CN1119879C - 波长管理器 - Google Patents

波长管理器

Info

Publication number
CN1119879C
CN1119879C CN98104061A CN98104061A CN1119879C CN 1119879 C CN1119879 C CN 1119879C CN 98104061 A CN98104061 A CN 98104061A CN 98104061 A CN98104061 A CN 98104061A CN 1119879 C CN1119879 C CN 1119879C
Authority
CN
China
Prior art keywords
signal
scanning
transmitter
time
sweep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98104061A
Other languages
English (en)
Other versions
CN1190184A (zh
Inventor
N·R·乌德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M (DGP1) Ltd
Ericsson AB
Original Assignee
Marconi Communications Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marconi Communications Ltd filed Critical Marconi Communications Ltd
Publication of CN1190184A publication Critical patent/CN1190184A/zh
Application granted granted Critical
Publication of CN1119879C publication Critical patent/CN1119879C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0257Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods multiple, e.g. Fabry Perot interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lasers (AREA)

Abstract

在以扫描为基础的适用于定域式和分布式WDM、高密度WDM和相干系统的波长测定系统的基础上,使用固定腔的法布里-珀罗校准器,当可调谐激光器的输出通过这种校准器时,校准器产生许多基准等间距的传输最大值。这些最大值用在以扫描外差式或扫描滤波器为基础的分光计中,用来检测发射机的波长位置。

Description

波长管理器
本发明涉及高密度波分多路复用器(HDWDM)中使用的波长管理系统设计上的一种简化技术。这里还包括一种在对温度的敏感性方面比其它类似设计小得多的系统。
这种技术详细说明了一种既适用于定域式WDM也适用于分布式WDM、高密度WDM和相干系统的、减小以扫描为基础的波长测定系统的复杂性的方法,它是以围绕固定腔的法布里-珀罗(Fabry-Perot)校准器的应用为基础的,当(波长变化的)可调谐激光器的输出通过这种校准器时,校准器产生许多基准等间距传输最大值。这种信号用在以扫描外差式或扫描滤波器为基础的分光计中可以简化发射机波长位置的检测过程。
按照本发明,提供了一种校准以扫描外差式或扫描滤波器为基础的分光计的扫描范围的方法,其特征在于包括以下步骤:用一扫描信号对法布里-珀罗校准器进行光扫描,以产生多个频率上等间隔的传输峰值;利用扫描信号检测在无源光网络中收到的发射机信号和光频率基准信号;以及及时地将传输峰值之一与所述基准信号进行比较。
本发明还提供了一种校准以扫描外差式或扫描滤波器为基础的分光计的扫描范围的装置,其特征在于包括:一个本机振荡器激光器,用于产生一个扫描信号,以对一固定腔的法布里-珀罗校准器进行扫描从而产生多个频率上等间隔的传输峰值;含有无源光网络以利用本机振荡器激光器检测收到的发射机信号和检测光频率基准信号的装置;以及用于确定所述基准信号与所述传输峰值之一之间的延迟时间的装置。
上述技术可用于波长测量系统中来控制WDM、HDWDM和以相干为基础的系统中各光发射机的信道间隔。
现在参看附图举例说明本发明的内容。附图中:
图1示出了波长管理系统的原理图,
图2用曲线举例说明了频率校正的计算。
图1示出简化了的波长管理系统的原理图。系统的核心是扫描外差式或是扫描滤波器为基础的分光计。由这个分光计监控发射机的通过在无源光网络(PON)中混合发射机的各信号而产生的梳状波。发射机梳状波谱中加入了工作点在发射机梳状波外的光频率基准。这是系统中单一的经稳定化的分量,它是用发射线或吸收线锁定技术进行稳定化的。
扫描中的LO(本机振荡)激光器由固定腔法布里-珀罗干涉仪监控。这提供了可以测定LO激光器的非线性的方法。此外,还可以将法布里-珀罗传送梳状波的间距设定到所要求的发射机间频率间隔。例如,假设该校准器是由例如合成石英制成的,则15千兆赫梳状波间隔相当于6.9毫米的镜片。
要将工作的各发射机间接锁定到校准器的传输峰值,各峰值间隔的稳定性是关键所在。若校准器在热性能上没有经过稳定化,则温度的任何变化都会使峰值漂移。
在进一步研究系统的工作过程之前,还是先研究峰值随温度漂移问题的性质和幅度。
对法布里-珀罗校准器来说:
Figure C9810406100051
        其中m为正整数 = 2 d 0 ( 1 + aT ) ( n 0 + dn dt , T ) 其中n0和d0为石英在T=O时的折射率和厚度,α为其线膨胀系数                        其中t为光学厚度 = 2 t 0 m ( 10 + βT ) [1],其中t0为T=0时的光学厚度且 β = α + dn dt 1 n 0 这时,对1550毫微米和20℃下的石英来说,n0=1.444和α=55E-7/℃∴β=9.4E-6/℃求[1]式的微分并将t0代入,得出:这样,转换成频率时,各线以下列速度随温度漂移:
1.8千兆赫/℃这时,峰值间隔的变化为: Δf = c 2 t = c 2 t 0 ( 1 + βT )
这意味着以石英为主要材料对20℃下15千兆赫的梳状波周期而设计的校准器,其在125℃下呈现为14.985千兆赫的梳状波周期,相当于梳状波各端有±1千兆赫的累积不准确度,这完全在相干接收机所能达到的浮获范围内。因此,虽然梳状波随温度剧烈漂移,但线间隔仍然不变。
为减少线漂移,法布里-珀罗校准器可以通过将传输峰锁定到基准频率而对温度稳定化,但这意味着系统更复杂化(因而可靠性降低)。因此,建议校准器仍然作为无源元件,由系统的其余部分补偿校准器引来的任何热漂移。这即将在下面谈到分光计工作过程的各段中进行说明。
分光计的工作过程如下。在激光器扫描的过程中,处理器记下观测到法布里-珀罗传输峰的时间和何时相干接收机检测出光信号(图2),然后分析此数据。在所示的情况下,在相干接收机扫描过程中检测出的第一个信号为基准信号。计算机记下此事件与检测出下一个法布-珀罗峰时两者之间所经过的时间。这段时间叫做扫描延迟时间,它会使不同的扫描随法布里-珀罗环境温度的变化而变化(假设绝对基准值不随温度变化)。处理器接着通过用扫描延迟时间补偿其余信道的检测时间而消除法布里-珀罗漂移。接着,对于各信道,处理器确定检测时间与最近的法布里-珀罗最大值之间的延迟时间。然后,处理器将此延迟时间通过内插毗邻的各法布里-珀罗最大值之间所经过的时间而转换成频偏,已知这表示15千兆赫的扫频。(从扫描已知的小频差的时间)知道了瞬时扫描速度,就可以将信道检测与其有关的FP(法布里-珀罗)峰之间的差分时延转换成频偏。图2举例说明了这个过程。
各发射机偏离其指定的信道频率的频偏一被确定,校正信息就通过数据报表层或专用的电气链路发送给有关的发射机组。于是,发射机组采取适当的补救措施,即改变其激光器的工作条件,从而改变发射出的光波长或频率。
这样,通过利用已固定的法布里-珀罗校准器各最大值的频率间隔,同时补偿其热漂移,无论LO激光器的调谐性能如何,分光计都能计算出发射机的频差。
要使系统工作,当然必须遵照某些条件,下面详细说明这些条件:
a)扫描激光器的频率-时间特性必须是单调的,而且没有尺度小于法布里-珀罗梳状波间隔的显著结构特点。
b)扫描速度必须比校准器温度变化速度快,否则法布里-珀罗峰会在扫描过程中明显漂移。在整个扫描时间内,-0.1千兆赫的误差是容许的,这意味着温度在整个扫描过程中的漂移可以不超过0.05℃。若温度的变化速度为1℃/秒,则扫描时间不得超过50毫秒。若要使扫描在例如为128个信道所占据的16毫微米波长扫描范围(0.125毫微米信道间隔)内达到±0.5千兆赫的频率分辨率,则峰检测系统的瞬时分辨率须为±12.5微秒(相当于80千赫时钟脉冲)。这个分辨率不一定要很高,但2千兆比特/秒的CPFSK信号的已调制频谱的中央凸起,其谱宽为4千兆赫左右。
c)启动时,发射机的各激光器必须在±5千兆赫(此数字使各信道窗口之间有5千兆赫的“防护带”)的窗口内工作。这对热调谐特性为12.5千兆赫/℃和电光调谐特性为600兆赫/毫安的设备来说相当于±4℃的温度不定度或±8毫安的偏置不定度。
还应该指出的是,除非实际证明需要求出平均值,否则不需要进行模/数转换,倒不如记下检测出各种现象时的时钟计数值。
这可以采用一个电平检测器,并在后面加上一个脉冲成形器和一个边缘检测器来完成。由于CPFSK(连续相位移频键控)频谱是单峰而对称的,因而可以取频谱中心作为脉冲升降时间的代数平均值。因此,用今天微处理机的水准来衡量,数据获取是无足轻重的,充其量也只是在扫描激光器的50毫秒扫描过程中记下时钟计数值128次,这样的任务甚至第一代的8比特微处理器也能胜任。这样,确定各发射机频偏的计算就可以从容地进行;发射机的各激光器可以较慢的速度漂移(大约每秒兆赫的数量级),从而只需要例如每几秒钟校正一次。
当然,如果只为了避免高温引起的过早老化,就需要对扫描LO激光器进行某些温度的稳定化工作。是否需要进行热控制也取决于设备的电光调谐范围。这必须始终能充分围绕基准源和发射机梳状波进行,而考虑到此控制回路造成的频率变化速度,为确保扫频为单调的,它必须低于扫描速度,故可能需要根据设备的环境温度进行简单的热控制。

Claims (9)

1.一种校准以扫描外差式或扫描滤波器为基础的分光计的扫描范围的方法,其特征在于包括以下步骤:用一扫描信号对法布里-珀罗校准器进行光扫描,以产生多个频率上等间隔的传输峰值;利用扫描信号检测在无源光网络中收到的发射机信号和光频率基准信号;以及及时地将传输峰值之一与所述基准信号进行比较。
2.如权利要求1所述的方法,其特征在于,由一本机振荡器激光器进行扫描,扫描过程中检测出的第一个信号为光频率基准信号,检测出的第二个信号为一传输峰值,第一个与第二个信号之间所经过的时间为扫描延迟时间,所检测的传输峰值用扫描延迟时间补偿。
3.如权利要求2所述的方法,其特征在于,将检测出的发射机信号与最近的传输峰值之间的延迟时间转换成频偏,并给各发射机组发送校正信息。
4.一种校准以扫描外差式或扫描滤波器为基础的分光计的扫描范围的装置,其特征在于包括:一个本机振荡器激光器,用于产生一个扫描信号,以对一固定腔的法布里-珀罗校准器进行扫描从而产生多个频率上等间隔的传输峰值;含有无源光网络以利用本机振荡器激光器检测收到的发射机信号和检测光频率基准信号的装置;以及用于确定所述基准信号与所述传输峰值之一之间的延迟时间的装置。
5.如权利要求4所述的校准装置,其特征在于,还包括用于确定每一个发射机信号与其最近的传输峰值之间的另一些延迟时间的装置。
6.如权利要求5所述的校准装置,其特征在于,还包括用于将一校正信号传送给各发射机以调整发射机频率的装置。
7.含有权利要求4、5或6所述校准装置的分光计。
8.含有权利要求4、5或6所述校准装置的波长测定系统。
9.含有权利要求4、5或6所述校准装置的波长管理系统。
CN98104061A 1997-01-27 1998-01-24 波长管理器 Expired - Fee Related CN1119879C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9701627.3 1997-01-27
GBGB9701627.3A GB9701627D0 (en) 1997-01-27 1997-01-27 Wavelength manager

Publications (2)

Publication Number Publication Date
CN1190184A CN1190184A (zh) 1998-08-12
CN1119879C true CN1119879C (zh) 2003-08-27

Family

ID=10806638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98104061A Expired - Fee Related CN1119879C (zh) 1997-01-27 1998-01-24 波长管理器

Country Status (8)

Country Link
US (1) US6078394A (zh)
EP (1) EP0855811B1 (zh)
JP (1) JPH10221167A (zh)
CN (1) CN1119879C (zh)
AU (1) AU736778B2 (zh)
DE (1) DE69832219T2 (zh)
GB (2) GB9701627D0 (zh)
NO (1) NO980338L (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160832A (en) 1998-06-01 2000-12-12 Lambda Physik Gmbh Method and apparatus for wavelength calibration
US7006541B2 (en) 1998-06-01 2006-02-28 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
US6580517B2 (en) 2000-03-01 2003-06-17 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
DE19845701A1 (de) 1998-10-05 2000-04-06 Palme Dieter Anordnungen zur Überwachung der Performance von DWDM-Mehrwellenlängensystemen
US6498800B1 (en) * 1999-08-10 2002-12-24 Coretek, Inc. Double etalon optical wavelength reference device
CA2381658A1 (en) * 1999-08-10 2001-02-15 Kevin Mccallion Optical fiber wavelength reference device
US6667804B1 (en) 1999-10-12 2003-12-23 Lambda Physik Ag Temperature compensation method for wavemeters
US6597462B2 (en) 2000-03-01 2003-07-22 Lambda Physik Ag Laser wavelength and bandwidth monitor
GB2361057B (en) * 2000-04-06 2002-06-26 Marconi Comm Ltd Optical signal monitor
US6807205B1 (en) 2000-07-14 2004-10-19 Lambda Physik Ag Precise monitor etalon calibration technique
US6754243B2 (en) 2000-08-09 2004-06-22 Jds Uniphase Corporation Tunable distributed feedback laser
US6747741B1 (en) 2000-10-12 2004-06-08 Lambda Physik Ag Multiple-pass interferometric device
US6771855B2 (en) 2000-10-30 2004-08-03 Santur Corporation Laser and fiber coupling control
AU2002220035A1 (en) * 2000-10-30 2002-05-15 Santur Corporation Tunable controlled laser array
US6795453B2 (en) * 2000-10-30 2004-09-21 Santur Corporation Laser thermal tuning
WO2002063372A1 (en) * 2001-01-16 2002-08-15 Santur Corporation Tunable optical device using a scanning mems mirror
US6985234B2 (en) * 2001-01-30 2006-01-10 Thorlabs, Inc. Swept wavelength meter
US6922278B2 (en) 2001-03-30 2005-07-26 Santur Corporation Switched laser array modulation with integral electroabsorption modulator
US6781734B2 (en) 2001-03-30 2004-08-24 Santur Corporation Modulator alignment for laser
US6813300B2 (en) 2001-03-30 2004-11-02 Santur Corporation Alignment of an on chip modulator
WO2003096759A1 (en) 2001-03-30 2003-11-20 Santur Corporation High speed modulation of arrayed lasers
US6590666B2 (en) * 2001-05-11 2003-07-08 Agilent Technologies Inc. Method and system for optical spectrum analysis with non-uniform sweep rate correction
AU2002327432A1 (en) * 2001-08-08 2003-02-24 Santur Corporation Method and system for selecting an output of a vcsel array
US6853456B2 (en) * 2002-01-31 2005-02-08 Tip Group, Llc Method and apparatus for measuring a frequency of an optical signal
US6910780B2 (en) * 2002-04-01 2005-06-28 Santur Corporation Laser and laser signal combiner
US7801446B2 (en) 2002-06-14 2010-09-21 Infinera Corporation Wavelength division multiplexed optical communication system with rapidly-tunable optical filters
US7483143B2 (en) * 2006-02-07 2009-01-27 Wisconsin Alumni Research Foundation Method and apparatus for conducting heterodyne frequency-comb spectroscopy
KR101078135B1 (ko) * 2010-07-30 2011-10-28 경북대학교 산학협력단 광원 스펙트럼 분석용 분광기의 전 영역 교정 장치 및 그 장치에서 정보 획득 방법
WO2016165132A1 (zh) * 2015-04-17 2016-10-20 华为技术有限公司 一种信号处理方法、节点和装置
CN109031851B (zh) * 2018-08-03 2021-08-13 武汉工程大学 基于光学参考的高稳定度便携式飞秒光梳系统及控制方法
CN111948662B (zh) * 2020-08-13 2023-07-21 重庆大学 一种基于最优化方法的抗频率漂移扫频干涉动态测距方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241997A (en) * 1978-12-11 1980-12-30 General Motors Corporation Laser spectrometer with frequency calibration
JP2864591B2 (ja) * 1989-12-18 1999-03-03 日本電気株式会社 複数のレーザ装置の発振周波数間隔安定化方法
US5357336A (en) * 1991-08-08 1994-10-18 The Dow Chemical Company Method and apparatus for multivariate characterization of optical instrument response
JPH0897775A (ja) * 1994-09-26 1996-04-12 Nippon Telegr & Teleph Corp <Ntt> 波長監視装置
US5568255A (en) * 1994-10-12 1996-10-22 The United States Of America As Represented By The United States Department Of Energy Apparatus for controlling the scan width of a scanning laser beam
US5838437A (en) * 1997-04-09 1998-11-17 Micron Optics, Inc. Reference system for optical devices including optical scanners and spectrum analyzers

Also Published As

Publication number Publication date
DE69832219D1 (de) 2005-12-15
CN1190184A (zh) 1998-08-12
GB2321516B (en) 1998-12-16
US6078394A (en) 2000-06-20
EP0855811A3 (en) 2001-02-21
DE69832219T2 (de) 2006-07-13
EP0855811A2 (en) 1998-07-29
NO980338L (no) 1998-07-28
GB2321516A (en) 1998-07-29
AU736778B2 (en) 2001-08-02
NO980338D0 (no) 1998-01-26
AU5276398A (en) 1998-07-30
EP0855811B1 (en) 2005-11-09
JPH10221167A (ja) 1998-08-21
GB9800888D0 (en) 1998-03-11
GB9701627D0 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
CN1119879C (zh) 波长管理器
Xu et al. Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter
US7333680B2 (en) Fiber Bragg grating sensor system
US5294075A (en) High accuracy optical position sensing system
AU755090B2 (en) Optical phase detector
US4551019A (en) Measuring chromatic dispersion of fibers
US4397551A (en) Method and apparatus for optical fiber fault location
Huang et al. Demodulation of fiber Bragg grating sensor using cross-correlation algorithm
US20100145648A1 (en) System and method for correcting sampling errors associated with radiation source tuning rate fluctuations in swept-wavelength interferometry
CN104567958A (zh) 基于时分波分复用的分布式微结构传感网络及其使用方法
US6011615A (en) Fiber optic cable having a specified path average dispersion
CN111609875B (zh) 基于啁啾连续光的数字域可调分布式光纤传感系统及方法
He et al. Ultrahigh resolution fiber Bragg grating sensors for quasi-static crustal deformation measurement
US8035888B2 (en) Frequency shifter in an optical path containing a pulsed laser source
KR0160925B1 (ko) 광섬유 스트레인 분포 측정용 펄스광과 프로브광의 비트 주파수 안정화장치
EP0614074B1 (en) Optical wavelength measuring instrument
US6587190B2 (en) System and method for measuring chromatic dispersion in optical fiber
Xu et al. Multiplexed point and stepwise-continuous fiber grating based sensors: practical sensor for structural monitoring?
Wassin et al. Transmission of precise phase coherent optical signals using a VCSEL stabilization system
US20240255360A1 (en) Temperature measurement using fabry-pérot resonator on end of optical fiber
JP2635824B2 (ja) 光波長測定器
Seta et al. Interferometric absolute distance measurement utilizing a mode-jump region of a laser diode
Katagiri et al. High-accuracy laser-wavelength detection using a synchro-scanned optical disk filter
CN116436515A (zh) 一种多路光频域反射仪的检测方法及系统
Zhou et al. High-resolution measurement of laser frequency drift using stable delayed self-heterodyne interferometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MARCONI UK INTELLECTUAL PROP

Free format text: FORMER OWNER: MARCONI COMMUNICATIONS LTD.

Effective date: 20031024

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20031024

Applicant after: MARCONI UK INTELLECTUAL PROPERTY Ltd.

Applicant before: MARCONI COMMUNICATIONS S.P.A.

ASS Succession or assignment of patent right

Owner name: L.M. ERICSSON CO., LTD.

Free format text: FORMER OWNER: M(DGP1) CO., LTD.

Effective date: 20070202

Owner name: M(DGP1) CO., LTD.

Free format text: FORMER OWNER: MARCONI UK INTELLECTUAL PROP

Effective date: 20070202

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070202

Address after: Stockholm, Sweden

Patentee after: ERICSSON AB

Address before: Coventry, United Kingdom

Patentee before: M (DGP1) Ltd.

Effective date of registration: 20070202

Address after: Coventry, United Kingdom

Patentee after: M (DGP1) Ltd.

Address before: England, British Coventry

Patentee before: MARCONI UK INTELLECTUAL PROPERTY Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030827

Termination date: 20160124

EXPY Termination of patent right or utility model