叶片作为航空发动机、燃机、汽轮机等设备中的关键零部件,承担着将热能转化为机械能的重要任务,叶片的形状及质量直接影响整机的能量转换效率和使用寿命。叶片因其截面为不规则曲面且每个截面高度的型线轮廓不相同给叶片检测工作增加了难度。
中国发明专利201911267259.1公开了一种基于线结构光叶片检测方法,该方法公开了利用叶片前缘轮廓在截面上存在极大值的特征实现对转台中心的标定,该方法虽然解决现有技术需要标定球传递产生的误差,但是其利用两点之间可近似为切线来标定转台中心,本身就存在一定的误差,并且该方法存在一定的局限性,仅适用于前缘轮廓的曲率半径较小的叶片。
发明内容
本发明的目的在于提供一种基于叶片局部前缘曲线特征标定转动中心的方法,该方法利用叶片前缘曲线特征对转台中心进行标定,不仅适用范围更广,且对叶片检测的精度更高。
为实现上述目的,本发明采用如下技术特征:
基于叶片局部前缘曲线特征标定转动中心的方法,包括如下步骤:
(1)将叶片放置于转台面上,并调整线结构光传感器的位姿,使线结构光传感器的激光面与叶片的前缘曲线特征相交,线结构光传感器采集当前叶片前缘曲线特征的轮廓数据
Figure GDA0002826421880000011
选取轮廓数据V1中的极大值V1m,沿V1m左、右两侧各取n个数据点构成叶片局部前缘曲线特征数据集v1=[V1m-n … V1m … V1m+n]1×(2n+1)
(2)保持线结构光传感器的位姿不变,转动转台后线结构光传感器的激光面依然与叶片的前缘曲线特征相交,且转动角度θ为1°~3°,采集此时前缘曲线特征的轮廓数据
Figure GDA0002826421880000021
先选取轮廓数据V2中的极大值V2m,并在极大值V2m附近查找步骤(1)中的极大值V1m对应点V2m-r,沿V2m左、右两侧各取c个参考点V2m-r∈[V2m-c … V2m … V2m+c]1×(2c+1),并以V2m-r左、右两侧n个数据点构成叶片局部前缘曲线特征的轮廓数据集v2m-r=[V(2m-r)-n …V2m-r … V(2m-r)+n]1×(2n+1)
(3)计算出叶片局部前缘曲线特征的轮廓数据集v1和v2m-r的协方差矩阵,并根据所述协方差矩阵求解特征向量和特征值,再根据特征向量和特征值建立极大值V1m和V2m-r的匹配函数M;
Figure GDA0002826421880000022
式中,
Figure GDA0002826421880000023
为数据集v1协方差矩阵的特征值;
Figure GDA0002826421880000024
为数据集v1协方差矩阵的特征向量;
Figure GDA0002826421880000025
为数据集v2m-r协方差矩阵的特征值;
Figure GDA0002826421880000026
为数据集v2m-r协方差矩阵的特征向量;
Figure GDA0002826421880000027
为转动矩阵;
(4)选取不同参考点V2m-r所构成的数据集v2m-r,搜寻匹配函数M中的最小值所对应的参考点V2m-k,沿参考点V2m-k左、右两侧取n个数据点构成叶片局部前缘曲线特征的数据集v2=[V(2m-k)-n … V2m-k … V(2m-k)+n]1×(2n+1)
(5)根据叶片局部前缘曲线特征的轮廓数据集v1和v2求解出形心坐标
Figure GDA0002826421880000028
Figure GDA0002826421880000029
Figure GDA00028264218800000210
Figure GDA00028264218800000211
分别为叶片局部前缘曲线特征数据集v1和v2的形心坐标;根据两个形心坐标
Figure GDA0002826421880000031
Figure GDA0002826421880000032
求解转动中心Ob
进一步地,步骤(1)中所述叶片局部前缘曲线特征数据集v1通过如下步骤构建:
选取轮廓数据V1中的极大值V1m作为参考点,沿V1m左右两侧取的第n个数据点V1m+n和V1m-n;计算极大值V1m到V1m+n和V1m-n连线之间的距离dLn,选取dLn大于等于线结构光传感器最佳测量区间dz时的V1m+n和V1m-n作为叶片局部前缘数据集的起始点和终止点,即叶片局部前缘曲线特征的轮廓数据集v1=[V1m-n … V1m … V1m+n]1×(2n+1)
所述
Figure GDA0002826421880000033
式中,x1m,y1m为极大值V1m坐标数据,x1m-n,y1m-n为极大值V1m-n坐标数据,dLn为极大值V1m到V1m+n和V1m-n连线的距离;K为V1m+n和V1m-n连线的斜率。
进一步地,所述转动中心坐标Ob采用如下模型求解:
Figure GDA0002826421880000034
式中,(x,y)为转动中心Ob在数据坐标系内的坐标数据;
Figure GDA0002826421880000035
为转动矩阵;
Figure GDA0002826421880000036
为二阶单位矩阵;
Figure GDA0002826421880000037
分别为叶片局部前缘曲线特征数据集v1和v2的形心坐标。
将上述的基于叶片局部前缘曲线特征标定转动中心的方法应用于叶片截面轮廓检测,所述叶片截面轮廓
Figure GDA0002826421880000038
Figure GDA0002826421880000039
为第i次转台转动矩阵;Vi为第i次线结构传感器采集的数据;osob为数据坐标系原点到转动中心的向量。
本发明通过匹配叶片局部前缘曲线特征完成对转动中心的标定,与现有技术单点匹配的标定转动中心方式相比,由于引入了更多的特征点,其结果更为准确,鲁棒性更好。其次,转动中心标定精度的提高,也减少了后续叶片轮廓的重构误差,从而提高叶片的检测精度。
附图说明
图1为本发明检测装置的原理图。
图2为本发明检测利用局部前缘曲线特征标定转动中心原理图。
图3为本发明检测到的局部前缘曲线特征的示意图。
图4为本发明两次前缘曲线特征转换至转动中心下重叠示意图。
图中标记:100、线结构光传感器;200、叶片。
具体实施方式
本实施例以叶片截面轮廓检测为例,对本发明提供的基于叶片前缘曲线特征标定转动中心以及叶片截面轮廓检测进行详细的解释。
本实施例提供了一种基于叶片前缘曲线特征的叶片截面轮廓高精度检测方法包括如下步骤:
(1)叶片安装前的检测装置标定
如图1所示,所述检测装置包括线结构光传感器100、控制线结构光传感器在移动坐标系O-XYZ内移动的平移驱动(SX、SY、SZ)、以及控制转台的旋转的旋转驱动W;所述转台上必然存在转动中心;叶片200安装前需要对检测装置进行标定,保证后续的采集的精确度,所述标定包括对线结构光传感器100位姿标定和转台面标定;所述标定方法与现有技术相同,本实施例不再赘述。
(2)对转台转动中心标定
(a)将叶片200放置于转台面上,并调整线结构光传感器100的位姿,使线结构光传感器100的激光面与叶片200的前缘曲线特征相交,如图2所示的叶片200实线为当前状态下的叶片截面轮廓,与线结构光传感器100相交的曲线为前缘曲线特征,线结构光传感器100采集当前叶片200前缘曲线特征的轮廓数据
Figure GDA0002826421880000041
(b)选取轮廓数据V1中的极大值V1m,沿V1m左右两侧依次选取第n个数据点V1m+n和V1m-n;计算极大值V1m到V1m+n和V1m-n连线之间的距离dLn,
Figure GDA0002826421880000042
dLn为极大值V1m到V1m+n和V1m-n连线的距离,K=(y1m-n-y1m+n)/(x1m-n-x1m+n)为V1m+n和V1m-n连线的斜率,x1m,y1m为V1m的数据值,x1m+n,y1m+n为V1m+n的数据值,x1m-n,y1m-n为V1m-n的数据值;
选取dLn刚好大于线结构光传感器100最佳测量值dz时的V1m+n和V1m-n作为叶片局部前缘数据集的起始点和终止点,本实施选取的线结构光传感器的最佳测量值dz=0.25mm,精度较高,本实施例选取的dLn刚好大于0.25mm的V1m+n和V1m-n作为叶片局部前缘数据集的起始点和终止点,即叶片局部前缘曲线特征的轮廓数据集v1=[V1m-n … V1m … V1m+n]1×(2n+1)
(c)保持线结构光传感器100的位姿不变,转动转台后线结构光传感器100的激光面与叶片200的前缘曲线特征依然相交,且转动角度为θ,本实施例θ为1°、2°或3°,如图2所示,图中虚线为转动的叶片截面轮廓,采集此时前缘曲线特征的轮廓数据
Figure GDA0002826421880000051
V2中的极大值为V2m,由于θ较小,V2中与V1中的极大值V1m对应点必然位于V2m附近,因此,在V2中搜寻出V1m的最佳对应参考点V2m-r。依次取V2m左、右侧的c个点作为V2m-r∈[V2m-c … V2m …V2m+c]1×(2c+1),在每次选取的V2m-r的左、右两侧再取n个数据点构成叶片局部前缘曲线特征的轮廓数据集v2m-r=[V(2m-r)-n … V2m-r … V(2m-r)+n]1×(2n+1)
(d)计算出叶片局部前缘曲线特征的轮廓数据集v1和v2m-r的协方差矩阵
Figure GDA0002826421880000052
Figure GDA0002826421880000053
Figure GDA0002826421880000054
分别为叶片局部前缘曲线特征数据集v1和v2m-r的形心坐标;并根据所述协方差矩阵COV(v1)求解特征向量
Figure GDA0002826421880000055
和特征值
Figure GDA0002826421880000056
以及根据协方差矩阵
Figure GDA0002826421880000057
求解特征向量
Figure GDA0002826421880000058
和特征值
Figure GDA0002826421880000059
再根据特征向量
Figure GDA00028264218800000510
Figure GDA0002826421880000061
以及特征值
Figure GDA0002826421880000062
Figure GDA0002826421880000063
建立极大值V1m和V2m-r的匹配函数,
Figure GDA0002826421880000064
式中,
Figure GDA0002826421880000065
为数据集v1的特征值;
Figure GDA0002826421880000066
为数据集v1的特征向量;
Figure GDA0002826421880000067
为数据集v2m-r的特征值;
Figure GDA0002826421880000068
为数据集v2m-r的特征向量;
Figure GDA0002826421880000069
为转动矩阵。
(e)选取不同参考点V2m-r构建局部前缘曲线特征的数据集v2m-r,并搜寻目标函数M中最小值所对应的参考点V2m-k,参考点V2m-k左、右两侧的n个数据点构成局部前缘曲线特征的数据集v2=[V(2m-k)-n … V2m-k … V(2m-k)+n]1×(2n+1)
(f)根据叶片局部前缘曲线特征的轮廓数据集v1和v2求解出形心坐标
Figure GDA00028264218800000610
Figure GDA00028264218800000611
根据两个形心坐标求解转动中心Ob。设Ob到数据坐标系os-xsys原点OS的向量为
Figure GDA00028264218800000612
(x,y)为转动中心Ob在数据坐标系内的坐标数据;
Figure GDA00028264218800000613
为转动矩阵;
Figure GDA00028264218800000614
为二阶单位矩阵;
Figure GDA00028264218800000615
Figure GDA00028264218800000616
分别为叶片局部前缘曲线特征数据集v1和v2的形心坐标。
将线结构光传感器100采集当前叶片200前缘曲线特征的轮廓数据V1和V2放在数据坐标系os-xsys
Figure GDA00028264218800000617
Figure GDA00028264218800000618
叶片局部前缘特征曲线如图4所示。
(3)叶片截面轮廓检测
设该截面采用n视场完成整周轮廓数据的采集,视场i所对应的转角为φi、平移参数为Ti=[xi yi]T,截面曲线轮廓为
Figure GDA0002826421880000071
Figure GDA0002826421880000072
Figure GDA0002826421880000073
为第i次转台转动矩阵;Vi为第i次线结构传感器采集的数据;osob为数据坐标系原点到转动中心的向量。
调整线结构光传感器使其激光面与于下一个待测截面相交,并重复以上步骤,即可完成叶片的所有检测工作。
以上所述仅是本发明优选的实施方式,但本发明的保护范围并不局限于此,任何基于本发明所提供的技术方案和发明构思进行的改造和替换都应涵盖在本发明的保护范围内。

Claims (4)

1.基于叶片局部前缘曲线特征标定转动中心的方法,其特征在于包括如下步骤:
(1)将叶片放置于转台面上,并调整线结构光传感器的位姿,使线结构光传感器的激光面与叶片的前缘曲线特征相交,线结构光传感器采集当前叶片前缘曲线特征的轮廓数据
Figure FDA0002826421870000011
选取轮廓数据V1中的极大值V1m,沿V1m左、右两侧各取n个数据点构成叶片局部前缘曲线特征数据集v1=[V1m-n…V1m…V1m+n]1×(2n+1)
(2)保持线结构光传感器的位姿不变,转动转台后线结构光传感器的激光面依然与叶片的前缘曲线特征相交,且转动角度θ为1°~3°,采集此时前缘曲线特征的轮廓数据
Figure FDA0002826421870000012
先选取轮廓数据V2中的极大值V2m,并在极大值V2m附近查找步骤(1)中的极大值V1m对应点V2m-r,沿V2m左、右两侧各取c个参考点V2m-r∈[V2m-c…V2m…V2m+c]1×(2c+1),并以V2m-r左、右两侧n个数据点构成叶片局部前缘曲线特征的轮廓数据集v2m-r=[V(2m-r)-n…V2m-r…V(2m-r)+n]1×(2n+1)
(3)计算出叶片局部前缘曲线特征的轮廓数据集v1和v2m-r的协方差矩阵,并根据所述协方差矩阵求解特征向量和特征值,再根据特征向量和特征值建立极大值V1m和V2m-r的匹配函数M;
Figure FDA0002826421870000013
式中,
Figure FDA0002826421870000014
为数据集v1协方差矩阵的特征值;
Figure FDA0002826421870000015
为数据集v1协方差矩阵的特征向量;
Figure FDA0002826421870000016
为数据集v2m-r协方差矩阵的特征值;
Figure FDA0002826421870000017
为数据集v2m-r协方差矩阵的特征向量;
Figure FDA0002826421870000021
为转动矩阵;
(4)选取不同参考点V2m-r所构成的数据集v2m-r,搜寻匹配函数M中的最小值所对应的参考点V2m-k,沿参考点V2m-k左、右两侧取n个数据点构成叶片局部前缘曲线特征的数据集
v2=[V(2m-k)-n…V2m-k…V(2m-k)+n]1×(2n+1)
(5)根据叶片局部前缘曲线特征的轮廓数据集v1和v2分别求解出形心坐标
Figure FDA0002826421870000022
Figure FDA0002826421870000023
Figure FDA0002826421870000024
Figure FDA0002826421870000025
分别为叶片局部前缘曲线特征数据集v1和v2的形心坐标;根据两个形心坐标
Figure FDA0002826421870000026
Figure FDA0002826421870000027
求解转动中心Ob
2.根据权利要求1所述的基于叶片局部前缘曲线特征标定转动中心的方法,其特征在于:步骤(1)中所述叶片局部前缘曲线特征数据集v1通过如下步骤构建:
选取轮廓数据V1中的极大值V1m,沿V1m左、右两侧取的第n个数据点V1m+n和V1m-n;计算极大值V1m到V1m+n和V1m-n连线之间的距离dLn,选取dLn大于等于线结构光传感器最佳测量值dz时的V1m+n和V1m-n作为叶片局部前缘数据集的起始点和终止点,即叶片局部前缘曲线特征的轮廓数据集v1=[V1m-n…V1m…V1m+n]1×(2n+1)
所述
Figure FDA0002826421870000028
式中,x1m,y1m为极大值V1m坐标数据,x1m-n,y1m-n为极大值V1m-n坐标数据,dLn为极大值V1m到V1m+n和V1m-n连线的距离;K为V1m+n和V1m-n连线的斜率。
3.根据权利要求1所述的基于叶片局部前缘曲线特征标定转动中心的方法,其特征在于:所述转动中心坐标Ob采用如下模型求解:
Figure FDA0002826421870000029
式中,(x,y)为转动中心Ob在数据坐标系内的坐标数据;
Figure FDA00028264218700000210
为转动矩阵;
Figure FDA0002826421870000031
为二阶单位矩阵;
Figure FDA0002826421870000032
分别为叶片局部前缘曲线特征数据集v1和v2的形心坐标。
4.根据权利要求1、2或3任一权利要求所述的基于叶片局部前缘曲线特征标定转动中心的方法在叶片检测领域的应用。
CN202011134900.7A 2020-10-22 2020-10-22 基于叶片局部前缘曲线特征标定转动中心的方法 Active CN112013788B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011134900.7A CN112013788B (zh) 2020-10-22 2020-10-22 基于叶片局部前缘曲线特征标定转动中心的方法
US17/392,551 US12013226B2 (en) 2020-10-22 2021-08-03 Method for calibrating rotation center based on blade local leading-edge curve feature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011134900.7A CN112013788B (zh) 2020-10-22 2020-10-22 基于叶片局部前缘曲线特征标定转动中心的方法

Publications (2)

Publication Number Publication Date
CN112013788A CN112013788A (zh) 2020-12-01
CN112013788B true CN112013788B (zh) 2021-01-26

Family

ID=73527994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011134900.7A Active CN112013788B (zh) 2020-10-22 2020-10-22 基于叶片局部前缘曲线特征标定转动中心的方法

Country Status (2)

Country Link
US (1) US12013226B2 (zh)
CN (1) CN112013788B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239500B (zh) * 2021-07-12 2021-09-21 四川大学 基于协方差矩阵的参考点邻域特征匹配方法
CN113251950A (zh) * 2021-07-15 2021-08-13 四川大学 基于叶根自基准面的叶片三维轮廓高精度检测方法
CN114820604B (zh) * 2022-06-27 2022-09-09 四川大学 基于最邻近点距离损失的叶片型线数据拼接方法及设备
CN115841548B (zh) * 2023-02-21 2023-05-12 陕西空天信息技术有限公司 一种叶片模型的计算机辅助生成方法及系统
CN117029705B (zh) * 2023-06-27 2024-03-22 苏州瑞威盛科技有限公司 一种基于非接触式3d视觉的齿轮跨棒距测量系统及方法
CN116720286B (zh) * 2023-08-09 2023-11-10 陕西空天信息技术有限公司 叶片缘板模型构建方法及装置、电子设备、存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0812478D0 (en) * 2008-07-09 2008-08-13 Rolls Royce Plc An apparatus and a method of measuring erosion of an edge of a turbomachine aerofoil
CN106780725B (zh) * 2016-12-23 2018-07-06 西安交通大学 一种双目三维重构方法及系统
US11897055B2 (en) * 2019-11-12 2024-02-13 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Balance adjustment method for rotor and turbocharger

Also Published As

Publication number Publication date
CN112013788A (zh) 2020-12-01
US20220128349A1 (en) 2022-04-28
US12013226B2 (en) 2024-06-18

Similar Documents

Publication Publication Date Title
CN112013788B (zh) 基于叶片局部前缘曲线特征标定转动中心的方法
US11654568B2 (en) 3D measurement model and spatial calibration method based on 1D displacement sensor
CN107741198B (zh) 一种基于四轴光学扫描系统转台标定的方法
US9760986B2 (en) Method and system for automated shaped cooling hole measurement
CN104515478A (zh) 一种高精度的航空发动机叶片自动三维测量方法和系统
CN111982019B (zh) 基于线结构光传感器的叶片截面轮廓高精度检测方法
CN111912335B (zh) 一种适用于机器人钻铆系统的飞机表面基准孔识别方法
CN108827192A (zh) 一种采用激光传感器测量同轴度的测量装置和方法
CN110260786A (zh) 一种基于外部跟踪的机器人视觉测量系统及其标定方法
CN103009194B (zh) 一种用于大型工件的非接触式内平行平面间距测量法
CN112013797B (zh) 基于圆柱体和线结构光标定空间回转轴线的方法及其应用
CN113192116A (zh) 基于结构光相机的航空叶片厚度参数量测方法
CN115682989A (zh) 一种涡轮叶片基于六点定位的形面测量方法
CN204269086U (zh) 一种高精度的航空发动机叶片自动三维测量系统
CN111023992B (zh) 基于线结构光的截面曲线特征检测方法及其应用
Shi et al. A high-precision form-free metrological method of aeroengine blades
CN113916128A (zh) 一种基于光笔式视觉测量系统的提高精度的方法
CN109084734A (zh) 基于单目显微视觉的微球姿态测量装置及测量方法
CN113029026A (zh) 一种发动机火焰筒异型气膜孔的在线多参数检测方法
CN115307571B (zh) 一种平面式线激光传感器位姿标定件及标定方法
CN104930983A (zh) 用于测量叶片内部结构的测量方法及所用夹具
CN110455188B (zh) 单轴平移台与结构光3d传感器联合测量标定方法
CN101907449A (zh) 螺旋桨桨叶宽度的自动测量新方法
CN113740033B (zh) 一种光谱共焦测量系统中光学测头的光束方向校准方法
CN113239500B (zh) 基于协方差矩阵的参考点邻域特征匹配方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant