CN111988863A - 一种实现LoRa网络吞吐量最大化和公平性的方法 - Google Patents

一种实现LoRa网络吞吐量最大化和公平性的方法 Download PDF

Info

Publication number
CN111988863A
CN111988863A CN202010871867.XA CN202010871867A CN111988863A CN 111988863 A CN111988863 A CN 111988863A CN 202010871867 A CN202010871867 A CN 202010871867A CN 111988863 A CN111988863 A CN 111988863A
Authority
CN
China
Prior art keywords
throughput
users
average
gap
spreading factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010871867.XA
Other languages
English (en)
Other versions
CN111988863B (zh
Inventor
李徐竹
吕江滨
付立群
岳蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202010871867.XA priority Critical patent/CN111988863B/zh
Publication of CN111988863A publication Critical patent/CN111988863A/zh
Application granted granted Critical
Publication of CN111988863B publication Critical patent/CN111988863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种实现LoRa网络吞吐量最大化和公平性的方法,涉及物联网低功耗广域网。包括以下步骤:1)MAC层采用载波侦听随机接入机制,推导出采用SF s总吞吐量的平均闭式,进而得到单个用户的平均吞吐量公式;2)基于步骤1)推导出的吞吐量公式以及活跃用户的统计信息,设计平均竞争窗口实现各个SF中用户吞吐量的最大化,并通过调节扩频因子SF的分配距离使得不同SF用户的吞吐量差值最小化,实现网络吞吐量的整体公平性。能够根据网络环境和用户分布自适应调节平均竞争窗口和扩频因子的分配距离,既实现了吞吐量最大化,又解决了不同SF用户的吞吐量公平性问题。

Description

一种实现LoRa网络吞吐量最大化和公平性的方法
技术领域
本发明涉及物联网低功耗广域网的LoRa,尤其是涉及基于载波侦听机制的一种实现LoRa网络吞吐量最大化和公平性的方法。
背景技术
LoRa作为物联网低功耗领域的代表性技术,近年来吸引了学界和业界的广泛关注,在未来的城市智能建设中会起到越来越大的作用。
LoRa有着完整的通信架构,包括终端设备,网关,网络服务,应用服务。LoRa的物理层采用Chirp Spread Spectrum(CSS)调制,一种啁啾扩频调制,带有6个不同的扩频因子Spreading factor(SF)。扩频因子大的信号传输距离远但速率低,并且不同SF的信号相互正交,可以同时传输互不干扰。LoRa的MAC层采用类似非时隙ALOHA协议,任何时刻只要有数据就可以发送。由于没有时间同步和载波侦听,这种协议在用户越来越多的时候会造成严重的碰撞,系统的性能会变差。
因此,许多学者开始研究侦听机制在LoRa中的应用。有的从仿真角度来分析,有的考虑给定用户数下的ALOHA或载波侦听协议,但在实际场景中,用户的出现是随机的。换句话说,每个时刻出现的用户数是不确定的。至今为止,在基于载波侦听机制的泊松随机LoRa网络中,如何根据网络环境和用户分布自适应调节竞争窗口和扩频因子的分配距离,实现各个SF中用户平均吞吐量的最大化,以及不同SF中用户吞吐量的公平性,进而实现LoRa网络整体吞吐量的最大化和公平性,是十分重要而具有挑战的问题。
发明内容
本发明的目的在于针对用户的随机唤醒产生服从齐次泊松点过程的LoRa网络,提供一种实现LoRa网络吞吐量最大化和公平性的方法。
本发明包括以下步骤:
1)MAC层采用载波侦听随机接入机制,推导出采用SF s总吞吐量的平均闭式,进而得到单个用户的平均吞吐量公式;
2)基于步骤1)推导出的吞吐量公式以及活跃用户的统计信息,设计平均竞争窗口实现各个SF中用户吞吐量的最大化,并通过调节扩频因子SF的分配距离使得不同SF用户的吞吐量差值最小化,实现网络吞吐量的整体公平性。
在步骤1)中,所述MAC层采用载波侦听随机接入机制,在单网关的LoRa网络中,基于用户到网关(GW)的距离由近到远将网关覆盖区域划成圆环,分别对其中的用户分配扩频因子SF,用户的随机唤醒产生服从齐次泊松点过程,MAC层采用载波侦听机制竞争信道的访问权,从而与网关通信;
所述推导出采用SF s总吞吐量的平均闭式,进而得到单个用户的平均吞吐量公式的主要步骤可为:
(1)扩频因子SF s总吞吐量的平均公式为
Figure BDA0002651371220000021
其中,
Figure BDA0002651371220000022
为用户数在区间[1,Ts)的加权概率,Γ(·)为伽玛函数,Γ(·,·)为上不完全伽玛函数;P2=1-P1为用户数在区间[Ts,+∞)的加权概率;
Figure BDA0002651371220000023
为区间[1,Ts)上总吞吐量的平均,
Figure BDA0002651371220000024
为区间[Ts,+∞)上总吞吐量的平均;
Figure BDA0002651371220000025
其中,
Figure BDA0002651371220000026
为给定用户数k下的吞吐量;
Figure BDA0002651371220000027
其中
Figure BDA0002651371220000028
Ts为用户数阈值,使得用户数在区间[1,Ts)时,函数θs是凹函数;用户数在区间[Ts,+∞)时,函数θs是凸函数;SF=s表示扩频因子为s;Rs表示数据速率,
Figure BDA0002651371220000029
为一个数据包的传输时间,
Figure BDA00026513712200000210
为成功传输的时间,
Figure BDA00026513712200000214
为传输失败的时间,
Figure BDA00026513712200000211
为一个时隙的大小,ps为任一个时隙的传输概率,它的计算公式为:
Figure BDA00026513712200000212
其中ws为竞争窗口;λ表示用户密度,As表示扩频因子SF s的圆环面积;扩频因子为SF s的用户平均吞吐量为
Figure BDA00026513712200000213
在步骤2)中,所述设计平均竞争窗口实现各个SF中用户吞吐量的最大化,并通过调节扩频因子SF的分配距离使得不同SF用户的吞吐量差值最小化的具体步骤可为:
(1)初始化LoRa参数矩阵,所述参数包括每个扩频因子SF的分配距离rs,竞争窗口ws,最大吞吐量差值的阈值ε;
(2)竞争窗口调节:基于活跃用户的统计信息设计平均竞争窗口,使得同一个环内的用户使用相同的竞争窗口:
Figure BDA0002651371220000031
记录该竞争窗口值以及对应的用户吞吐量,然后更新LoRa参数矩阵;
(3)计算相邻扩频因子SF的用户吞吐量差值,并存入数组Gap,Gap={Gap1,Gap2,Gap3,Gap4,Gap5},寻找数组Gap最大的值Gapmax以及对应的扩频因子s0和s0+1;
(4)根据步骤(3)找到的扩频因子s0和s0+1,调节对应的SF分配距离rs0和rs0+1,使得扩频因子s0和s0+1的吞吐量差值最小,记录此时的吞吐量值,然后更新LoRa参数矩阵和Gap数组,并计算此时的Gapmax
(5)判断相邻SF最大吞吐量差值Gapmax是否大于阈值ε,若大于则返回步骤(2),若小于则结束,吞吐量的最大化和公平性已实现。
本发明通过自适应调节竞争窗口和扩频因子的分配距离不断迭代缩小相邻SF之间的吞吐量差以实现不同SF的用户吞吐量最大化和公平性。在这样的泊松网络中,基于活跃用户的统计信息设计了平均竞争窗口,然后不断调节SF的划分距离使得吞吐量差值最小化,实现了所有SF的吞吐量最大化和公平性。
与现有技术相比,本发明具有以下突出优点:
1)推导出了MAC层采用载波侦听随机接入机制的LoRa网络总吞吐量的平均闭式以及单个用户的平均吞吐量公式。
2)基于所推导的吞吐量公式以及活跃用户的统计信息,实现平均竞争窗口和SF分配距离的自适应调节,进而实现不同SF的用户吞吐量最大化和公平性。
附图说明
图1为本发明中单网关LoRa通信网络。
图2为本发明中SF分配的实施流程图。
图3为本发明中不同SF吞吐量最大化和公平性的仿真结果。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
本发明提出MAC层采用载波侦听随机接入机制,并推导出了采用SF s总吞吐量的平均闭式,进而得到单个用户的平均吞吐量公式。基于所推导的吞吐量公式以及活跃用户的统计信息,设计了平均竞争窗口实现各个SF中用户吞吐量的最大化,并通过调节扩频因子SF的分配距离使得不同SF用户的吞吐量差值最小化,实现了网络吞吐量的整体公平性。
在单网关的LoRa网络中,基于用户到网关(GW)的距离由近到远将网关覆盖区域划成圆环,分别对其中的用户分配扩频因子SF=7,8,9,10,11,12,如图1所示。用户的随机唤醒产生服从齐次泊松点过程,MAC层采用类似时隙载波侦听多址访问(CSMA)的侦听机制竞争信道的访问权,从而与网关通信。
对于低功率的LoRa设备,因其随机唤醒传输数据包,在某一时间段内,活跃的用户数是随机的。因此用户很难根据实时的用户数来设定最佳的竞争窗口。为了解决这一难题,首先严格推导了采用SF s总吞吐量的平均闭式,进而得到采用SF s的用户平均吞吐量公式,然后基于活跃用户密度信息设计平均竞争窗口,以最大化每个SF中用户的平均吞吐量。具体如下:
1.扩频因子SF s总吞吐量的平均公式为
Figure BDA0002651371220000041
其中
Figure BDA0002651371220000042
为用户数在区间[1,Ts)的加权概率,Γ(·)为伽玛函数,Γ(·,·)为上不完全伽玛函数。P2=1-P1为用户数在区间[Ts,+∞)的加权概率。
Figure BDA0002651371220000043
为区间[1,Ts)上总吞吐量的平均,
Figure BDA0002651371220000044
为区间[Ts,+∞)上总吞吐量的平均。
Figure BDA0002651371220000045
其中
Figure BDA0002651371220000046
为给定用户数k下的吞吐量。
Figure BDA0002651371220000047
其中
Figure BDA0002651371220000048
Ts为用户数阈值,使得用户数在区间[1,Ts)时,函数θs是凹函数;用户数在区间[Ts,+∞)时,函数θs是凸函数。SF=s表示扩频因子为s。Rs表示数据速率,
Figure BDA0002651371220000051
为一个数据包的传输时间,
Figure BDA0002651371220000052
为成功传输的时间,
Figure BDA0002651371220000053
为传输失败的时间,Tslot为一个时隙的大小,ps为任一个时隙的传输概率,它的计算公式为:
Figure BDA0002651371220000054
其中ws为竞争窗口。λ表示用户密度,As表示扩频因子SF s的圆环面积。因此,扩频因子为SF s的用户平均吞吐量为
Figure BDA0002651371220000055
为实现不同圆环的用户吞吐量最大化以及网络的整体公平性,可联合调节竞争窗口和分配扩频因子,具体方法如下:
(1)初始化LoRa参数矩阵,包括每个扩频因子SF的分配距离rs,竞争窗口ws,最大吞吐量差值的阈值ε。
(2)竞争窗口调节。基于活跃用户的统计信息设计了平均竞争窗口,使得同一个环内的用户使用相同的竞争窗口:
Figure BDA0002651371220000056
记录该竞争窗口值以及对应的用户吞吐量,然后更新LoRa参数矩阵。
(3)计算相邻扩频因子SF的用户吞吐量差值,并存入数组Gap,
Gap={Gap1,Gap2,Gap3,Gap4,Gap5}。寻找数组Gap最大的值Gapmax以及对应的扩频因子s0和s0+1。
(4)根据步骤(3)找到的扩频因子s0和s0+1,调节对应的SF分配距离rs0和rs0+1,使得s0和s0+1的吞吐量差值最小,记录此时的吞吐量值,然后更新LoRa参数矩阵和Gap数组,并计算此时的Gapmax
(5)判断相邻SF最大吞吐量差值Gapmax是否大于阈值ε,若大于则返回步骤2),若小于则结束,吞吐量的最大化和公平性已实现。
本发明通过自适应调节竞争窗口和扩频因子的分配距离不断迭代缩小相邻SF之间的吞吐量差以实现不同SF的用户吞吐量最大化和公平性。在这样的泊松网络中,基于活跃用户的统计信息设计了平均竞争窗口,然后不断调节SF的划分距离使得吞吐量差值最小化,实现了所有SF的吞吐量最大化和公平性。
以下给出具体实施例:
1、系统模型的建立:
将单网关覆盖的区域抽象成图1这样的网关位于坐标轴中心,用户分布在6个不同圆环内的模型。LoRa终端用户的产生服从齐次泊松点过程,平均用户密度为λ/km2,MAC层采用类似时隙CSMA协议的载波侦听机制竞争信道的访问权。扩频因子的集合为SF={7,8,9,10,11,12},对应的划分距离记为r={r7,r8,r9,r10,r11,r12}。每个环内的用户使用相同的竞争窗口w={w7,w8,w9,w10,w11,w12}。
2、实现目标:
本发明目标是在所考虑的区域内使得每一个SF圆环的用户平均吞吐量都尽可能最大,并且实现网络的整体公平性。
3、实现过程:
为了实现步骤2中的目标,首先严格推导出了采用SF s总吞吐量的平均公式
Figure BDA0002651371220000061
其中
Figure BDA0002651371220000062
为用户数在区间[1,Ts)的加权概率,P2=1-P1为用户数在区间[Ts,+∞)的加权概率,Γ(·)为伽玛函数,Γ(·,·)为上不完全伽玛函数。
Figure BDA0002651371220000063
为区间[1,Ts)上总吞吐量的平均,
Figure BDA0002651371220000064
为区间[Ts,+∞)上总吞吐量的平均。
Figure BDA00026513712200000613
其中
Figure BDA0002651371220000065
为给定用户数k下的吞吐量。
Figure BDA0002651371220000066
其中
Figure BDA0002651371220000067
Ts为用户数阈值,使得用户数在区间[1,Ts)时,函数θs是凹函数;用户数在区间[Ts,+∞)时,函数θs是凸函数。SF=s表示扩频因子为s。Rs表示数据速率,
Figure BDA0002651371220000068
为一个数据包的传输时间,
Figure BDA0002651371220000069
为成功传输的时间,
Figure BDA00026513712200000610
为传输失败的时间,Tslot为一个时隙的大小,ps为任一个时隙的传输概率,它的计算公式为:
Figure BDA00026513712200000611
其中ws为竞争窗口。λ表示用户密度,As表示扩频因子SF s的圆环面积。因此,扩频因子为s的用户平均吞吐量为
Figure BDA00026513712200000612
通过联合调节平均竞争窗户和SF的分配距离,实现了各个SF用户吞吐量的最大化,以及不同SF吞吐量的公平性,流程图可见图2,具体来说:
1)初始化LoRa参数矩阵,包括每个扩频因子SF的分配距离rs,竞争窗口ws,最大吞吐量差值的阈值ε。
2)竞争窗口调节。基于所推导的吞吐量公式以及活跃用户的统计信息,设计了平均竞争窗口,使得同一个环内的用户使用相同的竞争窗口
Figure BDA0002651371220000071
记录该竞争窗口值以及对应的用户吞吐量,然后更新LoRa参数矩阵。
3)计算相邻扩频因子SF的用户吞吐量差值,并存入数组Gap,Gap={Gap1,Gap2,Gap3,Gap4,Gap5}。寻找数组Gap最大的值Gapmax以及对应的扩频因子s0和s0+1。
4)根据步骤3)找到的扩频因子s0和s0+1调节对应的SF分配距离rs0和rs0+1,使得s0和s0+1的吞吐量差值最小,记录此时的吞吐量值,更新LoRa参数矩阵和Gap数组,并计算此时的Gapmax
5)判断相邻SF最大吞吐量差值Gapmax是否大于阈值ε,若大于则返回步骤2),若小于则结束,目标已实现。
4、结果分析:
通过数值仿真,验证了所推导的吞吐量公式的准确性以及所设计算法的有效性。作为实例,考虑半径为1公里的用户范围。对比方案采用给定的竞争窗口w=32,并将单网关覆盖区域按照等面积划分成6个圆环,对应扩频因子SF=7,8,9,10,11,12。仿真结果展示在图3的上半部分,图3的下半部分展示的是设计的联合调节平均竞争窗口和SF分配距离所得到的吞吐量分布图,其中平均用户密度λ=100/km2,阈值ε=0.03bps。
可以看出,本发明设计的分配方案能够根据当前网络环境和用户分布,自适应调节平均竞争窗口和SF分配,进而既提升了各个SF自身的吞吐量,又改善了不同SF吞吐量的公平性。具体而言,对比方案中的最小吞吐量发生在SF=12,值为0.2657bps,而本发明则将最小吞吐量提升至1.6514bps。此外,定义LoRa网络的空间吞吐量为总的吞吐量与总面积的比值,即
Figure BDA0002651371220000081
对比方案的空间吞吐量为42.2bps/km2,本发明空间吞吐量为169.1bps/km2,提升了LoRa网络的累积吞吐量。最后,采用Jain公平性指标
Figure BDA0002651371220000082
来衡量网络吞吐量的公平性。该指标取值范围在0~1之间,越接近1则公平性越好,对比方案为0.9662,而本发明为0.9998,明显改善了网络吞吐量的整体公平性。本发明能够根据网络环境和用户分布自适应调节平均竞争窗口和扩频因子的分配距离,既实现了吞吐量最大化,又解决了不同SF用户的吞吐量公平性问题。

Claims (4)

1.一种实现LoRa网络吞吐量最大化和公平性的方法,其特征在于包括以下步骤:
1)MAC层采用载波侦听随机接入机制,推导出采用SF s总吞吐量的平均闭式,进而得到单个用户的平均吞吐量公式;
2)基于步骤1)推导出的吞吐量公式以及活跃用户的统计信息,设计平均竞争窗口实现各个SF中用户吞吐量的最大化,并通过调节扩频因子SF的分配距离使得不同SF用户的吞吐量差值最小化,实现网络吞吐量的整体公平性。
2.如权利要求1所述一种实现LoRa网络吞吐量最大化和公平性的方法,其特征在于在步骤1)中,所述MAC层采用载波侦听随机接入机制,在单网关的LoRa网络中,基于用户到网关的距离由近到远将网关覆盖区域划成圆环,分别对其中的用户分配扩频因子SF,用户的随机唤醒产生服从齐次泊松点过程,MAC层采用载波侦听机制竞争信道的访问权,从而与网关通信。
3.如权利要求1所述一种实现LoRa网络吞吐量最大化和公平性的方法,其特征在于在步骤1)中,所述推导出采用SF s总吞吐量的平均闭式,进而得到单个用户的平均吞吐量公式的主要步骤为:
(1)扩频因子SF s总吞吐量的平均公式为
Figure FDA0002651371210000011
其中,
Figure FDA0002651371210000012
为用户数在区间[1,Ts)的加权概率,Γ(·)为伽玛函数,Γ(·,·)为上不完全伽玛函数;P2=1-P1为用户数在区间[Ts,+∞)的加权概率;
Figure FDA0002651371210000013
为区间[1,Ts)上总吞吐量的平均,
Figure FDA0002651371210000014
为区间[Ts,+∞)上总吞吐量的平均;
Figure FDA0002651371210000015
其中,
Figure FDA0002651371210000016
为给定用户数k下的吞吐量;
Figure FDA0002651371210000017
其中
Figure FDA0002651371210000018
Ts为用户数阈值,使得用户数在区间[1,Ts)时,函数θs是凹函数;用户数在区间[Ts,+∞)时,函数θs是凸函数;SF=s表示扩频因子为s;Rs表示数据速率,
Figure FDA0002651371210000021
为一个数据包的传输时间,
Figure FDA0002651371210000022
为成功传输的时间,
Figure FDA0002651371210000023
为传输失败的时间,Tslot为一个时隙的大小,ps为任一个时隙的传输概率,它的计算公式为:
Figure FDA0002651371210000024
其中ws为竞争窗口;λ表示用户密度,As表示扩频因子SF s的圆环面积;扩频因子为SF s的用户平均吞吐量为
Figure FDA0002651371210000025
4.如权利要求1所述一种实现LoRa网络吞吐量最大化和公平性的方法,其特征在于在步骤2)中,所述设计平均竞争窗口实现各个SF中用户吞吐量的最大化,并通过调节扩频因子SF的分配距离使得不同SF用户的吞吐量差值最小化的具体步骤为:
(1)初始化LoRa参数矩阵,所述参数包括每个扩频因子SF的分配距离rs,竞争窗口ws,最大吞吐量差值的阈值ε;
(2)竞争窗口调节:基于活跃用户的统计信息设计平均竞争窗口,使得同一个环内的用户使用相同的竞争窗口:
Figure FDA0002651371210000026
记录该竞争窗口值以及对应的用户吞吐量,然后更新LoRa参数矩阵;
(3)计算相邻扩频因子SF的用户吞吐量差值,并存入数组Gap,Gap={Gap1,Gap2,Gap3,Gap4,Gap5},寻找数组Gap最大的值Gapmax以及对应的扩频因子s0和s0+1;
(4)根据步骤(3)找到的扩频因子s0和s0+1,调节对应的SF分配距离
Figure FDA0002651371210000027
Figure FDA0002651371210000028
使得扩频因子s0和s0+1的吞吐量差值最小,记录此时的吞吐量值,然后更新LoRa参数矩阵和Gap数组,并计算此时的Gapmax
(5)判断相邻SF最大吞吐量差值Gapmax是否大于阈值ε,若大于则返回步骤(2),若小于则结束,吞吐量的最大化和公平性已实现。
CN202010871867.XA 2020-08-26 2020-08-26 一种实现LoRa网络吞吐量最大化和公平性的方法 Active CN111988863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010871867.XA CN111988863B (zh) 2020-08-26 2020-08-26 一种实现LoRa网络吞吐量最大化和公平性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010871867.XA CN111988863B (zh) 2020-08-26 2020-08-26 一种实现LoRa网络吞吐量最大化和公平性的方法

Publications (2)

Publication Number Publication Date
CN111988863A true CN111988863A (zh) 2020-11-24
CN111988863B CN111988863B (zh) 2022-07-08

Family

ID=73439921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010871867.XA Active CN111988863B (zh) 2020-08-26 2020-08-26 一种实现LoRa网络吞吐量最大化和公平性的方法

Country Status (1)

Country Link
CN (1) CN111988863B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300404A (zh) * 2021-05-31 2021-08-24 国网山东省电力公司电力科学研究院 基于智能远控开关的分布式光伏群控群调系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592564A (zh) * 2015-08-12 2016-05-18 中山大学 无线Mesh网络中基于活跃节点数估计的自适应接入机制
WO2018078639A1 (en) * 2016-10-28 2018-05-03 Wisig Networks Private Limited Physical random-access channel for narrow band internet of things time division duplex mode
CN110267282A (zh) * 2019-06-24 2019-09-20 厦门大学 一种实现LoRa网络最优吞吐量公平性的方法
CN110536304A (zh) * 2019-08-08 2019-12-03 北京安为科技有限公司 一种面向环境检测的物联网通信攻击测试平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592564A (zh) * 2015-08-12 2016-05-18 中山大学 无线Mesh网络中基于活跃节点数估计的自适应接入机制
WO2018078639A1 (en) * 2016-10-28 2018-05-03 Wisig Networks Private Limited Physical random-access channel for narrow band internet of things time division duplex mode
CN110267282A (zh) * 2019-06-24 2019-09-20 厦门大学 一种实现LoRa网络最优吞吐量公平性的方法
CN110536304A (zh) * 2019-08-08 2019-12-03 北京安为科技有限公司 一种面向环境检测的物联网通信攻击测试平台

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
JIANGBIN LYU 等: "Achieving Max-Min Throughput in LoRa Networks", 《2020 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC)》 *
JIANGBIN LYU 等: "Achieving Max-Min Throughput in LoRa Networks", 《2020 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC)》, 30 March 2020 (2020-03-30), pages 1 - 4 *
刘圣波等: "全双工CSMA网络中的隐藏终端问题研究", 《计算机科学》 *
刘圣波等: "全双工CSMA网络中的隐藏终端问题研究", 《计算机科学》, 15 November 2018 (2018-11-15), pages 1 - 3 *
尤琛辉等: "基于动态树冲突分解的协作随机接入方案", 《系统仿真学报》 *
尤琛辉等: "基于动态树冲突分解的协作随机接入方案", 《系统仿真学报》, no. 05, 8 May 2010 (2010-05-08) *
张玉杰等: "LoRa通信及其在油田监控系统中的应用", 《西安石油大学学报(自然科学版)》 *
张玉杰等: "LoRa通信及其在油田监控系统中的应用", 《西安石油大学学报(自然科学版)》, no. 03, 25 May 2020 (2020-05-25) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300404A (zh) * 2021-05-31 2021-08-24 国网山东省电力公司电力科学研究院 基于智能远控开关的分布式光伏群控群调系统及方法

Also Published As

Publication number Publication date
CN111988863B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Xinhua et al. Performance comparison of LEACH and LEACH-C protocols by NS2
Li et al. Dogfight in spectrum: Combating primary user emulation attacks in cognitive radio systems, part i: Known channel statistics
Garetto et al. Modeling per-flow throughput and capturing starvation in CSMA multi-hop wireless networks
Zhang et al. Throughput optimization with delay guarantee for massive random access of M2M communications in industrial IoT
CN102548001B (zh) Wia-pa网络与ieee 802.15.4网络的一种共存方法
CN109861728B (zh) 大规模mimo系统的联合多中继选择与时隙资源配置方法
Abdalzaher et al. Using repeated game for maximizing high priority data trustworthiness in wireless sensor networks
CN111988863B (zh) 一种实现LoRa网络吞吐量最大化和公平性的方法
CN112911723A (zh) 一种基于干扰优先级的无人机集群自组网信道接入方法
CN108880709B (zh) 一种认知无线网络中分布式多用户动态频谱接入方法
Zheng et al. A multi-channel load awareness-based MAC protocol for flying ad hoc networks
Tian et al. Accurate sensor traffic estimation for station grouping in highly dense IEEE 802.11 ah networks
Loh et al. Graph-based gateway placement for better performance in LoRaWAN deployments
Wang et al. Intelligent resource allocation in UAV-enabled mobile edge computing networks
CN104780541B (zh) 一种抗伪装ssdf恶意攻击的合作频谱感知的方法
Sun et al. Cross-layer tradeoff of QoS and security in Vehicular ad hoc Networks: A game theoretical approach
CN111163531A (zh) 一种基于ddpg的非授权频谱占空比共存方法
Wang et al. A cross-layer investigation for the throughput performance of CSMA/CA-based WLANs with directional antennas and capture effect
CN106790213B (zh) 一种中心式认知无线网络中基于嵌套博弈的信任管理方法
CN110267282B (zh) 一种实现LoRa网络最优吞吐量公平性的方法
Liew et al. Performance evaluation of backoff misbehaviour in IEEE 802.11 ah using evolutionary game theory
CN114884595A (zh) 一种基于强化学习的认知无人机频谱感知方法
Balcı et al. Fairness aware deep reinforcement learning for grant-free NOMA-IoT networks
Heinovski et al. A spatial model for using the age of information in cooperative driving applications
Lei et al. Saturation throughput analysis of IEEE 802.11 DCF with heterogeneous node transmit powers and capture effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant