CN111986998B - LDMOS device and preparation method thereof - Google Patents
LDMOS device and preparation method thereof Download PDFInfo
- Publication number
- CN111986998B CN111986998B CN202010984316.4A CN202010984316A CN111986998B CN 111986998 B CN111986998 B CN 111986998B CN 202010984316 A CN202010984316 A CN 202010984316A CN 111986998 B CN111986998 B CN 111986998B
- Authority
- CN
- China
- Prior art keywords
- layer
- metal silicide
- forming
- silicon substrate
- epitaxial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本申请公开了一种LDMOS器件及其制备方法,该器件包括:硅衬底;外延层,其形成于硅衬底上,其厚度大于30微米,其中形成有漂移区和沟道区,漂移区中形成有源区和体区,沟道区的一侧形成有漏区;栅氧层,其形成于外延层上;栅极,其形成于所述栅氧层上;第一金属硅化物层,其形成于栅极上;氧化物层,其形成于第一金属硅化物层和外延层上;第二金属硅化物层,其形成于氧化物层上;层间介质,其形成于氧化物层和第二金属硅化物层上;深接触孔,其形成于层间介质、外延层和硅衬底中,其底端与硅衬底接触。本申请不需要设置高电阻率衬底即可实现降低高频损耗的技术效果,因此不需要通过使用TSV工艺实现接触孔和高电阻率衬底的连接。
The present application discloses an LDMOS device and a preparation method thereof. The device comprises: a silicon substrate; an epitaxial layer formed on the silicon substrate with a thickness greater than 30 microns, wherein a drift region and a channel region are formed, and the drift region An active region and a body region are formed in the middle, and a drain region is formed on one side of the channel region; a gate oxide layer, which is formed on the epitaxial layer; a gate, which is formed on the gate oxide layer; a first metal silicide layer , which is formed on the gate; an oxide layer, which is formed on the first metal silicide layer and the epitaxial layer; a second metal silicide layer, which is formed on the oxide layer; an interlayer dielectric, which is formed on the oxide layer and the second metal silicide layer; a deep contact hole is formed in the interlayer dielectric, the epitaxial layer and the silicon substrate, and its bottom end is in contact with the silicon substrate. In the present application, the technical effect of reducing high-frequency loss can be achieved without setting a high-resistivity substrate, so the connection between the contact hole and the high-resistivity substrate does not need to be realized by using a TSV process.
Description
技术领域technical field
本申请涉及半导体制造技术领域,具体涉及一种横向扩散金属氧化物半导体(laterally-diffused metal-oxide semiconductor,LDMOS)器件及其制备方法。The present application relates to the technical field of semiconductor manufacturing, in particular to a laterally-diffused metal-oxide semiconductor (LDMOS) device and a manufacturing method thereof.
背景技术Background technique
LDMOS器件,尤其是射频(radio frequency,RF)LDMOS器件,被广泛应用于基站、广播电视等射频高功率领域,LDMOS器件通常和其它器件合成,其产品的输出功率可达到500瓦(W)以上。其中,应用于第五代移动通信技术(5th generation mobile networks,5G)的芯片产品需要将信号带宽从长期演进(long term evolution,LTE)的40兆赫兹(MHz)提升至200MHz,因此对器件在高频下的性能提出了较高的要求。LDMOS devices, especially radio frequency (RF) LDMOS devices, are widely used in radio frequency high-power fields such as base stations, radio and television, etc. LDMOS devices are usually synthesized with other devices, and the output power of its products can reach more than 500 watts (W) . Among them, the chip products used in the fifth generation mobile communication technology (5th generation mobile networks, 5G) need to increase the signal bandwidth from 40 megahertz (MHz) of long term evolution (LTE) to 200MHz. Performance at high frequencies places high demands on it.
在高频下,电容电感的损耗直接影响着LDMOS器件的性能,随着频率的增加,电阻线的趋肤效应越来越明显,导线电阻变大,电感损耗增加;同时,为了降低热阻,LDMOS器件通常采用重掺杂衬底,在高频下,重掺杂衬底带来的损耗也较为明显。At high frequency, the loss of capacitance and inductance directly affects the performance of LDMOS devices. As the frequency increases, the skin effect of the resistance line becomes more and more obvious, the resistance of the wire becomes larger, and the loss of the inductance increases; at the same time, in order to reduce the thermal resistance, LDMOS devices usually use heavily doped substrates, and at high frequencies, the losses caused by heavily doped substrates are also more obvious.
相关技术中,为了降低高频下电感损耗,LDMOS器件的接触孔通常采用厚的金属层,或者高电导率的铜导线,为了减低衬底损耗,通常使用电阻率高的衬底(例如玻璃衬底),接触孔和衬底通过硅通孔(through silicon via,TSV)工艺实现连接。In the related art, in order to reduce the inductance loss at high frequency, the contact hole of the LDMOS device usually uses a thick metal layer or a copper wire with high conductivity. In order to reduce the substrate loss, a substrate with high resistivity (such as a glass substrate) is usually used. Bottom), the contact hole and the substrate are connected through a through silicon via (through silicon via, TSV) process.
然而,通过TSV工艺实现接触孔和衬底连接工艺较为复杂且良率较低,从而导致器件的制造成本较高。However, the process of realizing the contact hole and the substrate connection through the TSV process is relatively complicated and the yield rate is low, which leads to high manufacturing cost of the device.
发明内容Contents of the invention
本申请提供了一种LDMOS器件及其制备方法,可以解决相关技术中提供的LDMOS器件的制造成本较高的问题。The present application provides an LDMOS device and a preparation method thereof, which can solve the problem of high manufacturing cost of the LDMOS device provided in the related art.
一方面,本申请实施例提供了一种LDMOS器件的制备方法,包括:On the one hand, the embodiment of the present application provides a method for fabricating an LDMOS device, including:
在硅衬底上形成外延层,所述外延层的厚度大于30微米;forming an epitaxial layer on a silicon substrate, the epitaxial layer having a thickness greater than 30 microns;
在所述外延层上依次形成栅氧层、栅极和第一金属硅化物层;sequentially forming a gate oxide layer, a gate and a first metal silicide layer on the epitaxial layer;
通过离子注入在所述外延层中形成漂移区;forming a drift region in the epitaxial layer by ion implantation;
通过离子注入在所述外延层中形成沟道区;forming a channel region in the epitaxial layer by ion implantation;
通过离子注入在所述沟道区中形成源区和体区,在所述外延层中所述漂移区的一侧形成漏区;forming a source region and a body region in the channel region by ion implantation, and forming a drain region on one side of the drift region in the epitaxial layer;
在所述第一金属硅化物层和所述外延层上形成氧化物层,在所述氧化物层上形成第二金属硅化物层;forming an oxide layer on the first metal silicide layer and the epitaxial layer, and forming a second metal silicide layer on the oxide layer;
在所述氧化物层和所述第二金属硅化物层上形成层间介质;forming an interlayer dielectric on the oxide layer and the second metal silicide layer;
在所述层间介质、所述外延层和所述硅衬底中形成深接触孔,所述深接触孔的底端与所述硅衬底接触。A deep contact hole is formed in the interlayer dielectric, the epitaxial layer and the silicon substrate, and the bottom end of the deep contact hole is in contact with the silicon substrate.
可选的,所述在所述层间介质、所述外延层和所述硅衬底中形成深接触孔,包括:Optionally, forming a deep contact hole in the interlayer dielectric, the epitaxial layer and the silicon substrate includes:
在所述层间介质中形成沟槽;forming a trench in the interlayer dielectric;
在所述外延层和所述硅衬底中形成至少两个通孔;forming at least two vias in the epitaxial layer and the silicon substrate;
在所述沟槽和所述通孔中填充金属钨层,对所述金属钨层进行平坦化处理形成所述深接触孔。A metal tungsten layer is filled in the groove and the through hole, and the metal tungsten layer is planarized to form the deep contact hole.
可选的,所述硅衬底上形成有多个所述深接触孔,所述深接触孔的俯视形状为矩形,所述硅衬底上包括多个单元区域,每个单元区域中形成有相互平行分布的深接触孔,每个单元区域之间的深接触孔相互垂直。Optionally, a plurality of deep contact holes are formed on the silicon substrate, and the top view shape of the deep contact holes is a rectangle, and the silicon substrate includes a plurality of unit regions, each of which is formed with The deep contact holes are distributed parallel to each other, and the deep contact holes between each unit area are perpendicular to each other.
可选的,所述在所述外延层上依次形成栅氧层、栅极和第一金属硅化物层,包括:Optionally, forming a gate oxide layer, a gate and a first metal silicide layer sequentially on the epitaxial layer includes:
通过炉管氧化工艺在所述外延层上形成氧化物;forming an oxide on the epitaxial layer by a furnace tube oxidation process;
在氧化物上形成多晶硅层;forming a polysilicon layer on the oxide;
在多晶硅层上形成金属层,通过热处理使金属层与所述多晶硅层反应生成金属硅化物,对所述金属层进行平坦化处理去除多余的金属层;forming a metal layer on the polysilicon layer, reacting the metal layer with the polysilicon layer to form a metal silicide through heat treatment, and performing planarization treatment on the metal layer to remove the redundant metal layer;
通过光刻工艺定义所述栅极对应的区域,进行刻蚀去除暴露区域的金属硅化物、多晶硅层和氧化物,剩余的金属硅化物形成所述第一金属硅化物层,剩余的多晶硅层形成所述栅极,剩余的氧化物形成所述栅氧层。The area corresponding to the gate is defined by a photolithography process, and the metal silicide, polysilicon layer and oxide in the exposed area are etched to remove, the remaining metal silicide forms the first metal silicide layer, and the remaining polysilicon layer forms For the gate, the remaining oxide forms the gate oxide layer.
另一方面,本申请实施例提供了一种LDMOS器件,包括:On the other hand, an embodiment of the present application provides an LDMOS device, including:
硅衬底;Silicon substrate;
外延层,所述外延层形成于所述硅衬底上,所述外延层的厚度大于30微米,所述外延层中形成有漂移区和沟道区,所述沟道区中形成有源区和体区,所述漂移区的一侧形成有漏区;An epitaxial layer, the epitaxial layer is formed on the silicon substrate, the thickness of the epitaxial layer is greater than 30 microns, a drift region and a channel region are formed in the epitaxial layer, and an active region is formed in the channel region and a body region, a drain region is formed on one side of the drift region;
栅氧层,所述栅氧层形成于所述外延层上;a gate oxide layer, the gate oxide layer is formed on the epitaxial layer;
栅极,所述栅极形成于所述栅氧层上;a gate, the gate is formed on the gate oxide layer;
第一金属硅化物层,所述第一金属硅化物层形成于所述栅极上;a first metal silicide layer, the first metal silicide layer is formed on the gate;
氧化物层,所述氧化物层形成于所述第一金属硅化物层和所述外延层上;an oxide layer formed on the first metal silicide layer and the epitaxial layer;
第二金属硅化物层,所述第二金属硅化物层形成于所述氧化物层上;a second metal silicide layer formed on the oxide layer;
层间介质,所述层间介质形成于所述氧化物层和所述第二金属硅化物层上;an interlayer dielectric formed on the oxide layer and the second metal silicide layer;
深接触孔,所述深接触孔形成于所述层间介质、所述外延层和所述硅衬底中,所述深接触孔的底端与所述硅衬底接触。A deep contact hole is formed in the interlayer dielectric, the epitaxial layer and the silicon substrate, and the bottom end of the deep contact hole is in contact with the silicon substrate.
可选的,所述深接触孔包括钨。Optionally, the deep contact hole includes tungsten.
可选的,所述硅衬底上形成有多个所述深接触孔,所述深接触孔的俯视形状为矩形,所述硅衬底上包括多个区域,每个区域中形成有相互平行分布的深接触孔,每个区域之间的深接触孔相互垂直。Optionally, a plurality of deep contact holes are formed on the silicon substrate, the top view shape of the deep contact holes is a rectangle, and the silicon substrate includes a plurality of regions, each region is formed with Distributed deep contact holes, the deep contact holes between each area are perpendicular to each other.
可选的,所述第一金属硅化物层包括钛金属硅化物。Optionally, the first metal silicide layer includes titanium metal silicide.
可选的,所述第二金属硅化物层包括钨金属硅化物。Optionally, the second metal silicide layer includes tungsten metal silicide.
可选的,所述深接触孔的深度大于40微米。Optionally, the depth of the deep contact hole is greater than 40 microns.
本申请技术方案,至少包括如下优点:The technical solution of the present application at least includes the following advantages:
通过在硅衬底上形成厚度大于30微米的外延层,在层间介质、外延层和硅衬底中形成深接触孔,通过深接触孔将器件的源区和硅衬底连接,由于大于30微米的外延层能够降低硅衬底的高频损耗,因此不需要设置高电阻率衬底即可实现降低高频损耗的技术效果,因此不需要通过使用TSV工艺实现接触孔和高电阻率衬底的连接,降低了器件的工艺复杂度,在一定程度上降低了器件的制造成本。By forming an epitaxial layer with a thickness greater than 30 microns on the silicon substrate, deep contact holes are formed in the interlayer dielectric, the epitaxial layer, and the silicon substrate, and the source region of the device is connected to the silicon substrate through the deep contact holes. The micron epitaxial layer can reduce the high-frequency loss of the silicon substrate, so the technical effect of reducing the high-frequency loss can be achieved without setting a high-resistivity substrate, so there is no need to use the TSV process to realize contact holes and high-resistivity substrates The connection reduces the process complexity of the device and reduces the manufacturing cost of the device to a certain extent.
附图说明Description of drawings
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific embodiments of the present application or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the specific embodiments or prior art. Obviously, the accompanying drawings in the following description The drawings are some implementations of the present application, and those skilled in the art can obtain other drawings based on these drawings without creative work.
图1是本申请一个示例性实施例提供的LDMOS器件的制备方法的流程图;Fig. 1 is the flowchart of the preparation method of the LDMOS device provided by an exemplary embodiment of the present application;
图2至图7是本申请一个示例性实施例提供的LDMOS器件的制备过程的示意图;2 to 7 are schematic diagrams of the preparation process of an LDMOS device provided by an exemplary embodiment of the present application;
图8是本申请一个示例性实施例提供的LDMOS器件的深接触孔的分布俯视图。Fig. 8 is a top view of distribution of deep contact holes of an LDMOS device provided by an exemplary embodiment of the present application.
具体实施方式Detailed ways
下面将结合附图,对本申请中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在不做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。The technical solutions in this application will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are part of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of this application, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, use a specific orientation construction and operation, therefore should not be construed as limiting the application. In addition, the terms "first", "second", and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电气连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that unless otherwise specified and limited, the terms "installation", "connection", and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection, or integral connection; it may be mechanical connection or electrical connection; it may be direct connection or indirect connection through an intermediary, or it may be the internal communication of two components, which may be wireless connection or wired connection connect. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。In addition, the technical features involved in the different embodiments of the present application described below may be combined as long as they do not constitute a conflict with each other.
参考图1,其示出了本申请一个示例性实施例提供的LDMOS器件的制备方法的流程图,该方法可以用于RFLDMOS器件的制造中,该方法包括:With reference to Fig. 1, it shows the flow chart of the preparation method of the LDMOS device that an exemplary embodiment of the present application provides, and this method can be used in the manufacture of RFLDMOS device, and this method comprises:
步骤101,在硅衬底上形成外延层,该外延层的厚度大于30微米。In
参考图2,其示出了在硅衬底上形成外延层的剖面示意图。如图2所示,以衬底210的表面所在的平面定义X轴和Y轴,将衬底210的厚度所在的方向定义为Z轴。本申请实施例中,可通过外延生长在硅衬底210上生长厚度h1大于30微米的外延层220。其中,硅衬底210和外延层220中的掺杂的离子为第一类型的离子,硅衬底210为重掺杂衬底,其离子掺杂浓度大于外延层220。Referring to FIG. 2 , it shows a schematic cross-sectional view of forming an epitaxial layer on a silicon substrate. As shown in FIG. 2 , the X-axis and the Y-axis are defined by the plane where the surface of the
步骤102,在外延层上依次形成栅氧层、栅极和第一金属硅化物层。
步骤103,通过离子注入在外延层中形成漂移区。
步骤104,通过离子注入在外延层中形成沟道区。
步骤105,通过离子注入在沟道区中形成源区和体区,在外延层中漂移区的一侧形成漏区。
步骤106,在第一金属硅化物层和外延层上形成氧化物层,在氧化物层上形成第二金属硅化物层。
步骤107,在氧化物层和第二金属硅化物层上形成层间介质。
参考图3,其示出了在形成深接触孔之前,形成得到的结构的剖面示意图。如图3所示,外延层220中形成有沟道区201和漂移区202,沟道区201中形成有源区203和体区204,漂移区202的一侧形成有漏区205,外延层220上形成有栅氧层230,栅氧层230上形成有栅极240,栅极240上形成有第一金属硅化物层251,外延层220和第一金属硅化层251上形成有氧化物层260,氧化物层260上形成有第二金属硅化物层252。Referring to FIG. 3 , it shows a schematic cross-sectional view of the resulting structure formed before forming the deep contact hole. As shown in Figure 3, a
可选的,本申请实施例中,步骤102包括但不限于:通过炉管氧化工艺在外延层220上形成氧化物;在氧化物上形成多晶硅层;在多晶硅层上形成金属层,通过热处理使金属层与多晶硅层反应生成金属硅化物,对金属层进行平坦化处理去除多余的金属层;通过光刻工艺定义栅极240对应的区域,进行刻蚀去除暴露区域的金属硅化物、多晶硅层和氧化物,剩余的金属硅化物形成第一金属硅化物层251,剩余的多晶硅层形成栅极240,剩余的氧化物形成栅氧层230。其中,第一金属硅化物层251包括钛金属硅化物。Optionally, in this embodiment of the present application,
示例性的,在形成栅氧层230、栅极240和第一金属硅化物层251后,可进行第二类型的离子注入形成沟道区201,进行第一类型的离子注入形成漂移区202,进行第二类型的离子注入形成源区203和漏区205,进行第一类型的离子注入形成体区204。Exemplarily, after forming the
示例性的,可在外延层220上通过化学气相沉积(chemical vapor deposition,CVD)工艺形成氧化物层260,在氧化物层260上形成金属层,通过热处理使金属层与多晶硅层反应生成金属硅化物,对金属层进行平坦化处理去除多余的金属层,通过光刻工艺定义第二金属硅化物层252对应的区域,进行刻蚀去除暴露区域的金属硅化物,剩余的金属硅化物形成第二金属硅化物层252,在在氧化物层260和第二金属硅化物层252上通过CVD工艺沉积形成层间介质270。其中,第二金属硅化物层252包括钨金属硅化物;层间介质270包括高介电常数材料(介电常数k大于4的材料,例如二氧化硅SiO2)。Exemplarily, an
可选的,本申请实施中,在形成氧化物层260之前,还包括:在源区203和体区204中形成第三金属硅化物层253,在漏区205中形成第四金属硅化物层254。形成第三金属硅化物层253和第四金属硅化物层254的方法可参考上述实施例,在此不做赘述。Optionally, in the implementation of the present application, before forming the
步骤108,在层间介质、外延层和硅衬底中形成深接触孔,该深接触孔的底端与硅衬底接触。Step 108, forming a deep contact hole in the interlayer dielectric, the epitaxial layer and the silicon substrate, and the bottom of the deep contact hole is in contact with the silicon substrate.
可选的,步骤108包括但不限于:在层间介质中形成沟槽;在外延层和硅衬底中形成至少两个通孔;在沟槽和通孔中填充金属钨层,对金属钨层进行平坦化处理形成深接触孔。Optionally, step 108 includes but is not limited to: forming a trench in the interlayer dielectric; forming at least two via holes in the epitaxial layer and the silicon substrate; filling the trenches and via holes with a metal tungsten layer, and The layer is planarized to form deep contact holes.
参考图4,其示出了在层间介质中形成沟槽的剖面示意图。示例性的,如图4所示,可通过光刻工艺在层间介质270上定义沟槽271对应的区域,进行刻蚀去除暴露区域的层间介质,形成沟槽271,沟槽271底部的外延层220暴露在外。Referring to FIG. 4 , it shows a schematic cross-sectional view of forming trenches in the interlayer dielectric. Exemplarily, as shown in FIG. 4, the region corresponding to the
参考图5,其示出了在外延层和硅衬底中形成至少两个通孔的剖面示意图。示例性的,如图5所示,可通过光刻工艺在外延层220上定义至少两个通孔221(图5中以两个通孔221进行示例性说明)对应的区域,进行刻蚀去除暴露区域的外延层220和目标深度的硅衬底210,形成通孔221。Referring to FIG. 5 , it shows a schematic cross-sectional view of forming at least two via holes in the epitaxial layer and the silicon substrate. Exemplarily, as shown in FIG. 5 , regions corresponding to at least two through holes 221 (two through
可选的,本申请实施例中,在沟槽和通孔中填充金属钨层之前,还包括:在沟槽和通孔的侧壁生长阻挡层(barrier layer)。Optionally, in this embodiment of the present application, before filling the trenches and via holes with the metal tungsten layer, the method further includes: growing a barrier layer on sidewalls of the trenches and via holes.
参考图6,其示出了在沟槽和通孔的侧壁生长扩散阻挡层的剖面示意图;参考图7,其示出了形成得到深接触孔的剖面示意图。示例性的,如图6所示,沟槽271和通孔221的侧壁生长有扩散阻挡层281;如图7所示,可通过在沟槽271和通孔221中填充金属钨层,对金属钨层进行平坦化处理得到深接触孔280。可选的,深接触孔280的深度h2大于40微米。Referring to FIG. 6 , it shows a schematic cross-sectional view of growing a diffusion barrier layer on the sidewalls of trenches and via holes; referring to FIG. 7 , it shows a schematic cross-sectional view of forming a deep contact hole. Exemplarily, as shown in FIG. 6, a
参考图8,其示出了一种可选的深接触孔的分布俯视图。如图7所示,硅衬底210上形成有多个深接触孔280,深接触孔280的俯视形状为矩形,硅衬底210上包括多个单元区域211,每个单元区域211中形成有相互平行分布的深接触孔280,每个单元区域211之间的深接触孔280相互垂直。通过将每个单元区域211之间的深接触孔280设置为相互垂直,能够解决相关技术中衬底上分布的深接触孔相互平行所导致的衬底翘曲的问题,提高了良率。Referring to FIG. 8 , it shows a top view of an optional distribution of deep contact holes. As shown in FIG. 7, a plurality of deep contact holes 280 are formed on the
综上所述,本申请实施例中,通过在硅衬底上形成厚度大于30微米的外延层,在层间介质、外延层和硅衬底中形成深接触孔,通过深接触孔将器件的源区和硅衬底连接,由于大于30微米的外延层能够降低硅衬底的高频损耗,因此不需要设置高电阻率衬底即可实现降低高频损耗的技术效果,因此不需要通过使用TSV工艺实现接触孔和高电阻率衬底的连接,降低了器件的工艺复杂度,在一定程度上降低了器件的制造成本。To sum up, in the embodiment of the present application, by forming an epitaxial layer with a thickness greater than 30 microns on the silicon substrate, a deep contact hole is formed in the interlayer dielectric, the epitaxial layer, and the silicon substrate, and the device is connected through the deep contact hole. The source region is connected to the silicon substrate. Since the epitaxial layer larger than 30 microns can reduce the high-frequency loss of the silicon substrate, the technical effect of reducing the high-frequency loss can be achieved without setting a high-resistivity substrate. Therefore, it is not necessary to use The TSV process realizes the connection between the contact hole and the high-resistivity substrate, reduces the process complexity of the device, and reduces the manufacturing cost of the device to a certain extent.
参考图7,其示出了本申请一个示例性实施例提供的LDMOS器件的剖面示意图。如图7所示,该LDMOS器件包括:Referring to FIG. 7 , it shows a schematic cross-sectional view of an LDMOS device provided by an exemplary embodiment of the present application. As shown in Figure 7, the LDMOS device includes:
硅衬底210;
外延层220,其形成于硅衬底210上,其厚度大于30微米,其中形成有沟道区201和漂移区202,沟道区201中形成有源区203和体区204,漂移区202的一侧形成有漏区205;The
栅氧层230,其形成于外延层220上;a
栅极240,其形成于栅氧层230上;a
第一金属硅化物层251,其形成于栅极230上;a first
氧化物层260,其形成于第一金属硅化物层251和外延层220上;an
第二金属硅化物层252,其形成于氧化物层260上;a second metal silicide layer 252 formed on the
层间介质270,其形成于氧化物层260和第二金属硅化物层251上;an
深接触孔280,其形成于层间介质270、外延层220和硅衬底210中,其底端与硅衬底210接触。The
可选的,深接触孔280包括钨。Optionally,
可选的,参考图8,硅衬底210上形成有多个深接触孔280,深接触孔280的俯视形状为矩形,硅衬底210上包括多个区域211,每个区域211中形成有相互平行分布的深接触孔280,每个区域211之间的深接触孔280相互垂直。Optionally, referring to FIG. 8 , a plurality of deep contact holes 280 are formed on the
可选的,第一金属硅化物层251包括钛金属硅化物。Optionally, the first
可选的,第二金属硅化物层252包括钨金属硅化物。Optionally, the second metal silicide layer 252 includes tungsten metal silicide.
可选的,深接触孔280的深度h2大于40微米。Optionally, the depth h2 of the
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. However, the obvious changes or changes derived therefrom are still within the protection scope of the invention of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010984316.4A CN111986998B (en) | 2020-09-18 | 2020-09-18 | LDMOS device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010984316.4A CN111986998B (en) | 2020-09-18 | 2020-09-18 | LDMOS device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111986998A CN111986998A (en) | 2020-11-24 |
CN111986998B true CN111986998B (en) | 2023-03-14 |
Family
ID=73450906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010984316.4A Active CN111986998B (en) | 2020-09-18 | 2020-09-18 | LDMOS device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111986998B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102376570B (en) * | 2010-08-19 | 2013-07-24 | 上海华虹Nec电子有限公司 | Manufacturing method of N-type radio frequency lateral double-diffused metal-oxide semiconductor (LDMOS) |
CN102201406B (en) * | 2011-04-26 | 2012-11-07 | 电子科技大学 | Bipolar CMOS DMOS (BCD) integrated device based on N type extension layer and manufacture method thereof |
US9666710B2 (en) * | 2015-05-19 | 2017-05-30 | Nxp Usa, Inc. | Semiconductor devices with vertical field floating rings and methods of fabrication thereof |
US20200194583A1 (en) * | 2018-12-14 | 2020-06-18 | AZ Power, Inc | Metal source ldmos semiconductor device and manufacturing method thereof |
-
2020
- 2020-09-18 CN CN202010984316.4A patent/CN111986998B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111986998A (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI542018B (en) | MOSFET with integrated Schottky diode | |
US11777000B2 (en) | SiC trench MOSFET with low on-resistance and switching loss | |
CN103633063B (en) | Semiconductor device, integrated circuit and manufacturing method thereof | |
CN107546204B (en) | Semiconductor device including LDMOS transistor, method for manufacturing the same, and LDMOS transistor | |
US20220367710A1 (en) | Sic super junction trench mosfet | |
CN116682859A (en) | Multi-channel silicon carbide MOSFET device and method of making same | |
CN113540215B (en) | High-reliability power MOSFET and manufacturing method thereof | |
CN107546271A (en) | LDMOS transistors and method | |
CN117637853A (en) | Silicon carbide trench gate MOSFET cell structure and manufacturing method thereof | |
CN102148143B (en) | Semiconductor device and transistor | |
CN111986998B (en) | LDMOS device and preparation method thereof | |
CN114388623A (en) | Power transistor and preparation method thereof | |
CN116525659B (en) | Vertical gate LDMOSFET device and manufacturing method, power chip | |
CN117316769B (en) | A self-aligned silicon carbide MOSFET device and its preparation method | |
CN107221500A (en) | Double trench field-effect pipes and preparation method thereof | |
TW202407808A (en) | Power semiconductor device and manufacturing method thereof | |
CN114023811B (en) | Shielded gate trench type MOSFET device and manufacturing method thereof | |
CN104241356A (en) | DMOS device and manufacturing method thereof | |
CN115312601A (en) | MOSFET device and preparation method thereof | |
TW202337026A (en) | Semiconductor structure and method for manufacturing buried field plates | |
JP2023545549A (en) | Semiconductor device with split gate structure and manufacturing method thereof | |
CN114093950B (en) | LDMOS device of stepped STI auxiliary field plate and manufacturing method thereof | |
CN116525660B (en) | LDMOSFET device with longitudinal gate oxide structure and manufacturing method | |
CN113224165B (en) | LDMOS device and manufacturing method thereof | |
CN111383922B (en) | Preparation method of JFET device, JFET device and layout structure of JFET device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |