CN112002782A - 一种基于MnBi2Te4单层的纳米尺度光电传感器 - Google Patents

一种基于MnBi2Te4单层的纳米尺度光电传感器 Download PDF

Info

Publication number
CN112002782A
CN112002782A CN202010888234.XA CN202010888234A CN112002782A CN 112002782 A CN112002782 A CN 112002782A CN 202010888234 A CN202010888234 A CN 202010888234A CN 112002782 A CN112002782 A CN 112002782A
Authority
CN
China
Prior art keywords
mnbi
layer
photoelectric sensor
nanoscale
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010888234.XA
Other languages
English (en)
Other versions
CN112002782B (zh
Inventor
安义鹏
朱明甫
武大鹏
马传琦
刘尚鑫
赵永
康军帅
焦照勇
张达崴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202010888234.XA priority Critical patent/CN112002782B/zh
Publication of CN112002782A publication Critical patent/CN112002782A/zh
Application granted granted Critical
Publication of CN112002782B publication Critical patent/CN112002782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于MnBi2Te4单层的纳米尺度光电传感器,属于纳米尺度光电器件技术领域。本发明的技术方案要点为:一种基于MnBi2Te4单层的纳米尺度光电传感器,其由MnBi2Te4材料的单层结构构成;该MnBi2Te4材料的单层结构一端进行P型掺杂,中间区为MnBi2Te4单层的本征结构,另一端进行N型掺杂,构造成PIN结结构;将该PIN结结构放置于诸如二氧化硅等衬底上,并在其两端施加漏极电极和源极电极,构造成光电传感器,当在光电传感器中间区域施加可见光照射时,该光电传感器发生相应光电响应。本发明具有结构超薄、尺寸可调、能耗低等优点。

Description

一种基于MnBi2Te4单层的纳米尺度光电传感器
技术领域
本发明属于纳米尺度电子器件技术领域,具体涉及一种基于MnBi2Te4单层的纳米尺度光电传感器。
背景技术
在当今后摩尔时代,硅基电子器件发展遇到较大瓶颈,需要寻找新的材料代替传统硅基器件。最近几年来,二维单层材料以其独特的几何和电子结构、力学和光电性质等引起了众多领域科研人员的极大研究兴趣。诸如石墨烯、硅烯、氮化硼、锗烯、锡烯、过渡金属二硫化物、磷烯、MX烯、硼烯等已被成功制备出来。大量研究发现,诸多二维材料在力/热/光/电/磁等方面展现出优异的特性,并已开辟了许多全新的研究和应用领域,有望成为新一代的高性能纳米器件的重要候选材料。
最近,一种锰基MnBi2Te4层状材料激发了科学家们的极大研究兴趣,并取得一些重要研究进展。Xue等人用分子束外延生长的方法成功制备了MnBi2Te4单层和少层结构,并得到了它们的ARPES图像(Experimental Realization of an Intrinsic MagneticTopological Insulator,Chin.Phys.Lett.36,076801(2019))。Zhang课题组在Science上报道了关于MnBi2Te4的量子反常霍尔效应工作,揭示了其磁性随着层数变化表现出奇偶性,偶数层时则表现出反铁磁性,而奇数层时表现出铁磁性,且在1.4K极低温时表现出了反常量子霍尔效应,在外磁场作用下时该温度阈值提高到6.5K(Quantum anomalous Halleffect in intrinsic magnetic topological insulator MnBi2Te4,Science,367,895(2020))。Xu,Zhang和Wang课题组在Nature Materials上报道了关于MnBi2Te4拓扑特性的工作,他们研究了MnBi2Te4块体和薄膜晶体管结构的量子输运行为,在该体系中实现了Chern绝缘体和轴子绝缘体这两种拓扑量子态,并观察到了较大的零级霍尔电阻平台和纵向电阻,揭示了中等强度的磁场即可驱动其转变成零级纵向电阻的Chern绝缘相(Robust axioninsulator and Chern insulator phases in a two-dimensional antiferromagnetictopological insulator.Nat.Mater.19,522(2020))。然而,关于该MnBi2Te4单层结构的光电器件设计工作报道还较少。
发明内容
本发明解决的技术问题是提供了一种基于MnBi2Te4单层的纳米尺度光电传感器,通过设计对MnBi2Te4材料的单层结构两端分别进行P型掺杂和N型掺杂,保留中间区为其本征结构,进而构造成一个PIN结结构,然后将其放置在诸如二氧化硅等适当衬底上,在PIN结结构两端分别施加漏极电极和源极电极,构造成光电传感器,当对中间区施加可见光照射时,可实现光电传感的作用。
本发明为解决上述技术问题采用如下技术方案,一种基于MnBi2Te4单层的纳米尺度光电传感器,其特征在于该光电传感器是基于MnBi2Te4材料的单层结构,在MnBi2Te4材料的单层结构两端分别进行P型掺杂和N型掺杂,保留中间区为其本征结构,构造成MnBi2Te4单层的PIN结结构,将MnBi2Te4单层的PIN结结构放置于二氧化硅衬底上,并在MnBi2Te4单层的PIN结结构两端分别施加漏极电极和源极电极,构造成光电传感器,当在中间区施加可见光照射时,中间区MnBi2Te4单层半导体材料会产生光电效应,对可见光区发生不同响应,进而实现光电传感的作用。
进一步优选,所述光电传感器在可见光的黄色光区域,光电响应信号最强烈,该基于MnBi2Te4单层的纳米尺度光电二极管对黄光最为敏感,表现出黄光探测传感作用,能够用于作为黄光的纳米尺度探测传感器。
本发明设计了一种基于MnBi2Te4单层的纳米尺度光电传感器,可实现对黄光的探测传感作用,如图2所示。该光电传感器厚度约1.1nm,宽度可任意选取。本发明具有尺寸可调、结构超薄等特点,能够应用于纳米级光电传感器。
附图说明
图1是基于MnBi2Te4单层的纳米尺度光电传感器的结构示意图,其中最下面是诸如二氧化硅(SiO2)衬底,衬底上是MnBi2Te4材料的单层结构,左侧为P型掺杂,中间区为MnBi2Te4单层本征结构,右侧为N型掺杂,构造成MnBi2Te4单层的PIN结结构,在MnBi2Te4单层的PIN结结构左右两端分别施加有漏极(D)电极和源极(S)电极,构造成光电传感器。
图2是基于MnBi2Te4单层的纳米尺度光电传感器的光电流-光子能量曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
本发明构造了由MnBi2Te4材料的单层结构两端分别进行P型掺杂和N型掺杂,而保留中间区为本征结构构造而成的PIN结光电传感器。本发明通过使用业界先进的器件设计工具QuantumATK(
Figure BDA0002656196610000021
Smidstrup,et al.,QuantumATK:an integrated platform ofelectronic and atomic-scale modelling tools[J].J.Phys.:Condens.Matter,32,015901(2020))进行器件模型设计,并对其进行性能测量。
通过对其光电性质如光电流-光子能量曲线的测量,揭示了该种MnBi2Te4单层PIN结二极管光电传感器对黄光的探测传感作用,为进一步设计和实现具有超薄结构、尺寸可调的纳米尺度二极管光电传感器提供了相关理论依据和模型构造方案。
此基于MnBi2Te4单层的纳米尺度光电传感器的实现可按照如下步骤完成:
一、按照如图1所示,在MnBi2Te4材料的单层结构左右两侧分别进行P型掺杂和N型掺杂,保留中间区的MnBi2Te4单层为其本征半导体结构,进而构造成MnBi2Te4单层的PIN结结构。
二、将上述得到MnBi2Te4单层的PIN结结构放置于诸如二氧化硅等衬底上,并在两侧分别施加漏极电极和源极电极,进而构造成基于MnBi2Te4单层的PIN结光电二极管光电传感器,且在垂直于输运方向的大小尺寸可任意调节。
三、当在上述构造的MnBi2Te4单层PIN结光电二极管光电传感器的中间区施加可见光照射时,通过该光电二极管光电传感器的光电流可通过下式得到
Figure BDA0002656196610000031
在入射光光子能量为0到5eV时,其光电流-光子能量曲线如图2所示。该光电传感器表现出对黄光的较强响应特性,可作为黄光的探测传感纳米器件。
本发明设计的基于MnBi2Te4单层的纳米尺度PIN结二极管光电传感器具有结构超薄、尺寸可调的特点。可根据实际需要任意制作大小尺寸各异的各型号二极管光电传感器。如图1所示,该MnBi2Te4单层PIN结二极管光电传感器的厚度约1.1nm,结构超薄,可在纳米光电传感器方面具有潜在应用。
以上描述了本发明的基本形状构造、技术方案、基本原理、主要特征及优点。本行业的技术人员应该了解。本发明凡符合上述由MnBi2Te4单层构造的PIN结二极管光电传感器均落入本发明保护范围内。

Claims (2)

1.一种基于MnBi2Te4单层的纳米尺度光电传感器,其特征在于该光电传感器是基于MnBi2Te4材料的单层结构,在MnBi2Te4材料的单层结构两端分别进行P型掺杂和N型掺杂,保留中间区为其本征结构,构造成MnBi2Te4单层的PIN结结构,将MnBi2Te4单层的PIN结结构放置于二氧化硅衬底上,并在MnBi2Te4单层的PIN结结构两端分别施加漏极电极和源极电极,构造成光电传感器,当在中间区施加可见光照射时,中间区MnBi2Te4单层半导体材料会产生光电效应,对可见光区发生不同响应,进而实现光电传感的作用。
2.根据权利要求1所述的基于MnBi2Te4单层的纳米尺度光电传感器,其特征在于:所述光电传感器在可见光的黄色光区域,光电响应信号最强烈,该基于MnBi2Te4单层的纳米尺度光电二极管对黄光最为敏感,表现出黄光探测传感作用,能够用于作为黄光的纳米尺度探测传感器。
CN202010888234.XA 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度光电传感器 Active CN112002782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010888234.XA CN112002782B (zh) 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度光电传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010888234.XA CN112002782B (zh) 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度光电传感器

Publications (2)

Publication Number Publication Date
CN112002782A true CN112002782A (zh) 2020-11-27
CN112002782B CN112002782B (zh) 2022-03-01

Family

ID=73465590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010888234.XA Active CN112002782B (zh) 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度光电传感器

Country Status (1)

Country Link
CN (1) CN112002782B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353391A2 (en) * 1988-07-30 1990-02-07 Taiyo Yuden Co., Ltd. Optical information recording medium
JPH05234137A (ja) * 1992-02-18 1993-09-10 Ricoh Co Ltd 水素化シリコン膜を設けた光情報記録媒体
CN1273666A (zh) * 1997-10-07 2000-11-15 拜尔公司 光学存储介质
US20030116762A1 (en) * 2001-12-20 2003-06-26 Industrial Technology Research Single-chip structure of silicon germanium photodetector and high-speed transistor
CN110726736A (zh) * 2019-10-18 2020-01-24 南京大学 一种无源低功耗的微波检测方法及其装置和制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353391A2 (en) * 1988-07-30 1990-02-07 Taiyo Yuden Co., Ltd. Optical information recording medium
JPH05234137A (ja) * 1992-02-18 1993-09-10 Ricoh Co Ltd 水素化シリコン膜を設けた光情報記録媒体
CN1273666A (zh) * 1997-10-07 2000-11-15 拜尔公司 光学存储介质
US20030116762A1 (en) * 2001-12-20 2003-06-26 Industrial Technology Research Single-chip structure of silicon germanium photodetector and high-speed transistor
CN110726736A (zh) * 2019-10-18 2020-01-24 南京大学 一种无源低功耗的微波检测方法及其装置和制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘畅、刘祥瑞: "强三维拓扑绝缘体与磁性拓扑绝缘体的", 《物理学报》 *

Also Published As

Publication number Publication date
CN112002782B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
Zhang et al. Piezotronics in two‐dimensional materials
Das et al. Topological insulator Bi2Se3/Si-nanowire-based p–n junction diode for high-performance near-infrared photodetector
Wang et al. Piezotronics and Piezo-phototronics
Wang et al. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe 2/MoS 2 p–n heterojunctions
Wu et al. Charge separation via strain in silicon nanowires
Pradel et al. Piezotronic effect in solution-grown p-type ZnO nanowires and films
Gao et al. Self-powered SnS1–x Se x alloy/silicon heterojunction photodetectors with high sensitivity in a wide spectral range
Zhou et al. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices
Ren et al. Short-wave near-infrared polarization sensitive photodetector based on GaSb nanowire
Wang et al. A self-powered fast-response ultraviolet detector of p–n homojunction assembled from two ZnO-based nanowires
Liang et al. Atomically precise graphene nanoribbon heterojunctions for excitonic solar cells
Liang et al. Electrical and optical transport of GaAs/carbon nanotube heterojunctions
Zhang et al. Mixed-dimensional vertical point p–n junctions
Li et al. Challenges to the concept of an intermediate band in InAs/GaAs quantum dot solar cells
Xiong et al. Multifunctional GeAs/WS2 heterojunctions for highly polarization-sensitive photodetectors in the short-wave infrared range
Wang et al. Bias-controlled tunable electronic transport with memory characteristics in an individual ZnO nanowire for realization of a self-driven UV photodetector with two symmetrical electrodes
Wang et al. Position-sensitive detectors based on two-dimensional materials
Zhang et al. Piezo‐Phototronic Matrix via a Nanowire Array
Choi Graphene-based vertical-junction diodes and applications
Gao et al. On the generalized thermal conductance characterizations of mixed one-dimensional–two-dimensional van der Waals heterostructures and their implication for pressure sensors
Fang et al. Band offset and an ultra-fast response UV-VIS photodetector in γ-In 2 Se 3/p-Si heterojunction heterostructures
Dhanaselvam et al. Pressure sensors using si/zno heterojunction diode
CN112002782B (zh) 一种基于MnBi2Te4单层的纳米尺度光电传感器
Liang et al. Self-powered Bi2Se3/Si position-sensitive detector and its performance enhancement by introducing a Si nanopyramid structure
Kurokawa et al. Numerical approach to the performance of silicon quantum dots superlattice solar cells taking into account the quantum effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant