CN111999129A - Atmospheric water vapor collecting device and using method thereof - Google Patents
Atmospheric water vapor collecting device and using method thereof Download PDFInfo
- Publication number
- CN111999129A CN111999129A CN202010690515.4A CN202010690515A CN111999129A CN 111999129 A CN111999129 A CN 111999129A CN 202010690515 A CN202010690515 A CN 202010690515A CN 111999129 A CN111999129 A CN 111999129A
- Authority
- CN
- China
- Prior art keywords
- box
- water vapor
- cold trap
- liquid nitrogen
- condensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 110
- 239000007788 liquid Substances 0.000 claims abstract description 55
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 55
- 238000009833 condensation Methods 0.000 claims abstract description 54
- 230000005494 condensation Effects 0.000 claims abstract description 54
- 238000001035 drying Methods 0.000 claims abstract description 24
- 239000002274 desiccant Substances 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims 2
- 230000008018 melting Effects 0.000 claims 2
- 239000011810 insulating material Substances 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 208000001034 Frostbite Diseases 0.000 abstract description 4
- 238000005194 fractionation Methods 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2273—Atmospheric sampling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/24—Suction devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/42—Low-temperature sample treatment, e.g. cryofixation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种大气水汽收集装置及其使用方法,该装置包括水汽进气口杯、液氮储藏箱、冷凝箱、干燥指示箱和微型空气泵,所述水汽进气口杯与冷凝箱连接,所述冷凝箱的内部设置有冷阱设备,所述冷凝箱的内部位于冷阱设备的底部安装有采集阀,冷凝箱与液氮储藏箱之间通过连接管连接,所述液氮储藏箱上设置有增压泵、压力表和浮尺,所述增压泵与压力表连接,浮尺位于液氮储藏箱的内部,冷阱设备的出气口通过出气管与干燥指示箱连接,所述干燥指示箱的内部设置有干燥指示剂,干燥指示箱与微型空气泵连接。本发明改进了大气水汽收集装置的自动化,冷凝室中液氮自动添加降低了以往传统冷阱冷凝方法中人为添加液氮的低温冻伤风险。
The invention discloses an atmospheric water vapor collection device and a method for using the same. The device comprises a water vapor inlet cup, a liquid nitrogen storage box, a condensation box, a drying indicating box and a micro air pump. The water vapor inlet cup and the condensation box connection, the inside of the condensation box is provided with a cold trap device, the inside of the condensation box is located at the bottom of the cold trap device and a collection valve is installed, the condensation box and the liquid nitrogen storage tank are connected by a connecting pipe, and the liquid nitrogen storage box is connected The box is provided with a booster pump, a pressure gauge and a float gauge. The booster pump is connected to the pressure gauge. The float gauge is located inside the liquid nitrogen storage tank. The air outlet of the cold trap equipment is connected to the drying indicating box through the air outlet pipe. A drying indicator is arranged inside the drying indicating box, and the drying indicating box is connected with a micro air pump. The invention improves the automation of the atmospheric water vapor collection device, and the automatic addition of liquid nitrogen in the condensation chamber reduces the risk of low-temperature frostbite caused by artificially adding liquid nitrogen in the conventional traditional cold trap condensation method.
Description
技术领域technical field
本发明涉及大气水汽采样技术领域,尤其涉及一种大气水汽收集装置及其使用方法。The invention relates to the technical field of atmospheric water vapor sampling, in particular to an atmospheric water vapor collection device and a method for using the same.
背景技术Background technique
大气水汽氢氧稳定同位素是揭示大气环流和水文循环过程的重要指标,目前大气水汽同位素实地监测数据的匮乏和不足限制了大气水汽同位素研究的推广和应用,常用的方法是基于降水观测利用瑞利分馏模型对近地表大气水汽同位素进行推理估算,但这往往取决于降水量和决定平衡分馏的温度等存在不确定性,所以目前的推导关系也不精准。这主要局限于实测水汽同位素数据,大多研究依然主要依靠平衡分馏的推算方法,无形中增加了区域水汽再循环及生态水文过程蒸散发分割等量化研究的不确定性。另外,借助于全球及区域尺度动力模型来模拟同位素分馏过程及含量变化,但这类模型在降水事件尺度上无法定量分析。因此,要解决这些问题,亟需对大气水汽同位素有全面系统的直接观测和认识。Atmospheric water vapor, hydrogen and oxygen stable isotopes are important indicators for revealing atmospheric circulation and hydrological cycle processes. The current lack of field monitoring data for atmospheric water vapor isotopes limits the promotion and application of atmospheric water vapor isotope research. The commonly used method is to use Rayleigh based on precipitation observations. Fractionation models make inference estimates of near-surface atmospheric water vapor isotopes, but this often depends on the amount of precipitation and the temperature that determines equilibrium fractionation. There are uncertainties, so the current derivation relationship is not accurate. This is mainly limited to the measured water vapor isotope data, and most studies still mainly rely on the calculation method of equilibrium fractionation, which virtually increases the uncertainty of quantitative studies such as regional water vapor recirculation and evapotranspiration segmentation of eco-hydrological processes. In addition, global and regional scale dynamic models are used to simulate isotope fractionation processes and content changes, but such models cannot be quantitatively analyzed at the scale of precipitation events. Therefore, to solve these problems, it is urgent to have a comprehensive and systematic direct observation and understanding of atmospheric water vapor isotopes.
大气水汽同位素实地监测的重要性是毋庸置疑的,但目前往往由于监测方法的限制,实际监测数据在相当长时间内的非常匮乏。尽管近年来光谱观测仪器的出现在一定程度上规避了这一问题,但这类仪器费用昂贵且野外操作复杂和难以确保仪器稳定性,进而影响了水汽同位素质量。因此在生态水文和水文气象研究领域中,还需借助于传统方法对大气水汽样品的收集,目前传统水汽收集方法主要包括液氮冷阱冷凝、干冰制冷法、干燥剂脱水法和Flask真空采样瓶,这些方法存在的问题主要包括:①传统的液氮冷阱冷凝需要持续供给液氮,保证冷阱充分被冷凝,严控气流流速;②干冰制冷法在冷凝温度不够低易造成同位素分馏,费时费力;③吸湿干燥剂含有O2,会引起同位素交换;④真空采样瓶法收集的水汽量少,不利于同位素分析,尤其在半干旱区。The importance of on-site monitoring of atmospheric water vapor isotopes is unquestionable, but due to the limitations of monitoring methods, the actual monitoring data is very scarce for a long time. Although the appearance of spectroscopic observation instruments in recent years has circumvented this problem to a certain extent, such instruments are expensive and complicated to operate in the field, and it is difficult to ensure the stability of the instrument, which in turn affects the quality of water vapor isotopes. Therefore, in the field of eco-hydrology and hydrometeorology, it is necessary to collect atmospheric water vapor samples by traditional methods. At present, traditional methods of water vapor collection mainly include liquid nitrogen cold trap condensation, dry ice refrigeration method, desiccant dehydration method and Flask vacuum sampling bottle. , the problems of these methods mainly include: ① the traditional liquid nitrogen cold trap condensation requires continuous supply of liquid nitrogen to ensure that the cold trap is fully condensed and strictly control the gas flow rate; ② the dry ice refrigeration method is easy to cause isotope fractionation when the condensation temperature is not low enough, which is time-consuming laborious; ③ the hygroscopic desiccant contains O 2 , which will cause isotope exchange; ④ the amount of water vapor collected by the vacuum sampling bottle method is small, which is not conducive to isotope analysis, especially in semi-arid regions.
大气水汽同位素收集是同位素生态水文学研究中重要的环节,直接关系到区域降水过程的准确评估和水量平衡的测算。不科学的采样方式不仅会浪费科技研究者的经费和时间,同时也会造成科研结果的失真。目前基于液氮冷阱方法收集大气水汽亟需解决的关键问题:(1)在收集过程中如何提高液氮利用率;(2)如何确保水汽液化率,进而减少水汽同位素分馏作用对样品的影响。因此,利用液氮冷阱法收集大气水汽时必须将水汽液化收集、密封保存,防治二次蒸发对水汽样品同位素的影响,同时改进了取样装置的便利性和易操作性,装置材料经过特别的设计及选择以提高水汽收集效率,提高同位素的准确性。Atmospheric water vapor isotope collection is an important link in isotopic ecohydrology research, which is directly related to the accurate assessment of regional precipitation processes and the calculation of water balance. Unscientific sampling methods will not only waste the funds and time of scientific and technological researchers, but also cause distortion of scientific research results. At present, the key problems to be solved in the collection of atmospheric water vapor based on the liquid nitrogen cold trap method are: (1) how to improve the utilization rate of liquid nitrogen during the collection process; (2) how to ensure the liquefaction rate of water vapor, thereby reducing the impact of water vapor isotope fractionation on the sample . Therefore, when using the liquid nitrogen cold trap method to collect atmospheric water vapor, the water vapor must be liquefied, collected, sealed and stored to prevent the influence of secondary evaporation on the isotope of water vapor samples, and at the same time improve the convenience and operability of the sampling device. Designed and selected to improve water vapor collection efficiency and improve isotope accuracy.
发明内容SUMMARY OF THE INVENTION
为克服相关技术中存在的问题,本发明实施例提供一种大气水汽收集装置及其使用方法,降低了以往传统冷阱冷凝方法中人为添加液氮的低温冻伤风险,从而改善了收集装置的安全性能,完善了收集装置中水汽流量监测、液氮量和温度监测。In order to overcome the problems existing in the related art, the embodiment of the present invention provides an atmospheric water vapor collection device and a method for using the same, which reduces the risk of low-temperature frostbite caused by artificially adding liquid nitrogen in the conventional cold trap condensation method, thereby improving the safety of the collection device. It improves the monitoring of water vapor flow, liquid nitrogen volume and temperature in the collection device.
本发明实施例提供一种大气水汽收集装置,包括水汽进气口杯、液氮储藏箱、冷凝箱、干燥指示箱和微型空气泵,所述水汽进气口杯与冷凝箱连接,所述冷凝箱的内部设置有冷阱设备,所述冷凝箱的内部位于冷阱设备的底部安装有采集阀,冷凝箱与液氮储藏箱之间通过连接管连接,所述液氮储藏箱上设置有增压泵、压力表和浮尺,所述增压泵与压力表连接,浮尺位于液氮储藏箱的内部,冷阱设备的出气口通过出气管与干燥指示箱连接,所述干燥指示箱的内部设置有干燥指示剂,干燥指示箱与微型空气泵连接。An embodiment of the present invention provides an atmospheric water vapor collection device, including a water vapor inlet cup, a liquid nitrogen storage tank, a condensation box, a drying indicator box and a micro air pump. The water vapor inlet cup is connected to the condensation tank, and the condensation The inside of the box is provided with a cold trap device, the inside of the condensation box is located at the bottom of the cold trap device and a collection valve is installed, the condensation box and the liquid nitrogen storage tank are connected by a connecting pipe, and the liquid nitrogen storage box is provided with a booster valve. A pressure pump, a pressure gauge and a buoy gauge. The booster pump is connected to the pressure gauge. The buoy gauge is located inside the liquid nitrogen storage tank. The air outlet of the cold trap device is connected to the drying indicating box through the air outlet pipe. A drying indicator is arranged inside, and the drying indicator box is connected with a micro air pump.
进一步的,所述水汽进气口杯与冷凝箱的连接处设置有气流控制器。Further, an air flow controller is provided at the connection between the water vapor inlet cup and the condensation box.
进一步的,所述冷阱设备的数量不少于两个,相邻两个冷阱设备之间通过导管连接。Further, the number of the cold trap devices is not less than two, and two adjacent cold trap devices are connected by conduits.
进一步的,所述冷凝箱的内部位于冷阱设备的侧面设置有温度计。Further, a thermometer is provided inside the condensation box on the side of the cold trap device.
进一步的,所述冷凝箱为双层结构,外层为PVC材质外保温层,内层为不锈钢材质内冷却层,外保温层与内冷却层之间设置有隔热保温材料。Further, the condensation box has a double-layer structure, the outer layer is an outer insulation layer made of PVC material, the inner layer is an inner cooling layer made of stainless steel, and a thermal insulation material is arranged between the outer insulation layer and the inner cooling layer.
一种大气水汽收集装置的使用方法,包括以下步骤:A method of using an atmospheric water vapor collection device, comprising the following steps:
将水汽进气口杯安装于预设的高度H处,通过导管将气流控制器与冷凝箱中的冷阱设备连接;Install the water vapor inlet cup at the preset height H, and connect the airflow controller to the cold trap equipment in the condensation box through a conduit;
液氮储藏箱、冷凝箱与干燥指示箱依次连接;The liquid nitrogen storage box, the condensation box and the drying indicator box are connected in sequence;
打开气流控制器大气从水汽进气口杯进入冷凝箱,随即启动冷阱设备;Open the air flow controller and the air enters the condensate box from the water vapor inlet cup, and then start the cold trap equipment;
在增压泵作用下液氮储藏箱与冷凝箱间形成明显压力差,液氮自动添加到冷凝箱中;Under the action of the booster pump, an obvious pressure difference is formed between the liquid nitrogen storage tank and the condensing tank, and the liquid nitrogen is automatically added to the condensing tank;
待冷凝结束后,从冷凝箱取出冷阱置于常温下,冷凝水融化后,将冷阱融化水混合装入采样瓶,低温冷藏,最后经过干燥指示箱中研判大气水汽收集率。After the condensation is over, take out the cold trap from the condensation box and place it at room temperature. After the condensed water is melted, mix the melted water from the cold trap into the sampling bottle, refrigerate at low temperature, and finally judge the atmospheric water vapor collection rate in the drying indicator box.
进一步的,所述液氮储藏箱中还设置有压力表和浮尺,浮尺用于判断储藏室中液氮的容量,压力表用于观察液氮储藏箱压力的变化。Further, the liquid nitrogen storage tank is also provided with a pressure gauge and a float ruler, the float ruler is used to judge the capacity of the liquid nitrogen in the storage room, and the pressure gauge is used to observe the pressure change of the liquid nitrogen storage tank.
进一步的,在此过程中对冷阱进行密封保存。Further, the cold trap is sealed and preserved during this process.
进一步的,所述干燥指示箱内设置有蓝色的干燥剂,干燥剂用于根据颜色判别水汽的收集效果。Further, a blue desiccant is arranged in the drying indicator box, and the desiccant is used to judge the collection effect of water vapor according to the color.
本发明的实施例提供的技术方案具有以下有益效果:改进了大气水汽收集装置的自动化,冷凝室中液氮自动添加降低了以往传统冷阱冷凝方法中人为添加液氮的低温冻伤风险,较传统低温方法收集水汽节约了液氮,通过冷凝室中冷阱循环系统能高效地提高水汽冷凝效率,有效地避免了由于水汽收集率较低而引起水汽同位素分馏作用。The technical solutions provided by the embodiments of the present invention have the following beneficial effects: the automation of the atmospheric water vapor collection device is improved, and the automatic addition of liquid nitrogen in the condensation chamber reduces the risk of low-temperature frostbite caused by artificially adding liquid nitrogen in the conventional traditional cold trap condensation method, which is more than traditional The low temperature method to collect water vapor saves liquid nitrogen, and the cold trap circulation system in the condensation chamber can effectively improve the water vapor condensation efficiency, effectively avoiding the water vapor isotope fractionation caused by the low water vapor collection rate.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.
图1是本发明实施例中大气水汽收集装置的结构示意图。FIG. 1 is a schematic structural diagram of a device for collecting atmospheric water vapor in an embodiment of the present invention.
图2是本发明实施例中大气水汽收集装置中冷凝箱的结构示意图。FIG. 2 is a schematic structural diagram of a condensation box in an atmospheric water vapor collection device in an embodiment of the present invention.
图3是本发明实施例中大气水汽收集装置的使用方法的流程图。FIG. 3 is a flowchart of a method for using the atmospheric water vapor collection device in the embodiment of the present invention.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置及相关应用、方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with the present invention. Rather, they are merely examples of apparatus and related applications and methods consistent with some aspects of the invention as recited in the appended claims.
图1是本发明实施例中大气水汽收集装置的结构示意图,图2是本发明实施例中大气水汽收集装置中冷凝箱的结构示意图,如图1和图2所示,该大气水汽收集装置,包括水汽进气口杯1、液氮储藏箱8、冷凝箱9、干燥指示箱10和微型空气泵12,水汽进气口杯与冷凝箱连接,水汽进气口杯与冷凝箱的连接处设置有气流控制器2,冷凝箱的内部设置有冷阱设备6,冷阱为耐低温玻璃材质组成,冷阱设备是便于拆卸和携带的,进气口端较长于出气口端,增加冷阱冷凝水汽收集量,冷阱底部最低端设有出水开关,冷凝箱的内部位于冷阱设备的底部安装有采集阀601,冷阱设备的数量不少于两个,相邻两个冷阱设备之间通过导管连接,补充冷凝室中液氮损失量,提高对冷阱中大气水汽凝结效率,冷阱进气口与外界相连的进气口高度可进行调节,收集不同高度的大气水汽,冷凝箱的内部位于冷阱设备的侧面设置有温度计7。1 is a schematic structural diagram of an atmospheric water vapor collecting device in an embodiment of the present invention, and FIG. 2 is a structural schematic diagram of a condensation box in the atmospheric water vapor collecting device in an embodiment of the present invention. As shown in FIGS. 1 and 2 , the atmospheric water vapor collecting device, It includes a water vapor inlet cup 1, a liquid
冷凝箱与液氮储藏箱之间通过连接管连接,冷凝箱为双层结构,外层为PVC材质外保温层,内层为不锈钢材质内冷却层,外保温层与内冷却层之间设置有隔热保温材料901,液氮储藏室可以通过浮尺指示液氮储藏室中液氮容量变化,保证冷凝室中冷阱完全被液氮浸没,水汽在多个冷阱间进行循环,这有效避免了水汽冷凝不彻底而影响同位素分馏的问题,保证了大气水汽样品中同位素的测试精度,同时干燥指示室的设置可以便于研判整个装置对大气水汽收集效率,利于检查装置的密封性,液氮储藏箱上设置有增压泵3、压力表4和浮尺5,增压泵与压力表连接,浮尺位于液氮储藏箱的内部,冷阱设备的出气口通过出气管与干燥指示箱连接,干燥指示箱的内部设置有干燥指示剂11,干燥指示箱与微型空气泵连接。The condensing box and the liquid nitrogen storage tank are connected by a connecting pipe. The condensing box is a double-layer structure, the outer layer is a PVC material and an outer insulation layer, and the inner layer is a stainless steel inner cooling layer. The
图3是本发明实施例中大气水汽收集装置的使用方法的流程图,如图3所示,该大气水汽收集装置的使用方法,包括以下步骤:Fig. 3 is the flow chart of the using method of the atmospheric water vapor collecting device in the embodiment of the present invention, as shown in Fig. 3, the using method of this atmospheric water vapor collecting device, comprises the following steps:
步骤101、将水汽进气口杯安装于预设的高度H处,通过导管将气流控制器与冷凝箱中的冷阱设备连接。Step 101: Install the water vapor inlet cup at a preset height H, and connect the airflow controller to the cold trap device in the condensation box through a conduit.
步骤102、液氮储藏箱、冷凝箱与干燥指示箱依次连接。
步骤103、打开气流控制器大气从水汽进气口杯进入冷凝箱,随即启动冷阱设备。
步骤104、在增压泵作用下液氮储藏箱与冷凝箱间形成明显压力差,液氮自动添加到冷凝箱中。Step 104: Under the action of the booster pump, a significant pressure difference is formed between the liquid nitrogen storage tank and the condensation tank, and the liquid nitrogen is automatically added to the condensation tank.
液氮储藏箱中还设置有压力表和浮尺,浮尺用于判断储藏室中液氮的容量,压力表用于观察液氮储藏箱压力的变化。The liquid nitrogen storage tank is also provided with a pressure gauge and a float ruler, the float ruler is used to judge the capacity of the liquid nitrogen in the storage room, and the pressure gauge is used to observe the pressure change of the liquid nitrogen storage tank.
步骤105、待冷凝结束后,从冷凝箱取出冷阱置于常温下,在此过程中对冷阱进行密封保存,冷凝水融化后,将冷阱融化水混合装入采样瓶,低温冷藏,最后经过干燥指示箱中研判大气水汽收集率。
干燥指示箱内设置有蓝色的干燥剂,干燥剂用于根据颜色判别水汽的收集效果。A blue desiccant is arranged in the drying indicator box, and the desiccant is used to judge the collection effect of water vapor according to the color.
采用了上述发明的实施例,改进了大气水汽收集装置的自动化,冷凝室中液氮自动添加降低了以往传统冷阱冷凝方法中人为添加液氮的低温冻伤风险,较传统低温方法收集水汽节约了液氮,通过冷凝室中冷阱循环系统能高效地提高水汽冷凝效率,有效地避免了由于水汽收集率较低而引起水汽同位素分馏作用。By adopting the embodiments of the above invention, the automation of the atmospheric water vapor collection device is improved, and the automatic addition of liquid nitrogen in the condensation chamber reduces the risk of low-temperature frostbite caused by artificially adding liquid nitrogen in the conventional cold trap condensation method, and saves water vapor collection compared with the traditional low-temperature method. Liquid nitrogen can effectively improve the water vapor condensation efficiency through the cold trap circulation system in the condensation chamber, and effectively avoid the water vapor isotope fractionation caused by the low water vapor collection rate.
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。Other embodiments of the invention will readily suggest themselves to those skilled in the art upon consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any variations, uses or adaptations of the invention which follow the general principles of the invention and which include common knowledge or conventional techniques in the art not disclosed by the invention .
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。It should be understood that the present invention is not limited to the precise structures described above and illustrated in the accompanying drawings, and that various modifications and changes may be made without departing from the scope thereof. The scope of the present invention is limited only by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010690515.4A CN111999129A (en) | 2020-07-17 | 2020-07-17 | Atmospheric water vapor collecting device and using method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010690515.4A CN111999129A (en) | 2020-07-17 | 2020-07-17 | Atmospheric water vapor collecting device and using method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111999129A true CN111999129A (en) | 2020-11-27 |
Family
ID=73466969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010690515.4A Pending CN111999129A (en) | 2020-07-17 | 2020-07-17 | Atmospheric water vapor collecting device and using method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111999129A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112781938A (en) * | 2020-12-31 | 2021-05-11 | 杭州乐载科学仪器有限公司 | Analysis device and method for condensation collection and determination of soluble ions in air |
CN113008727A (en) * | 2021-02-21 | 2021-06-22 | 中国科学院地质与地球物理研究所 | Water vapor recirculation ratio measuring system and measuring method thereof |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2725881Y (en) * | 2004-09-01 | 2005-09-14 | 王岚 | Atmosphere cold-trap sampler |
CN202210094U (en) * | 2011-08-24 | 2012-05-02 | 宁波双伟制药有限公司 | Karl-fischer trace moisture tester |
CN102589936A (en) * | 2012-01-12 | 2012-07-18 | 中国科学院地理科学与资源研究所 | A device and method for synchronously collecting atmospheric CO2 and water vapor samples |
CN202555150U (en) * | 2011-12-20 | 2012-11-28 | 余新维 | Environmental protection fragrance dehumidification bag |
JP2013200226A (en) * | 2012-03-26 | 2013-10-03 | Bridgestone Corp | Plant emitted gas collecting apparatus, plant emitted gas analyzer and plant emitted gas analytical method |
CN203259478U (en) * | 2013-04-15 | 2013-10-30 | 江西科伦药业有限公司 | Rapid trace moisture tester |
CN104677000A (en) * | 2015-03-19 | 2015-06-03 | 中国工程物理研究院材料研究所 | Liquid nitrogen cooling cryogenic device and implementation method for same |
CN106178580A (en) * | 2016-09-14 | 2016-12-07 | 济南山目生物医药科技有限公司 | A kind of cold-trap device |
CN206339414U (en) * | 2016-12-30 | 2017-07-18 | 天津清华德人环境工程有限公司 | Atmosphere vapour collection device |
CN108344825A (en) * | 2018-02-02 | 2018-07-31 | 上海东化环境工程有限公司 | The analysis method of gas collector and its collection system, propylene catalysis oxidation product |
CN108776051A (en) * | 2018-05-11 | 2018-11-09 | 山西师范大学 | A kind of soil, plant evaporation steam isotope harvester |
CN208270269U (en) * | 2018-05-11 | 2018-12-21 | 山西师范大学 | A kind of soil, plant evaporation steam isotope acquisition device |
CN110108845A (en) * | 2019-05-31 | 2019-08-09 | 中国地质科学院水文地质环境地质研究所 | A kind of soil evaporation and plant transpiration steam collect measuring device and its application method |
CN210293816U (en) * | 2019-05-14 | 2020-04-10 | 西北师范大学 | A simple atmospheric water vapor collection device |
CN210965154U (en) * | 2019-10-28 | 2020-07-10 | 四川中活低温设备有限公司 | Liquid nitrogen high-low temperature test box |
-
2020
- 2020-07-17 CN CN202010690515.4A patent/CN111999129A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2725881Y (en) * | 2004-09-01 | 2005-09-14 | 王岚 | Atmosphere cold-trap sampler |
CN202210094U (en) * | 2011-08-24 | 2012-05-02 | 宁波双伟制药有限公司 | Karl-fischer trace moisture tester |
CN202555150U (en) * | 2011-12-20 | 2012-11-28 | 余新维 | Environmental protection fragrance dehumidification bag |
CN102589936A (en) * | 2012-01-12 | 2012-07-18 | 中国科学院地理科学与资源研究所 | A device and method for synchronously collecting atmospheric CO2 and water vapor samples |
JP2013200226A (en) * | 2012-03-26 | 2013-10-03 | Bridgestone Corp | Plant emitted gas collecting apparatus, plant emitted gas analyzer and plant emitted gas analytical method |
CN203259478U (en) * | 2013-04-15 | 2013-10-30 | 江西科伦药业有限公司 | Rapid trace moisture tester |
CN104677000A (en) * | 2015-03-19 | 2015-06-03 | 中国工程物理研究院材料研究所 | Liquid nitrogen cooling cryogenic device and implementation method for same |
CN106178580A (en) * | 2016-09-14 | 2016-12-07 | 济南山目生物医药科技有限公司 | A kind of cold-trap device |
CN206339414U (en) * | 2016-12-30 | 2017-07-18 | 天津清华德人环境工程有限公司 | Atmosphere vapour collection device |
CN108344825A (en) * | 2018-02-02 | 2018-07-31 | 上海东化环境工程有限公司 | The analysis method of gas collector and its collection system, propylene catalysis oxidation product |
CN108776051A (en) * | 2018-05-11 | 2018-11-09 | 山西师范大学 | A kind of soil, plant evaporation steam isotope harvester |
CN208270269U (en) * | 2018-05-11 | 2018-12-21 | 山西师范大学 | A kind of soil, plant evaporation steam isotope acquisition device |
CN210293816U (en) * | 2019-05-14 | 2020-04-10 | 西北师范大学 | A simple atmospheric water vapor collection device |
CN110108845A (en) * | 2019-05-31 | 2019-08-09 | 中国地质科学院水文地质环境地质研究所 | A kind of soil evaporation and plant transpiration steam collect measuring device and its application method |
CN210965154U (en) * | 2019-10-28 | 2020-07-10 | 四川中活低温设备有限公司 | Liquid nitrogen high-low temperature test box |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112781938A (en) * | 2020-12-31 | 2021-05-11 | 杭州乐载科学仪器有限公司 | Analysis device and method for condensation collection and determination of soluble ions in air |
CN113008727A (en) * | 2021-02-21 | 2021-06-22 | 中国科学院地质与地球物理研究所 | Water vapor recirculation ratio measuring system and measuring method thereof |
CN113008727B (en) * | 2021-02-21 | 2022-01-25 | 中国科学院地质与地球物理研究所 | A water vapor recirculation ratio measuring system and its measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205826656U (en) | A kind of frozen soil freeze thawing laboratory testing rig | |
CN103196945B (en) | A condensation heat transfer experimental device that can realize the coupling of natural circulation and forced circulation | |
CN114088303B (en) | System and method for positioning leakage heat exchange tube of condenser | |
CN201327427Y (en) | Temperature and humidity measurement calibrating device | |
CN204422269U (en) | A kind of portable tritiate hydromining sampling device | |
CN102053145A (en) | In-situ automatic measurement method of CO2 of root system | |
CN108956685A (en) | A kind of condensation visual experimental apparatus of steam containing fixed gas of object-oriented | |
CN111999129A (en) | Atmospheric water vapor collecting device and using method thereof | |
CN103197341B (en) | Methyl iodide gas sampling system suitable for high pressure steam pipeline environment | |
CN103592199B (en) | Liquid phase water content on-line measuring device and detection method in wet steam | |
CN104849167A (en) | Device for detecting isothermal adsorption and desorption of moisture of tobacco slice or cut tobacco biomass | |
CN204188393U (en) | Portable air-conditioning equipment performance pick-up unit | |
CN103412097B (en) | The pick-up unit of a kind of VOC and burst size of methanal and detection method thereof | |
CN209379011U (en) | An experimental box for simulating a low-temperature and low-pressure environment | |
CN113188850B (en) | A rainfall collection device for remote control and determination of rainfall hydrogen and oxygen isotopes | |
CN102778909B (en) | Method and device capable of realizing low-temperature and high-moisture requirement of incubator | |
CN113008727B (en) | A water vapor recirculation ratio measuring system and its measuring method | |
CN203587568U (en) | VOC (volatile organic compound) and formaldehyde emission detection device | |
CN216525110U (en) | Pretreatment device for ultra-low vacuum program temperature control | |
CN215218205U (en) | A rainfall collection device for remote control and determination of rainfall hydrogen and oxygen isotopes | |
CN215539587U (en) | Electronic condensation type steam-gas separation device for flue gas analyzer | |
CN101149313A (en) | A plant balance pressure juice sampling instrument and sampling method | |
CN211644658U (en) | High-efficiency automatic pure water distiller | |
CN203455294U (en) | Condensation point and pour point automatic tester | |
CN103852351B (en) | A kind of sampler of extracting gases sample in negative-pressure pipeline and sampling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201127 |