CN111988109B - 用于具有多个切换状态配置的光学收发器的装置和方法 - Google Patents

用于具有多个切换状态配置的光学收发器的装置和方法 Download PDF

Info

Publication number
CN111988109B
CN111988109B CN201910911354.4A CN201910911354A CN111988109B CN 111988109 B CN111988109 B CN 111988109B CN 201910911354 A CN201910911354 A CN 201910911354A CN 111988109 B CN111988109 B CN 111988109B
Authority
CN
China
Prior art keywords
port
optical
switch
mode
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910911354.4A
Other languages
English (en)
Other versions
CN111988109A (zh
Inventor
K·P·琼斯
R·W·凯斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juniper Networks Inc
Original Assignee
Juniper Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juniper Networks Inc filed Critical Juniper Networks Inc
Priority to CN202310500850.7A priority Critical patent/CN116545537A/zh
Publication of CN111988109A publication Critical patent/CN111988109A/zh
Application granted granted Critical
Publication of CN111988109B publication Critical patent/CN111988109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/3542Non-blocking switch, e.g. with multiple potential paths between multiple inputs and outputs, the establishment of one switching path not preventing the establishment of further switching paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/268Optical coupling means for modal dispersion control, e.g. concatenation of light guides having different modal dispersion properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/02122Colourless, directionless or contentionless [CDC] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/356Switches specially adapted for specific applications for storage area networks
    • H04L49/357Fibre channel switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12111Fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12152Mode converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)

Abstract

提供了用于具有多个切换状态配置的光学收发器的装置和方法。一种装置包括光学收发器,光学收发器具有第一端口、第二端口和耦合到第一端口和第二端口的光学切换器。光学切换器在单向端口操作模式和双向端口操作模式之间可切换。当光学切换器处于单向端口操作模式中时,第一端口被配置为发送第一光学信号,第二端口被配置为接收第二光学信号。当光学切换器处于双向端口操作模式中时,第一端口被配置为发送第一光学信号并接收第二光学信号,第二端口被配置为接收第三光学信号而不发送第一信号。此外,第二双向端口操作模式支持有被配置为发送第一光学信号并接收第二光学信号的第二端口以及被配置为接收第三光学信号而不发送第一信号的第一端口。

Description

用于具有多个切换状态配置的光学收发器的装置和方法
技术领域
本公开一般涉及用于光学通信的光学收发器领域,并且具体地,涉及具有多个切换状态配置能力的光学收发器,用于在光学接入网络中的配置和控制、光学接入网络的配置和控制以及针对光学接入网络的配置和控制。
背景技术
为了满足对接入网络的高速数据传输或带宽和容量的不断增长的需求,包括例如波分复用PON(WDM PON)等等的诸如无源光学网络(PON)之类的光学网络可以被实现。例如,可以实现诸如WDMPON之类的PON以在物理的、点对多点(P2M)、基于光纤的网络拓扑上提供逻辑或虚拟点对点(P2P)网络拓扑。这可以提供更简单、更有效和可持续的网络能力,其可以随着不断增长的需求而扩展,并且在某些情况下还提供——(每用户)更长的覆盖范围、更高的安全性、以及更高的容量和带宽等。诸如WDM PON之类的PON可以提供经济、有效且可扩展的网络架构(例如,光纤到X(FTTx)网络架构),通过该架构可以满足不断增长的需求,然而,仍然存在导致与此类网络的运营、管理和维护(OA&M)相关联的成本的各种技术挑战。
发明内容
在一个实施例中,装置包括光学收发器,该光学收发器具有第一端口、第二端口和耦合到第一端口和第二端口的光学切换器(“光学切换器”或“光学端口配置切换器”或“端口配置切换器”)。光学切换器在单向端口操作模式和双向端口操作模式之间可切换。当光学切换器处于单向端口操作模式中时,第一端口被配置为发送第一光学信号,第二端口被配置为接收第二光学信号。当光学切换器处于双向端口操作模式中时,第一端口被配置为发送第一光学信号并且接收第二光学信号,并且第二端口被配置为检测第三光学信号而不接收第一信号和第二光学信号。
附图说明
图1是描绘根据实施例的光学通信系统的功能框图。
图2是描绘根据实施例的光学收发器的功能框图。
图3是描绘根据实施例的相干光学收发器的示例操作的流程图。
图4是描绘根据实施例的示例光学收发器的功能框图。
图5是描绘根据实施例的当切换到第一操作模式时的示例光学收发器的功能框图。
图6是描绘根据实施例的当切换到第二操作模式时的示例光学收发器的功能框图。
图7是描绘根据实施例的当切换到第三操作模式时的示例光学收发器的功能框图。
具体实施方式
诸如WDM PON之类的PON可以包括例如经由一个或多个通信信道、路径或链路(“(一个或多个)信道”、“(一个或多个)路径”、“(一个或多个)链路”)与诸如客户端或用户侧光学网络单元(ONU)之类的下游节点互连的诸如提供方侧光线路终端(OLT)之类的上游节点。链路可以包括例如光纤(“(一个或多个)光纤”),诸如单程或单向光纤(“(一个或多个)单向信道”或“(一个或多个)单向路径”),双程或双向光纤(“(一个或多个)双向信道”或“(一个或多个)双向路径”)等。网络业务和信号(“业务”“网络业务”或“数据通信”或“(一个或多个)信号”)可以例如经由包括单向路径和/或双向路径的链路,跨越WDM PON和在节点之间路由。例如,通过每个节点处的光学收发器,可以在节点之间并经由一个或多个单向和双向路径发射和接收信号。
例如,互连WDM PON中的特定节点对(例如,包括光线路终端(OLT)和光学网络终端(ONT))的链路可以包括被配置为支持例如单程数据通信,以向最终用户提供电视或无线电广播服务的一个或多个单向路径。作为另一示例,互连WDM PON中的特定节点对(例如,最终用户前提(premise)和ONT)的链路可以包括被配置为支持例如双程数据通信以向最终用户提供因特网接入服务的一个或多个双向路径。安置在WDM PON中的各个节点处的光学收发器通常被用来经由包括单向和双向路径的链路发射和接收数据通信。
通常,一旦被部署在诸如WDM PON之类的接入网络中,已知的光学收发器被配置为在单向端口操作模式(或单工(双光纤)通信模式)和双向端口操作模式(或者双工(单光纤)通信模式)之一中操作,并且通常涉及手动的现场重新配置(例如,在ONU的物理位置处)。此外,在一些情形中,重新配置已知的光学收发器,以将收发器从一种通信或操作模式切换到另一种模式,这可能需要安装附加装备。此外,已知的相干光学收发器通常被配置用于单向或双向通信之一——而不是用于两者。例如,诸如相干光学收发器等等之类的已知光学收发器针对单向操作通常共享公共信号源——并且针对双向操作,通常使用分开的信号源来用于信号发射和接收。这可能导致与接入网络的操作、管理和维护(OA&M)相关联的成本,其部分原因是由已知的光学收发器、相干光学收发器等所需的部件数量所导致的。
因此,需要一种系统和方法,通过该系统和方法克服与已知光学收发器相关联的上述限制。本文描述的一些实施例涉及一种光学收发器,其在例如单工和双工操作之间提供基于软件的可编程性。有利地,本文描述的一些实施例可以被用来对诸如WDM PON等等之类的光学接入网络的部署、配置、操作、控制和维护进行控制和自动化。
在一些实施例中,光学收发器包括一个或多个可调节信号源(例如,可调谐激光源)。在至少两个可调节信号源的情况下,其中一个信号源可以被用于(例如,通信信道的)发射侧上的第一波长的信号发射,并且如果期望的话,另一个信号源可以在基本上等于第一波长的第二波长下操作。否则,第二波长可以与第一波长不同。在一些实施例中,多路复用和多路分解功能由耦合器(例如,2×2耦合器)和可变光学衰减器(例如,1×1切换器)的组合提供,其被配置为提供受控耦合以实现并提供选择性信号路由、通过和阻塞能力。这种多路复用和多路分解的方式实现经由分集的(diverse)路径进行路径保护。在一些实施例中,光学(例如,定向)隔离器可以被用作信号通过和阻塞能力的一部分。在一些实施例中,光学收发器代之以仅包括一个可调节信号源(例如,可调谐激光源)和用于载波抑制调制的附加调制器(例如,以生成具有不同波长的两个载波或基带信号)。在一些实施例中,仅一个可调节信号源可以是例如多波长源,可与一个或多个环形谐振器结合使用以用于选择性波长-选择性操作。
图1是描绘根据实施例的光学通信系统100的功能框图。如图所示,光学通信系统100包括光学收发器110和光学收发器120,其可以以其他方式被配置为经由路径104和路径106可操作地互连,以在网络102上实现、生成、提供、发射和接收信号和通信。虽然在图1中将光学通信系统100描绘为包括两个分立的设备(例如,110、120),但是通过两个元件(例如,104、106)互连的其他布置也是可能的。例如,光学收发器110、光学收发器120、路径104和/或路径106可以另外分别地包括或单独地包括或适当地由一个或多个集成设备或材料形成。
光学通信系统100表示光学接入网络系统。光学通信系统100可以被配置为以各种通信模式操作,包括例如单工模式或双工模式。光学通信系统100可以包括或被配置为与网络(例如,网络102)通信,例如诸如PON、WDM PON、密集波分复用PON(DWDM PON)等的接入网络。光学通信系统100可以包括任何合适的网络拓扑或网络拓扑的组合,其中任何一个可以是物理的、逻辑的或虚拟的,包括例如点对多点(P2M)网络拓扑、点对点(P2P)网络拓扑等。根据本公开的实施例,光学通信系统100可以另外包括具有任何合适的网络拓扑、架构或特性的任何合适类型的接入网络。
在一些实现中,网络102可以包括例如内联网、局域网(LAN)、城域网(MAN)、回程网络、前传网络、长途网络和/或诸如因特网之类的广域网(WAN),并且可以包括有线和/或光纤连接。网络102可以另外包括被配置为支持通信节点(未示出)的连接和协议的任何组合。
路径104和路径106表示相应的和个体的链路(其可以实现一个或多个通信信道)。路径104和/或路径106可以包括例如一个或多个单向路径、双向路径等。例如,路径104和/或路径106可以分别地和个体地包括将光学收发器110和光学收发器120互连的公共光纤(或多个光纤),诸如图1中所示。
作为另一个示例,路径104和/或路径106可以在有或没有一个或多个其他光纤的情况下,在光缆中被捆扎、安置和绝缘。光缆可以包括例如绝缘护套,其中可以安置成捆光纤。路径104和/或路径106可以另外分别地和个体地包括任何合适类型的通信信道,如此可以在根据本公开实施例的诸如PON、WDM PON等的光学接入网络中使用。
路径104和/或路径106各自表示网络102中的相应通信链路、路径或信道。例如,路径104和/或路径106可以被安置在网络102中的节点(例如,光学收发器110、光学收发器120)之间,并被用来互连这些节点。路径104和/或路径106各自可以包括例如单向信号通信路径(“单向路径”)、双向信号通信路径(“双向”路径)等。路径104和/或路径106可以包括例如能够在诸如光学通信系统100之类的光学通信系统中传送网络业务和信号的路径。网络业务和信号可以包括例如光学信号,诸如频率可调谐信号、相干信号等。
在一些实现中,路径104和/或路径106可以各自分别被配置为发射或承载例如与特定波长或波长范围相关联的信号,诸如可以经由一个或多个WDM技术而被生成和调节,如本文中参考图2进一步详细描述的。例如,路径104和/或路径106可以被配置为发射或承载例如具有在电磁频谱的C频带和/或L频带的范围内的频率或波长的信号。作为示例,信号可以具有在大约1260到1625nm范围内的频率或波长。作为另一个示例,信号可以替代地或另外地具有在大约1530nm至1565nm(例如,C频带)范围内的频率或波长。作为另一个示例,信号可以替代地或另外地具有在大约1565nm至1625nm(例如,L波段)的范围内的频率或波长。信号可以另外通过测量任何合适的信号特性来表征,诸如频率或波长、信号偏振、信号幅度、相位等,诸如可以在根据本公开实施例的诸如光学通信系统100的光学通信系统中使用。
光学收发器110和光学收发器120各自表示相应的和个体的相干光学收发器。在光学通信系统100中,光学收发器110和光学收发器120可以例如被配置为经由路径104和路径106可操作地互连,以通过网络(例如,网络102)实现、提供和发射信号和通信。光学收发器110和/或光学收发器120可以例如被个体地安置在相应的节点(未描绘出)中。例如,光学收发器110和光学收发器120可以分别安置在OLT和ONU中。例如基本上与本文中参考图2进一步详细描述的类似或相同地,光学收发器110和光学收发器120可以各自分别地和个体地操作和起作用。
图2是描绘根据实施例的光学收发器210的功能框图。如本文所述,光学收发器210可以在功能上和/或结构上类似于任何光学收发器(例如,光学收发器110、光学收发器120)。例如,如图所示,光学收发器210包括第一端口214、第二端口216、信号调节器203、检测器207、光源201、光源205和端口配置切换器230(“端口配置切换器230”或“光学切换器”230)。端口配置切换器230包括切换器234A-B和耦合器232。而光学收发器210在图2中被描绘为包括通过两个元件(例如,204、206)互连的九个分立设备或组件(例如,201、203、205、207、214、216、230、232、234A、234B、240),其他布置也是可能的。例如,光学收发器210可以替代地或以其他方式包括任何合适数量的集成设备、材料等。作为另一示例,端口配置切换器230本身可以是模块化或复合组件,包括例如耦合器(例如,耦合器232),以及一个或多个切换器(例如,切换器234A、切换器234B),诸如本文进一步详细描述的那样。光学收发器210可以另外包括或适当地由任何数量的集成、复合、可插拔或模块化组件或材料形成。
光学收发器210表示相干光学收发器。如本文所述,光学收发器210可以分别在功能上和/或结构上类似于光学收发器110和/或光学收发器120。在一些实现中,光学收发器210可以包括光学收发器,其具有第一端口(例如214)、第二端口(例如216)和耦合到第一端口和第二端口的光学切换器(例如230)。例如,光学收发器210可以被配置为在端口214和端口216处并且经由路径204和路径206互连到网络(例如,网络102)。光学收发器210可以互连到网络,诸如通过经由路径204和路径206与网络中的另一个光学收发器(例如,光学收发器120)互连。光学收发器210可以互连到网络,以建立、支持、维护和促进通过网络的网络业务的流。例如,光学收发器210可以被配置为经由第一端口214和第二端口216与光学收发器(例如,光学收发器120)、光学接收器(未示出)、光学发射器(未示出)等互连,以在网络中发射和接收信号。
在一些实现中,在光学中通信系统(例如,光学通信系统100)中,光学收发器210被配置为分别在切换器234A和切换器234B(统称为“切换器234”)处以及通过端口214和端口216可操作地互连。切换器234A和切换器234B可以在面向端口侧上分别可操作地互连到路径204和路径206,并且进一步在非面向端口侧上可操作地互连到耦合器232,诸如图2中所示。在该示例中,耦合器232可以在非面向端口侧上可操作地互连到信号调节器203和检测器207,诸如图2中所示。在该示例中,信号调节器203可以在非面向端口侧上可操作地互连到光源201,诸如图2中所示。在该示例中,检测器207可以在非面向端口侧上可操作地互连到光源205,诸如图2中所示。
路径204和路径206表示相应的和个体的链路或通信信道。如本文所述,路径204和路径206可以分别在功能上和/或结构上类似于路径104和/或路径106。例如,路径204和/或路径206可以包括一个或多个单向路径、双向路径等。
第一端口214和第二端口216表示个体的单向和双向端口。例如,第一端口214和第二端口216可以被配置为互连到路径204和路径206,以建立和促进光学收发器210与网络中的光学收发器(例如,光学收发器110、光学收发器120)之间的一个或多个通信信道。第一端口214和/或第二端口216可以包括或被配置为提供例如单向端口、双向端口等。第一端口214和/或第二端口216被配置为将光学收发器210互连或耦合到路径204和路径206。第一端口214和/或第二端口216可以被配置为耦合到光源201。此外,第一端口214和/或第二端口216可以被配置为耦合到检测器207,其中光源205被配置为耦合到检测器207并且终止于检测器207(例如,本地振荡器)。例如,第一端口214可以被配置为互连并建立将路径204链接到端口配置切换器230、信号调节器203和光源201的通信信道;第二端口216可以被配置为互连并建立将路径206链接到端口配置切换器230和检测器207并终止于检测器207的通信信道。在该示例中,光源205可以单独地互连到检测器以提供本地振荡器信号(例如用于打入(beat)或混合入站或接收信号)
在一些实现中,光学收发器210可以被配置为提供对信号方向的控制,或对在第一端口214与第二端口216与光源201与光源205之间传达的信号的定向隔离,以诸如经由耦合器232实现选择性方向信号控制,如本文进一步详细描述的。例如,可以实现方向信号控制以阻塞从端口214、通过切换器234A、通过耦合器232、并进入信号调节器203而通行的信号,以防止来自第一端口214的信号被输入到信号调节器203。这可以具有降低噪声、不希望的干扰等的效果。在一些实现中,第一端口214和第二端口216可以被配置为经由外部波长多路复用器等耦合到光学收发器(例如,光学收发器210)。
在一些实现中,第一端口214和/或第二端口216被配置为与电信号进行接口以(例如,经由软件定义的命令的执行)实现光学收发器210的管理和配置。在一些实现中,第一端口214和第二端口216被配置为实现光学收发器210的一个或多个操作模式的管理和配置。一个或多个操作模式可以包括例如单向端口操作模式和双向端口操作模式。在一些实现中,当光学切换器处于单向端口操作模式时,光学收发器被配置为操作为单向光学收发器。在一些实现中,当光学切换器处于双向端口操作模式时,光学收发器被配置为操作为双向光学收发器。例如,光学收发器210可以被配置为与诸如线卡等等之类的组件互连或被集成到其中,第一端口214和/或第二端口216可以被配置为与其互连和耦合。在一些实现中,第一端口214和/或第二端口216可以是软件定义的逻辑或虚拟端口。
在一些实现中,光学收发器210可以包括诸如以太网接口之类的一个或多个电接口端口(未描绘)。在一些实现中,第一端口214和/或第二端口216被配置为检测入站或接收信号(例如,入站接收信号)。出于本公开的目的,“(一个或多个)入站信号”是指经由端口(例如,端口214、端口216)的任何接收的或西向的(westbound)信号(例如,通过光学收发器210)。此外,“出站信号”是指经由端口(例如,端口214、端口216)的任何发射的、发送的或东向信的(eastbound)号(例如,通过光学收发器210或来自光学收发器210)。
可以独立于(例如,切换器234A、切换器234B的)切换状态而检测入站或接收信号。例如,独立于切换状态(例如,切换器234A,切换器234B),可以经由安置在第一端口214和/或第二端口216处的光电检测器(未示出)来检测入站信号,使得入站信号在切换状态被设置为通过或阻塞的情况下可以被检测。在该示例中,入站的信号或指示可以由光电检测器生成,并且被传送到控制器(例如,处理器240)以实现入站信号的检测。信号可以包括例如窄带波长信号、宽带波长信号、或信号的相关联的光谱分量或特性等。在一些实现中,第一端口214和/或第二端口216被配置为以足够的灵敏度水平(例如,经由光电检测器、光谱鉴别、多个(光)检测器)检测信号,以便提供对端口操作(例如,光学收发器210)的控制能力功能。
光学收发器210可以被配置为诸如通过包括例如路径204和/或路径206的一个或多个通信链路,经由第一端口214和/或第二端口216发送、发射和/或接收光学信号。在一些实现中,光学收发器210可以被配置为实现一种或多种调制技术以发射信号。光学收发器210可以被配置为通过调制例如信号的幅度、频率、相位、偏振和波长特性中的一个或多个来发射信号。
在一些实现中,当被配置在双向端口操作模式中时,光学收发器210可以被配置为实施多路复用技术,诸如定向多路复用等。在一些实现中,当被配置在双向端口操作模式中以发送和接收不同波长或频率处的信号时,光学收发器210可以被配置为实施多路复用技术,诸如波分多路复用或波分多路复用等。
在一些实现中,调制技术中的一个或多个可以附加地或以其它方式包括例如幅移键控(ASK)、频移键控(FSK)、相移键控(PSK)、正交幅度调制(QAM)和偏振分多路复用(PDM)。
在一些实现中,光学收发器210可以包括例如C形可插拔代(CFP)发射器、相干CFP4发射器、C形可插拔代2-模拟相干光学器件(CFP2-ACO)发射器,其通过可插拔接口与数字信号处理器(DSP)芯片耦合。此外,光学收发器210可以附加地或以其他方式包括例如CFP2、CFP8、四(4通道)小型可插拔(QSFP)、双密度的四通道小型可插拔(QFSP-DD)、八通道(8通道)小型可插拔(OSFP)等。在这样的实现中,光学收发器210可以例如利用可插拔模块内部的DSP(例如,如在诸如CFP2-DCO之类的数字相干光学(DCO)模块中)或者在可插拔模块外部的DSP(例如,如在诸如CFP2-ACO之类的模拟相干光学(ACO)模块中)来实现。
在一些实现中,光学收发器210可以包括例如相干光学M进制正交幅度调制(M-QAM)收发器、相干偏振多路复用(PM)M-QAM收发器等。
在一些实现中,光学收发器210可为热插拔相干光学收发器。如本文所述,光学收发器210可以在功能上和/或结构上类似于光学收发器110和/或光学收发器120。在一些实现中,光学收发器210可以被配置为例如可编程地在操作模式之间切换,包括例如单向端口操作模式和双向端口操作模式。光学收发器210可以被配置为接收诸如控制信号等的信号,并且在操作模式之间切换,如本文进一步详细描述的。
如图2中所示,端口配置切换器230分别经由切换器234A和切换器234B而被耦合到第一端口214和第二端口216。在一些实现中,端口配置切换器230被配置为可在单向端口操作模式和双向端口操作模式之间切换。在一些实现中,端口配置切换器230被配置为基于(例如,切换器234A;切换器234B的)切换状态配置而可在单向端口操作模式和双向端口操作模式之间切换。例如,当第一切换器和第二切换器的切换状态配置使得两者都位于通过状态或被设置为通过状态时,光学切换器(例如230)可以被配置为在单向端口操作模式中操作。
当端口配置切换器230处于单向端口操作模式时,第一端口(例如,214)可以发送(例如,经由路径204)第一光学信号并且第二端口(例如,216)可以接收(例如,经由路径206)第二光学信号,同时还发送第三光学信号(例如,经由路径206)。第一、第二和第三光学信号可以相应地被发送至、接收自和/或相对于网络中的与光学收发器210耦合的光学收发器(例如,光学收发器110、光学收发器120)而被检测(例如,通过光学收发器210),如本文所述。在一些实现中(例如,当端口配置切换器230处于单向端口操作模式时),第三光学信号可以包括例如与第一信号的(分离)实例(例如,经由诸如光学收发器210与之耦合的网络中的光学收发器的耦合器232之类的耦合器分离的)相对应的控制信号。控制信号(对应于第一信号的(分离)实例)可以包括例如来自光学收发器210与之耦合的网络中的光学收发器的寄生(光)信号。在一些实现中,响应于检测到或确定控制信号的信号特性已经低于或超过预定阈值,光学收发器210(经由端口配置切换器230)可以被配置为从单向端口操作模式切换到双向端口操作模式,如本文所述。
当端口配置切换器230处于双向端口操作模式时,第一端口可以发送第一光学信号并接收第二光学信号,并且(例如,在某些情形中并且同时)第二端口可以接收或检测第三光学信号,并且不接收第一信号和第二光学信号。在一些实现中,第一光学(和第三光学信号,如果存在)信号的波长可以对应于第二光学信号的波长。在其他实现中,第一光学信号(和第三光学信号,如果存在)的波长可以与第二光学信号的波长不同。
在一些实现中,双向端口操作模式可以包括受保护的双向端口操作模式。在受保护的双向端口操作模式中,响应于检测或确定第三信号(例如,控制信号)的信号特性已经低于或超过预定阈值,光学收发器210可以被配置为实现(例如,经由端口配置切换器230)有效切换(例如,重新配置切换器234A;切换器234B的切换状态配置),从而提供路径保护(例如,通过路径204和路径206)。
除了切换器234A和切换器234B之外,端口配置切换器230还可以包括光学耦合器。在一些实现中,切换器234A是第一切换器,其耦合到第一端口(例如,端口214)并且可在通过状态和阻塞状态之间切换,其中当光学切换器处于单向端口操作模式中时,第一切换器处于通过状态。切换器234B是第二切换器,其耦合到第二端口并且可在通过状态和阻塞状态之间切换,其中当光学切换器处于单向端口操作模式中时,第二切换器处于通过状态。光学耦合器(例如,耦合器232)经由第一切换器耦合到第一端口,并且经由第二切换器耦合到第二端口。当端口配置切换器230处于双向端口操作模式中时,第一切换器处于通过状态或阻塞状态之一;第二切换器处于通过状态或阻塞状态之一,当第一切换器处于通过状态时第二切换器处于阻塞状态,当第一切换器处于阻塞状态时第二切换器处于通过状态。
例如,当切换器234A处于通过状态并且切换器234B处于阻塞状态时,光学切换器(例如230)处于双向端口操作模式中。在一些实现中,在双向端口操作模式中,切换器234B被配置为实现(例如,经由端口216处的光电检测器)检测第三光学信号。例如,光学收发器(210)可以被配置为在端口216处(例如,经由安置在端口216处的光电检测器)检测第三光学信号(例如,其在端口216处的存在或入射)。在一些实现中,将切换器(例如,切换器234A)设置到特定状态(例如,通过、阻塞)使得另一个切换器(例如,切换器234B)的状态被反转。
在一些实现中,当端口配置切换器230处于单向端口操作模式中时,光学收发器210被配置为操作为单向光学收发器:其在第一光学端口214而不是第二光学端口216上发送,并且在第二光学端口而不是第一光学端口上接收。在一些情形中,可能存在对应于来自第二光学端口(而非第一光学端口)的寄生输出的第三信号。在一些实现中,当端口配置切换器230处于双向端口操作模式中时,光学收发器210被配置为操作为双向光学收发器:其在第一光学端口而非第二光学端口上发送,并且在第一光学端口而不是第二光学端口上接收。在一些实现中,当端口配置切换器230处于受保护的双向端口操作模式时,光学收发器210被配置为操作为双向光学收发器(被配置为提供路径保护):其通过在第一光学端口而不是在第二光学端口上发送,并且在第一光学端口和第二光学端口上接收。第二光学端口可以被配置为例如接收或检测第三光学信号(例如,对应于控制信号),如本文所述。
切换器234A和切换器234B可以被实现为个体光学衰减器。例如,切换器234A和/或切换器234B个体地包括例如可变光学衰减器(VOA)。在一些实现中,切换器234A和切换器234B各自被配置为可在发射光学信号的第一状态(“通过状态”)与阻塞光学信号的第二状态(“阻塞状态”)之间切换。VOA可以配置为平衡功率。在一些实现中,切换器234A和/或切换器234B可以包括两个或更多VOA,被配置为实现独立的切换和功率平衡功能。例如,切换器234A和切换器234B各自均可以包括VOA,被配置为以低损耗状态使信号通过,并且以高损耗状态使信号阻塞。在一些实现中,切换器234A和切换器234B各自均包括具有例如大于15dB、大于20、大于25dB或大于30dB的衰减比的VOA。衰减比另外可以是任何其他合适的值。通常,切换器234A和切换器234B可以被实现为任何合适类型的光学衰减器,诸如本文所述。
在一些实现中,切换器234A和切换器234B可以包括电光学切换器。例如,每个电光学切换器可以包括在电场下具有可变折射率的一个或多个电光学晶体。在一些实现中,一个或多个电光学晶体可以包括例如铌酸锂(LiNbO3)、钽酸锂(LiTaO3)、锆酸铅锆(Pb(Zr,Ti)O3)和铅锆酸镧锆酸盐[(Pb,La)(Zr,Ti)O3中的至少一种。在其他实现中,切换器234A和切换器234B可以包括热光学切换器。例如,每个热光学切换器可以包括具有热(信号)相位调节能力的Mach-Zehnder干涉仪。
切换器234A和切换器234B各自可以包括一个或多个Mach-Zehnder干涉仪,其可以被配置为将信号划分成干涉仪的两个臂。改变一个臂中的折射率可以调整来自两个臂的光学信号之间的干扰。例如,在一些实现中,Mach-Zehnder干涉仪中的一个或多个可以被配置为切换到相长(constructive)信号干涉状态,通过该状态可以将相长干涉配置为第一状态,以生成与输入光学信号基本相同的输出信号,同时可以将破坏性干扰配置为第二状态以生成具有可忽略功率的输出信号。
在一些实现中,切换器234A和切换器234B可以各自包括一个或多个声光学切换器,其可以使用声波来改变切换器的传输。切换器234A和切换器234B可以各自包括一个或多个光机械切换器,其被配置为通过机械装置(例如,经由光束偏转)移动体(bulk)光纤电缆元件来对光学信号进行重定向。例如,在一些实现中,一个或多个光机械切换器可以使用步进电机来移动镜,该镜将光学信号光从输入引导到期望的输出。在一些实现中,切换器234A和切换器234B可以被配置为提供功率平衡。例如,在一些实现中,其中信号输入水平(例如,幅度等)是不同的,如果不执行补偿或平衡,则从第一端口214和第二端口216到达耦合器232处的信号也可以是不同的。
取决于信号方向,耦合器232表示光学耦合器(例如,组合器)和光学分离器(例如,分束器)。例如,耦合器232可以被配置为相对于出站(例如,东向、发射)信号而用作分离器,并且相对于入站(例如,西向、接收)信号而用作耦合器。耦合器232可以经由第一切换器(例如,234A)耦合到第一端口(例如,214),并且经由第二切换器(例如,234B)耦合到第二端口(例如,216)。在一些实现中,耦合器232可以包括无色2×2耦合器。
在一些实现中,耦合器232可以包括例如Mach-Zehnder干涉仪中的一个或多个,其被配置为将信号组合到多个臂中的一个臂中,以有效地提供2x2耦合器,通过该耦合器在单向和双向端口操作模式之间切换时进一步优化损耗。在这样的实现中(例如,在耦合器232包括一个或多个Mach-Zehnder干涉仪的情况下),耦合器232和一个或多个切换器(例如,切换器234)可以被安置在公共波导上。因此,当耦合器232包括一个或多个Mach-Zehnder干涉仪时,耦合器232可以被实现为提供固定或可变的光衰减能力。例如,在一些实现中,当耦合器232包括一个或多个Mach-Zehnder干涉仪时,耦合器232可以被实现为提供固定信号分离/组合能力(例如,用于50/50的信号功率分离)。作为另一示例,在一些实现中,当耦合器232包括一个或多个Mach-Zehnder干涉仪时,耦合器232可以被实现为提供可变信号分离/组合能力(例如,用于信号100/0和/或0/100的功率分离)。在一些实现中,光学收发器210被配置为实现在第一端口214和第二端口216与光源201和光源205之间传达的信号的方向隔离,以实现经由耦合器232的选择性方向信号控制,如本文所述。
光源201和/或光源205表示光学信号源、可调信号源等。例如,光源201和/或光源205可以包括光学信号源,诸如固定激光源、可调谐激光源等。光源201和光源205可以包括例如可调谐激光源。光源205可以包括本地振荡器(LO)。光源201可以被配置为与信号调节器203一起操作以实现光学信号传输(例如,通过光学收发器210用于发送特定波长的信号)。光源201可以被配置为与检测器207一起操作,以实现光学信号接收和/或检测能力(例如,光学收发器210的或通过光学收发器210用于接收具有特定波长的信号)。在一些情形中,光源201和光源205可以分别被调谐以发送和接收处于对应或不同的波长、频率或波长或频率范围的信号。在一些实现中,当光学切换器处于单向端口操作模式中时,光源201可以以与(i)第一光学信号相关联的第一频率输出光,并且当光学切换器处于双向端口操作模式中时,光源201可以以与(ii)第一光学信号和第三光学信号相关联的第一频率输出光。在这样的实现中,光源205可以是耦合到检测器207的第二光源。当检测器207耦合到光源205时,当光学切换器处于单向端口操作模式中时,第二光源可以以与第二光学信号相关联的第二频率输出光。
信号调节器203表示信号调制器。在一些实现中,信号调节器203可以包括相干信号调制器。信号调节器203可以被配置为将载波或基带信号与要被发射的信号相加、组合、转换或调节(condition),以提供用于通信的信号传输。例如,信号调节器203可以被配置为使用光的幅度和相位以及两个正交偏振,以在光纤(例如,路径204、路径206)上每符号发射多个比特。在一些实现中,信号调节器203可以被配置为实现一种或多种调制形成格式,包括例如M元相移键控(诸如正交相移键控(QPSK))和正交幅度调制(QAM)。调制格式具有同相(I)分量和正交相位(Q)分量(即,IQ)。另外,调制格式可以由被表示为X偏振和Y偏振的两个正交偏振承载。这被称为偏振多路复用(PM)。在一些实现中,信号调节器203可以包括例如偏振多路复用、同相和正交调制器(PM-IQ-MOD)。
例如,使用具有每符号4比特的16-QAM调制格式并以32G波特(符号率)多路复用两个偏振,单个波长可以实现每信道256Gbps,从而有效地提供例如200Gbps带宽。作为另一个示例,通过使用具有8个波长、每个携带256Gbps的WDM配置,光纤上的原始比特率可以达到2048Gbps(每秒2.048太比特-Tbps)。每个数据信道(例如,路径204、206)可以包括两个偏振支路,每个偏振支路是包含同相和正交分量的偏振。因此,每个符号具有由符号率确定的已定义持续时间。每符号的比特数的范围可以从两个比特(例如,经由具有单个偏振的QPSK)到上至八个比特(例如,经由具有两个偏振的16-QAM)。在一些实现中,可以基于所使用的特定调制格式来选择每符号周期的比特数——例如,经由BPSK的1比特/符号、经由64QAM的6比特/符号(或双(信号)偏振模式中的12比特/符号)等等。通常,根据本公开的实施例,可以使用任何合适的调制格式。
检测器207表示信号解调器。在一些实现中,检测器207可以包括相干信号解调器。检测器207可以被配置为通过将信号与来自接收器侧的本地振荡器(LO)(例如,光源205)的信号混合来检测信号。如果LO光与信号的载波具有相同的波长、相位和偏振,则LO和信号将相互击打并产生基带信号,其保持信息内容的幅度远大于传入信号,使其易于检测或提取。也就是说,如果存在紧密间隔的相邻信道并且LO被调谐到该信道,则将存在代表相邻信道的新基带信号。因此,检测器207可以检索比特信息(例如,被编码到接收信号上的比特)以用于在处理器240处进一步处理,如本文进一步详细描述的。
在一些实现中,如果PM调制格式被用来形成由光学收发器210接收的光学信号,则检测器207可以将接收信号分离成两个偏振,并且进一步将接收的信号在每个偏振上解调成I和Q分量。检测器207可以将解调的模拟信号转换(例如,经由处理器240)到数字信号(例如,经由处理器240),以补偿沿路径(例如,路径204、路径206)引入的任何传输损伤。
处理器240表示诸如控制器之类的计算设备。处理器240可以包括能够执行计算机指令和/或代码的任何合适类型的处理器,诸如可以被存储在机器-、处理器-和/或计算机-可读介质上的计算机指令和/或代码。处理器240可以包括电子电路,包括例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),其被配置为通过使用以用于个性化电子电路的计算机可读程序指令的状态信息来执行计算机-或机器-可读程序指令,以便执行本公开的各个方面。例如,处理器240可以包括基于硬件的组件的任何组合,诸如现场可编程门阵列(FPGA)、专用集成电路(ASIC)、数字信号处理器(DSP)、微控制器等等。根据本公开的实施例,处理器240可以附加地或者以其他方式是基于软件的计算设备(例如,如存储在存储器中和/或在处理器处执行的计算机代码),被配置为执行一个或多个特定功能。
在一些实现中,当处于单向端口操作模式中时,光学收发器210可以被配置为使用与它用于接收的波长相同的波长用于发送,在这种情况下,光学收发器210可以被配置为使用相同的激光器,也就是说,本地振荡器(例如,光源205)用于发射,如同用于接收一样。在这样的实现中,相同的波长可以被用来发送具有与第二光学信号的波长相对应的波长的第一光学信号。在一些实现中,光学收发器210可以被配置为使用与它用于接收的波长不同的波长用于发送,在这种情况下,光学收发器210可以实施两个不同的激光器(例如,光源201、光学源205)——每个方向一个。在这样的实现中,第一光学信号可以具有与第二光学信号的波长不同的波长。
在一些实现中,可以经由软件由诸如处理器240之类的处理器远程配置切换器234中的一个或多个。例如,基于期望的操作模式或响应于诸如光学收发器210之类的光学收发器的特定操作参数(例如,超过或落在阈值之外),处理器可以致动、选择或设置切换器(例如,切换器234中的一个或多个)为第一状态或第二状态。在操作中,可以基于切换器234A和切换器234B的设置或切换器配置的各种组合来配置光学收发器的操作模式。
例如在一些情形中,当切换器234A和切换器234B各自被设置为第一状态(例如,通过状态)时,光学收发器210可以操作在第一操作模式中,诸如单工、或者单向端口操作模式,并被配置为在两个端口(例如,端口214、端口216)处发送或通过信号。作为另一示例,在一些情形中,当切换器234A被设置为第一状态并且切换器234B被设置为第二状态时,光学收发器210可以操作在第二操作模式中,诸如在双工或双向端口操作模式中,并且可以在第一端口(例如,端口214)处发送或通过信号,并且在第二端口(例如,端口216)处衰减或阻塞信号。作为另一示例,在一些情形中,当切换器234A被设置为第二状态并且切换器234B被设置为第一状态时,光学收发器210可以操作在第三操作模式中,诸如在双工或双向端口操作模式中,并且可以在第二端口(例如,端口216)处发送或通过信号,并且在第一端口(例如,端口214)处衰减或阻塞信号。
在第一操作模式中,光学收发器210可以被配置为操作使得信号被发送(例如,经由光源201发射)和接收(例如,经由光源205检测)的波长或频率可以是相等的。在第二操作模式或第三操作模式中,光学收发器210可以被配置为操作使得信号被发送(例如,经由光源201发射)和接收(例如,经由光源205检测)的波长或频率是不相等的。因此,光学收发器210可以远程地并且经由软件被配置为以操作在第一、第二和第三操作模式中的任何一种中。这可以通过使用无色2×2耦合器结合VOA的各种配置组合(例如,切换器234A、切换器234B)来实现。
在一些情形中,诸如光学收发器210的光学收发器可以被配置为操作在第四操作模式中,诸如当在(通信)路径的头端处实现光学收发器时,在这种情况下两个切换器(例如,切换器234)都可以被设置为通过。第四操作模式可以包括单向端口操作模式(例如,诸如本文描述的第一单向端口操作模式)。在一些实现中,诸如光学收发器210的光学收发器可以被配置为操作在第一操作模式或第四操作模式中,以沿路径(例如,路径204、路径206)发送和接收信号。
在一些实现中,诸如当光学收发器210被配置为操作在第二操作模式或第三操作模式中时,在相关联的切换器处于阻塞状态的端口处的入站信号(例如,在第二操作模式中,切换器234B在端口216处于阻塞状态;在第三操作模式中,切换器234A在端口214处于阻塞状态)在到达处于阻塞状态的相关联的切换器之前,可以在端口处被检测到。也就是说,在第二操作模式或第三操作模式中,来自每个路径的端口处的入站信号的属性可以由检测器(例如,光电检测器,未示出)测量,其诸如可以在路径中被布置在沿着路径在切换器234的位置之前并且邻近端口的位置处。
在一些实现中,切换器234A和/或切换器234B可以被配置为基于对相关联的切换器处于阻塞状态的端口处的入站信号的信号特性的测量(例如,经由光电检测器),来提供控制端口功能。在一些实现中,端口处的入站信号的检测可以包括例如信号特性的测量,诸如信号波长、信号功率等。在一些实现中,端口处的入站信号的检测可以包括例如信号特性的测量,诸如入站信号的信号偏振。在一些实现中,端口处的入站信号的检测可以包括例如信号特性的测量,诸如入站信号的信号频谱。在任何情况下,响应于确定信号特性(例如,功率)例如超过或低于预定义阈值,可以相应地执行切换动作,诸如路径切换或保护操作。例如,当诸如功率(例如,信号功率)的信号特性下降到低于预定义阈值(例如,预定义功率水平阈值)时,这可以指示路径故障事件(例如,光纤中断),导致信号的丢失。
例如,在(例如,在路径206上)诸如路径(例如,光纤)中断(break)的路径故障事件的情况下,诸如端口(对于该端口,相关联的切换器处于阻塞状态)处的入站信号的功率水平之类的信号特性可以停止——在这种情况下可以确认路径故障事件(例如,路径中断)。因此,响应于路径故障事件的检测,光学收发器210可以经由软件被配置为操作在双工或双向端口操作模式中,即,在第二操作模式或第三操作模式中,以便提供路径保护(例如,对路径204和路径206)。在双工或双向端口操作模式中,与相关联切换器处于通过状态的端口互连的路径用作工作路径,并且与相关联切换器处于阻塞状态的端口互连的路径用作保护路径。因此,这使得光学收发器210能够经由路径保护提供更大(例如,路径)可用性,如本文所述。
在一些实现中,光学收发器210可在1+1保护方案与1:1保护方案之间重新配置。例如,在一些实现中,当操作在双向端口操作模式中时,光学收发器210可以经由路径206(例如,备用路径)对路径204(例如,工作路径)提供1+1保护。光学收发器210可以另外被配置为提供任何合适类型的路径保护。
图3是描绘根据实施例的相干光学收发器的示例操作的流程图。相干光学收发器可以包括光学收发器110、光学收发器210等。在一些实现中,示例操作可以由诸如处理器240的处理器执行,以使处理器执行示例操作的一个或多个部分。
在302处,处理器(例如,处理器240)在双向端口操作模式和单向端口操作模式之间切换光学收发器(例如,光学收发器110、光学收发器210)。在304处,处理器在单向端口操作模式中并且经由第一端口(例如,端口214)发送第一光学信号,而不发送并且不接收第二光学信号。在306处,处理器在单向端口操作模式中并且经由第二端口(例如,端口216)接收第二光学信号。在308处,处理器在双向端口操作模式中并且经由第一端口发送第一光学信号。在310处,处理器在双向端口操作模式中并且经由第一端口接收第二光学信号。在312处,处理器在双向端口操作模式(例如,受保护的双向端口操作模式)中并且经由第二端口检测第三光学信号(例如,并且不接收第一信号和第二光学信号)。
图4是描绘根据实施例的示例光学收发器410的功能框图。如本文所述,光学收发器410可以在功能上和/或结构上类似于任何光学收发器(例如,光学收发器210)。例如如图所示,光学收发器410包括端口A、端口B、诸如偏振多路复用、同相和正交调制器(标记为“PM-IQ-MOD”)的信号调节器、诸如偏振多路复用解调器(标记为“PM-DEMOD”)的检测器、诸如可调谐激光源(TLS)的第一光源、诸如TLS的第二光源、诸如数字信号处理器(标记为“DSP”)的处理器、以及光学切换器(未标记)。如本文所述,光学切换器在功能上和/或结构上可以类似于任何光学切换器(例如,端口配置切换器230)。例如,光学切换器可以包括耦合器(标记为“2×2耦合器”)、诸如光学衰减器(标记为“ATT”)的第一切换器和诸如光学衰减器(标记为“ATT”)的第二切换器。在一些实现中,可以在公共波导上实现PM-IQ-MOD和PM-DEMOD。这使得其他组件能够被安置在同一集成电路(IC)上。
图5是描绘根据实施例的当切换到第一操作模式时的示例光学收发器510的功能框图。光学收发器510可以在功能上和/或结构上类似于任何光学收发器(例如,光学收发器210、光学收发器410),诸如本文所述。例如,如图5中所示,示例光学收发器510包括光学端口配置切换器,其包括2×2耦合器和两个可变光学衰减器(标记为“ATT”)。
如图5中所图示,在双向端口操作模式和单向端口操作模式之间切换光学收发器,诸如切换到第一操作模式,这可以包括:将被配置为将在通过状态和阻塞状态之间切换的第一切换器设置为通过状态,并且将被配置为在通过状态和阻塞状态之间切换的第二切换器设置为通过状态。因此,光学收发器510可以经由端口A以第一波长并且从第一光源TLS发送信号(例如,信号541A-D),并且还可以经由端口B并且以第二波长接收信号(例如,信号543A-C),以用于检测(例如,经由来自第二光源TLS的(一个或多个)信号543D)。经由端口B以第一波长输出的信号表示来自端口的寄生输出。如本文所述,第一波长和第二波长可以对应或不同。例如,从发射端(例如,在光学收发器510处),信号541F可以包括工作双向信号,并且信号541D可以包括控制信号。在一些实现中,光学收发器510可以在(通信)路径的头端处被配置(例如,切换)为头端端口操作模式——诸如用于与在(通信)路径的尾端处的光学收发器(诸如光学收发器510)通信(例如,如本文所述,当在(通信)路径的尾端处被切换到第二操作模式或第三操作模式时)。
图6是描绘根据实施例的当切换到第二操作模式时的示例光学收发器610的功能框图。光学收发器610可以在功能上和/或结构上类似于任何光学收发器(例如,光学收发器210、光学收发器410、光学收发器510),诸如本文所述。因此,光学收发器610可以经由端口A以第一波长并且从第一光源TLS发送信号(例如,信号641A-E),并且还可以经由端口B并且以第二波长检测和/或接收信号(例如,信号643A-C),以用于检测(例如,经由来自第二光源TLS的(一个或多个)信号643D)。此外,可以检测在端口B处的(一个或多个)信号643E(例如,(一个或多个)寄生信号)(例如,如在控制信号检测中)。例如,端口B处的入站信号(例如,643E)可以被检测(例如,经由光电检测器)并且被用作指示或控制信号,通过该指示或控制信号可以执行光学收发器610的控制操作,如本文所述。诸如在光学收发器610的双向端口操作中,第一和第二波长可以对应。第一波长和第二波长另外可以不同(例如,如在单向端口操作中),如本文所述。
图7是描绘根据实施例的当切换到第三操作模式时的示例光学收发器710的功能框图。光学收发器710可以在功能上和/或结构上类似于任何光学收发器(例如,光学收发器210、光学收发器410、光学收发器510、光学收发器610),诸如本文所述。因此,光学收发器710可以经由端口B以第一波长并且从第一光源TLS发送信号(例如,信号741A-E),并且还可以经由端口B并且以第二波长检测和/或接收信号(例如,信号743A-C),以用于检测(例如,经由来自第二光源TLS的(一个或多个)信号743D)。此外,可以检测在端口A处的(一个或多个)信号743E(例如,(一个或多个)寄生信号)(例如,如在控制信号检测中)。例如,如本文所述,端口A处的入站信号可以被检测(例如,通过光电检测器)并且被用作控制信号以控制光学收发器710的操作。如本文所述,第一波长和第二波长可以对应或不同。
在一些实现中,在双向端口操作模式和单向端口操作模式之间切换光学收发器,诸如切换到第三操作模式,这可以包括将被配置为在通过状态和阻塞状态之间切换的第一切换器设置为阻塞状态,并且将被配置为在通过状态和阻塞状态之间切换的第二切换器设置为通过状态。在一些实现中,在双向端口操作模式中并且经由第一端口发送第一光学信号可以包括以与第二光学信号的波长不同的波长发送第一光学信号。
本文公开了本公开的详细实施例,其目的是描述和说明可以以各种形式体现的要求保护的结构和方法,并且不旨在以任何方式穷举,或者局限于所公开的实施例。在不脱离所公开实施例的范围的情况下,许多修改和变化将是显而易见的。本文所使用的术语被选择以最好地解释一个或多个实施例的原理、实际应用或对当前技术的技术改进,或者使得能够理解本文公开的实施例。如所描述的,可以省略公知特征和技术的细节以避免不必要地模糊本公开的实施例。
说明书中对“一个实施例”、“实施例”、“示例实施例”等的引用指示所描述的实施例可以包括一个或多个特定特征、结构或特性,但是应该理解,这些特定特征、结构或特性对于本文公开的每个公开实施例可以是共同的或者可以不是共同的。而且,这些短语本身不一定指任何一个特定实施例。如此,当结合实施例描述一个或多个特定特征、结构或特性时,认为在适用的情况下,无论是否明确描述,结合其他实施例影响这样的一个或多个特征、结构或特性是在本领域技术人员的知识范围内。
虽然本文已描述和说明了一些实现,但是用于执行功能和/或获得结果和/或一个或多个优点的各种其他装置和/或结构是可能的。更一般地,本文描述的参数、尺寸、材料和配置旨在是示例性的,并且实际参数、尺寸、材料和/或配置将取决于使用本发明教导的特定一个或多个应用。因此,应该理解,前述实施例仅以示例的方式被呈现并且在所附权利要求及其等同物的范围内;并且,可以以不同于具体描述和要求保护的方式来实践实施例。本公开的实施例涉及本文描述的每个个体的特征、系统、物品、材料、套件和/或方法。此外,如果这些特征、系统、物品、材料、套件和/或方法不相互矛盾,则两个或更多这样的特征、系统、物品、材料、套件和/或方法的任何组合被包括在本公开的范围。
此外,各种概念可以被体现为一种或多种方法,已经提供了其中的一个示例。作为方法的一部分而被执行的动作可以以任何合适的方式排序。因此,可以构造这样的实施例,其中以不同于所图示的顺序来执行动作,其可以包括同时执行一些动作——即使在示例性实施例中示出为顺序的动作。

Claims (20)

1.一种用于光学通信的装置,包括:
光学收发器,所述光学收发器具有第一端口、第二端口和被耦合到所述第一端口和所述第二端口的光学切换器,所述光学切换器包括耦合到所述第一端口的第一切换器、耦合到所述第二端口的第二切换器、以及经由所述第一切换器被耦合到所述第一端口并且经由所述第二切换器被耦合到所述第二端口的光学耦合器,
所述光学切换器在单向端口操作模式和双向端口操作模式之间可切换,
当所述光学切换器处于所述单向端口操作模式中时,
所述第一端口被配置为发送第一光学信号,以及
所述第二端口被配置为接收第二光学信号,
当所述光学切换器处于所述双向端口操作模式中时,
所述第一端口被配置为发送所述第一光学信号并且接收所述第二光学信号,以及
所述第二端口被配置为检测第三光学信号并且不接收所述第一光学信号和所述第二光学信号。
2.根据权利要求1所述的装置,其中所述光学切换器包括:
所述第一切换器,在通过状态和阻塞状态之间可切换;以及
所述第二切换器,在所述通过状态和所述阻塞状态之间可切换。
3.根据权利要求1所述的装置,其中所述光学切换器包括:
所述第一切换器,被耦合到所述第一端口,并且在通过状态和阻塞状态之间可切换,当所述光学切换器处于所述单向端口操作模式中时,所述第一切换器处于所述通过状态;
所述第二切换器,被耦合到所述第二端口,并且在所述通过状态和所述阻塞状态之间可切换,当所述光学切换器处于所述单向端口操作模式中时,所述第二切换器处于所述通过状态;
当所述光学切换器处于所述双向端口操作模式中时,
所述第一切换器处于所述通过状态或所述阻塞状态中的一个状态,并且
所述第二切换器处于所述通过状态或所述阻塞状态中的一个状态,当所述第一切换器处于所述通过状态时所述第二切换器处于所述阻塞状态,并且当所述第一切换器处于所述阻塞状态时所述第二切换器处于所述通过状态。
4.根据权利要求1所述的装置,其中所述双向端口操作模式包括受保护的双向端口操作模式。
5.根据权利要求3所述的装置,其中所述第一光学信号的波长不同于所述第二光学信号的波长。
6.根据权利要求4所述的装置,其中所述光学切换器包括:
所述第一切换器,被耦合到所述第一端口,并且在通过状态和阻塞状态之间可切换,当所述光学切换器处于所述双向端口操作模式中时,所述第一切换器针对所述第一光学信号和所述第二光学信号处于所述通过状态;
所述第二切换器,被耦合到所述第二端口,并且在所述通过状态和所述阻塞状态之间可切换,当所述光学切换器处于所述双向端口操作模式中时,所述第二切换器针对所述第一光学信号和所述第二光学信号处于所述阻塞状态并且被配置为检测所述第三光学信号。
7.根据权利要求1所述的装置,还包括:
第一光源,所述第一光源被耦合到所述光学切换器,所述第一光源被配置为以第一频率输出光;以及
第二光源,所述第二光源被耦合到光学检测器,所述第二光源被配置为以第二频率输出光;
所述光学检测器被耦合到所述光学切换器。
8.根据权利要求1所述的装置,还包括:
第一光源,所述第一光源被耦合到所述光学切换器,所述第一光源以第一频率输出光,当所述光学切换器处于所述单向端口操作模式中时,所述第一光学信号具有所述第一频率,当所述光学切换器处于所述双向端口操作模式中时,所述第一光学信号和所述第三光学信号具有所述第一频率;以及
第二光源,所述第二光源被耦合到光学检测器,所述光学检测器被耦合到所述光学切换器,所述第二光源以第二频率输出光,当所述光学切换器处于所述单向端口操作模式或所述双向端口操作模式中时,所述第二光学信号具有所述第二频率。
9.一种存储代码的机器可读介质,所述代码表示要由处理器执行的指令,所述代码当由所述处理器执行时实现以下操作:
在双向端口操作模式和单向端口操作模式之间对光学切换器进行切换,所述双向端口操作模式包括受保护的双向端口操作模式,所述光学切换器包括耦合到第一端口的第一切换器、耦合到第二端口的第二切换器、以及经由所述第一切换器被耦合到所述第一端口并且经由所述第二切换器被耦合到所述第二端口的光学耦合器;
在所述单向端口操作模式中并且经由所述第一端口,发送第一光学信号并且不发送且不接收第二光学信号;
在所述单向端口操作模式中并且经由所述第二端口,接收所述第二光学信号;
在所述双向端口操作模式中并且经由所述第一端口,发送所述第一光学信号;
在所述双向端口操作模式中并且经由所述第一端口,接收所述第二光学信号;以及
在所述双向端口操作模式中并且经由所述第二端口,检测第三光学信号并且不接收所述第一光学信号和所述第二光学信号。
10.根据权利要求9所述的机器可读介质,其中用以在双向端口操作模式和单向端口操作模式之间切换的所述代码当由所述处理器执行时实现以下操作:
将在通过状态和阻塞状态之间可切换的所述第一切换器设置为所述通过状态;以及
将在所述通过状态和所述阻塞状态之间可切换的所述第二切换器设置为所述通过状态。
11.根据权利要求10所述的机器可读介质,其中用以在所述单向端口操作模式中并且经由所述第一端口发送所述第一光学信号并且不发送且不接收所述第二光学信号的所述代码当由所述处理器执行时实现以下操作:
以与所述第二光学信号的波长相对应的波长发送所述第一光学信号。
12.根据权利要求10所述的机器可读介质,其中用以在所述单向端口操作模式中并且经由所述第一端口发送所述第一光学信号并且不发送且不接收所述第二光学信号的所述代码当由所述处理器执行时实现以下操作:
以与所述第二光学信号的波长不同的波长发送所述第一光学信号。
13.根据权利要求9所述的机器可读介质,其中用以在双向端口操作模式和单向端口操作模式之间切换的所述代码当由所述处理器执行时实现以下操作:
将在通过状态和阻塞状态之间可切换的所述第一切换器设置为所述通过状态;以及
将在所述通过状态和所述阻塞状态之间可切换的所述第二切换器设置为所述阻塞状态。
14.根据权利要求9所述的机器可读介质,其中用以在双向端口操作模式和单向端口操作模式之间切换的所述代码当由所述处理器执行时实现以下操作:
将在通过状态和阻塞状态之间可切换的所述第一切换器设置为所述阻塞状态;以及
将在所述通过状态和所述阻塞状态之间可切换的所述第二切换器设置为所述通过状态。
15.根据权利要求13所述的机器可读介质,其中用以在所述双向端口操作模式中并且经由所述第一端口发送所述第一光学信号的代码当由所述处理器执行时实现以下操作:
以与所述第二光学信号的波长不同的波长发送所述第一光学信号。
16.根据权利要求14所述的机器可读介质,其中用以在所述双向端口操作模式中并且经由所述第一端口发送所述第一光学信号的所述代码当由所述处理器执行时实现以下操作:
以与所述第二光学信号的波长不同的波长发送所述第一光学信号。
17.一种用于光学通信的装置,包括:
光学收发器,所述光学收发器具有第一端口、第二端口和被耦合到所述第一端口和所述第二端口的光学切换器,所述光学切换器包括耦合到所述第一端口的第一切换器、耦合到所述第二端口的第二切换器、以及经由所述第一切换器被耦合到所述第一端口并且经由所述第二切换器被耦合到所述第二端口的光学耦合器,
所述光学切换器在单向端口操作模式和双向端口操作模式之间可切换,
当所述光学切换器处于所述单向端口操作模式中时,所述光学收发器被配置为操作为单向光学收发器,
当所述光学切换器处于所述双向端口操作模式中时,所述光学收发器被配置为操作为双向光学收发器。
18.根据权利要求17所述的装置,其中:
当所述光学切换器处于所述单向端口操作模式中时,所述光学收发器被配置为操作为所述单向光学收发器,所述单向光学收发器在所述第一端口而不是所述第二端口上发送,并且在所述第二端口而不是所述第一端口上接收,
当所述光学切换器处于所述双向端口操作模式中时,所述光学收发器被配置为操作为所述双向光学收发器,所述双向光学收发器在所述第一端口上发送,并且在所述第一端口上接收并且在所述第二端口上接收。
19.根据权利要求17所述的装置,其中所述第一切换器或所述第二切换器包括可变光学衰减器(VOA)。
20.根据权利要求17所述的装置,其中所述光学耦合器包括一个或多个Mach-Zehnder干涉仪(MZI)。
CN201910911354.4A 2019-05-23 2019-09-25 用于具有多个切换状态配置的光学收发器的装置和方法 Active CN111988109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310500850.7A CN116545537A (zh) 2019-05-23 2019-09-25 用于光学切换器的方法、机器可读介质及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/420,791 2019-05-23
US16/420,791 US10866364B1 (en) 2019-05-23 2019-05-23 Systems, methods, and apparatus for optical transceiver with multiple switch state configurations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310500850.7A Division CN116545537A (zh) 2019-05-23 2019-09-25 用于光学切换器的方法、机器可读介质及装置

Publications (2)

Publication Number Publication Date
CN111988109A CN111988109A (zh) 2020-11-24
CN111988109B true CN111988109B (zh) 2023-05-26

Family

ID=67137567

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910911354.4A Active CN111988109B (zh) 2019-05-23 2019-09-25 用于具有多个切换状态配置的光学收发器的装置和方法
CN202310500850.7A Pending CN116545537A (zh) 2019-05-23 2019-09-25 用于光学切换器的方法、机器可读介质及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310500850.7A Pending CN116545537A (zh) 2019-05-23 2019-09-25 用于光学切换器的方法、机器可读介质及装置

Country Status (3)

Country Link
US (3) US10866364B1 (zh)
EP (2) EP4246833A3 (zh)
CN (2) CN111988109B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10866364B1 (en) 2019-05-23 2020-12-15 Juniper Networks, Inc. Systems, methods, and apparatus for optical transceiver with multiple switch state configurations
CN113395114B (zh) * 2020-03-12 2022-09-16 华为技术有限公司 光模块、数据中心系统以及数据传输方法
US11487063B2 (en) * 2020-03-31 2022-11-01 Subcom, Llc Pair routing between three undersea fiber optic cables
US20220200827A1 (en) * 2020-12-18 2022-06-23 Rafael Microelectronics, Inc. Asymmetric Optical Communication Architecture
US11342997B1 (en) * 2021-04-09 2022-05-24 Sony Interactive Entertainment Inc. Optimized switching fabric with multi-point optics in a data center
EP4320761A1 (en) * 2021-04-09 2024-02-14 Sony Interactive Entertainment Inc. Optimized switching fabric with multi-point optics in a data center
FR3124336A1 (fr) * 2021-06-25 2022-12-23 Orange Module émetteur-récepteur optronique avec protection intégrée
US11664921B2 (en) 2021-11-04 2023-05-30 Ciena Corporation Rapid node insertion into or removal from a photonic network
US11733468B2 (en) * 2021-12-08 2023-08-22 Viavi Solutions Inc. Photonic structure using optical heater
US20230412265A1 (en) * 2022-06-14 2023-12-21 Mellanox Technologies, Ltd. Transceiver module
US11996887B1 (en) * 2023-11-20 2024-05-28 Attochron, Llc Free space optical communications using multi-detectors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959530A (zh) * 2016-10-14 2018-04-24 瞻博网络公司 具有外部激光源的光学收发器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131210B4 (de) 2001-06-28 2006-04-20 Siemens Ag Optisches Übertragungssystem mit bidirektionalen Verbindungspfaden und Verfahren zum Einrichten mindestens eines bidirektionalen Verbindungspfades
US20050180749A1 (en) * 2003-11-07 2005-08-18 Bikash Koley System and method for a resilient optical Ethernet networksupporting automatic protection switching
US8078052B2 (en) * 2007-10-18 2011-12-13 Cisco Technology, Inc. Protocol-less all-optical 1+1 bidirectional revertive linear protection system
US8682003B2 (en) * 2009-11-19 2014-03-25 Apple Inc. Equipment with optical paths for noise cancellation signals
US8811824B2 (en) * 2011-09-15 2014-08-19 Golfoton Holdings, Inc. Two way burst mode digital optical cable communication system
US9209901B2 (en) * 2012-11-20 2015-12-08 Telefonaktiebolaget L M Ericsson (Publ) Configurable single-fiber or dual-fiber optical transceiver
US9998254B2 (en) * 2015-05-20 2018-06-12 Finisar Corporation Method and apparatus for hardware configured network
US10020908B2 (en) * 2015-09-30 2018-07-10 Juniper Networks, Inc. Methods and apparatus for remote management of an optical transceiver system
EP3369195B1 (en) * 2015-10-30 2020-06-24 Telefonaktiebolaget LM Ericsson (PUBL) Protection apparatus for a bidirectional optical link
US10866364B1 (en) 2019-05-23 2020-12-15 Juniper Networks, Inc. Systems, methods, and apparatus for optical transceiver with multiple switch state configurations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959530A (zh) * 2016-10-14 2018-04-24 瞻博网络公司 具有外部激光源的光学收发器

Also Published As

Publication number Publication date
US20230103587A1 (en) 2023-04-06
US11531165B2 (en) 2022-12-20
CN111988109A (zh) 2020-11-24
US10866364B1 (en) 2020-12-15
EP4246833A2 (en) 2023-09-20
US11927807B2 (en) 2024-03-12
US20200371295A1 (en) 2020-11-26
EP4246833A3 (en) 2023-12-13
EP3742628B1 (en) 2023-07-26
CN116545537A (zh) 2023-08-04
EP3742628A1 (en) 2020-11-25
US20210063647A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
CN111988109B (zh) 用于具有多个切换状态配置的光学收发器的装置和方法
EP3487091B1 (en) Method and system for establishing at least two bidirectional communication links using coherent detection
US8131149B2 (en) Optical routing device and optical network using same
US7209664B1 (en) Frequency agile transmitter and receiver architecture for DWDM systems
Kuznetsov et al. A next-generation optical regional access network
US9923660B2 (en) Optical add-drop multiplexer and branching unit
US6922529B2 (en) Optical communications systems, devices, and methods
US8989591B2 (en) Remote optical demarcation point
US9762348B2 (en) Reconfigurable optical add-drop multiplexer apparatus
JPH10173598A (ja) 光合分波装置及びこれを用いた光伝送システム
JP5699760B2 (ja) 光増幅装置、光増幅装置の制御方法、光受信局及び光伝送システム
US9246624B1 (en) Low noise optical phase-sensitive amplifier for dual-polarization modulation formats
US11296811B2 (en) Optical multicast switch with broadcast capability
Ueda et al. Novel intra-and inter-datacenter converged network exploiting space-and wavelength-dimensional switches
WO2015087681A1 (ja) 波長多重伝送システム
US6304351B1 (en) Universal branching unit
EP2426841A1 (en) Optical add and/or drop device for an optical network element
JP2011250037A (ja) 偏波多重光伝送システム
US8355631B2 (en) Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems
US10735126B1 (en) Splitter-based colorless-directionless-contentionless reconfigurable optical add/drop multiplexer
de Valicourt et al. Monolithic integrated reflective polarization diversity SOI-based slot-blocker for fast reconfigurable 128 Gb/s and 256 Gb/s optical networks
JP2014014008A (ja) 光伝送装置及び光伝送システム
Zhang et al. 1500-km transmission of 100-Gb/s coherent PM-QPSK with 10 cascaded 50-GHz wavelength selective switches
Goto et al. Development of three-stage burst-mode EDFA with flat gain-spectrum over full C-band for core/metro networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant