CN111983419B - 用于检测多相无刷励磁机整流器二极管故障的方法和系统 - Google Patents

用于检测多相无刷励磁机整流器二极管故障的方法和系统 Download PDF

Info

Publication number
CN111983419B
CN111983419B CN202010899380.2A CN202010899380A CN111983419B CN 111983419 B CN111983419 B CN 111983419B CN 202010899380 A CN202010899380 A CN 202010899380A CN 111983419 B CN111983419 B CN 111983419B
Authority
CN
China
Prior art keywords
detection coil
brushless exciter
multiphase brushless
port voltage
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010899380.2A
Other languages
English (en)
Other versions
CN111983419A (zh
Inventor
孙宇光
杜威
桂林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202010899380.2A priority Critical patent/CN111983419B/zh
Publication of CN111983419A publication Critical patent/CN111983419A/zh
Application granted granted Critical
Publication of CN111983419B publication Critical patent/CN111983419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Synchronous Machinery (AREA)

Abstract

本发明实施例提供一种用于检测多相无刷励磁机的旋转整流器二极管故障的方法和系统及存储介质。方法包括:在多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制子探测线圈,其中,P为多相无刷励磁机的极对数;将所绕制的两个子探测线圈反向串联,以获得磁极探测线圈,其中,磁极探测线圈的端口保持开路状态检测磁极探测线圈的实际端口电压计算实际端口电压的各次谐波分量的有效值计算在线监测值Cd;将在线监测值Cd与报警值ad相比较,如果在线监测值Cd大于报警值ad,则确定多相无刷励磁机存在旋转整流器二极管故障,否则,确定多相无刷励磁机不存在旋转整流器二极管故障。可提高故障监测的灵敏度和可靠性。

Description

用于检测多相无刷励磁机整流器二极管故障的方法和系统
技术领域
本发明涉及电力系统主设备继电保护及在线监测技术领域,更具体地涉及一种用于检测多相无刷励磁机的旋转整流器二极管故障的方法和系统及存储介质。
背景技术
多相环形绕组无刷励磁系统已经广泛应用于大型核电机组中,是核能发电系统中重要的组成部分,无刷励磁系统的安全稳定运行对于整个发电系统至关重要。但是,目前无刷励磁系统仅采用“弱保护”配置,一般的无刷励磁系统出厂仅配置简单的定子过流保护和旋转整流器二极管故障检测装置(DNC)保护,近年来由励磁机故障引起的停机检修事故也时有发生,“弱保护”的现状已经限制到大容量无刷励磁系统的发展。多相环形绕组无刷励磁机(简称为多相无刷励磁机)可能发生的电气故障种类很多,例如定子励磁绕组匝间短路(即本文所述的定子励磁绕组故障)、转子电枢绕组内部短路、旋转整流器二极管开路和电枢断线等,这些电气故障都会对无刷励磁系统以及整个核电系统的安全运行带来严重威胁。
图1示出现有多相无刷励磁机的部分结构的示意图。无刷励磁机取消了有刷励磁系统的碳刷滑环结构,将交流电通过旋转的整流器整流为直流电后,直接输给同轴旋转的主发电机励磁绕组,减少了中间环节,从而提高了励磁系统的稳定性。但是,也因此带来了其他问题,例如,多相无刷励磁机的整流器二极管是处于高速旋转的工作状态,在多相无刷励磁机运行时难以对整流器二极管的安全进行实时监测。由于实际运行中整流器二极管长时间工作在强离心力、大电流的工况下,二极管损坏情况时有发生。目前,应用于核电的大容量无刷励磁系统为保护旋转整流器二极管,在出厂时会配备旋转整流器DNC进行保护,但当其霍尔检测元件失效时,会引起保护装置的误动或拒动。此外,目前提出一种基于定子励磁电流的旋转整流器二极管故障检测方法,通过旋转整流器二极管开路在定子励磁电流中引起的谐波分量来进行故障鉴别。这种方法的缺点在于,励磁机的定子励磁绕组电压通常是由交流电压源整流得到,会在运行中引入电流的固有谐波;并且定子励磁电流会受到自动电压调节器的影响,这些因素都会影响故障判据的准确性。
发明内容
考虑到上述问题而提出了本发明。本发明提供了一种用于检测多相无刷励磁机的旋转整流器二极管故障的方法和系统及存储介质。
根据本发明一个方面,提供了一种用于检测多相无刷励磁机的旋转整流器二极管故障的方法,包括:
在多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制子探测线圈,其中,P为多相无刷励磁机的极对数;
将所绕制的两个子探测线圈反向串联,以获得磁极探测线圈,其中,磁极探测线圈的端口保持开路状态;
检测磁极探测线圈的实际端口电压;
计算实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure BDA0002659314950000021
其中,M为多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为实际端口电压中的2M/P的倍数次谐波分量的有效值;
将在线监测值Cd与报警值ad相比较,如果在线监测值Cd大于报警值ad,则确定多相无刷励磁机存在旋转整流器二极管故障,否则,确定多相无刷励磁机不存在旋转整流器二极管故障。
示例性地,报警值ad落入[0.1,0.2]的范围内。
示例性地,方法还包括:
获取多相无刷励磁机或与多相无刷励磁机相同类型的样本励磁机在正常运行时测试探测线圈的理论端口电压,其中,测试探测线圈采用与磁极探测线圈相同的布置方式布置在多相无刷励磁机或样本励磁机上;
计算理论端口电压的各次谐波分量的有效值;
根据以下公式计算报警值ad
Figure BDA0002659314950000031
其中,U2M/P、U23M/P、…、U2(2P-1)M/P为理论端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U22M/P、U24M/P、…、U22M为理论端口电压中的2M/P的倍数次谐波分量的有效值,Kdtol为预设裕度系数。
示例性地,Kdtol的取值范围如下:2≤Kdtol≤10。
示例性地,计算实际端口电压的各次谐波分量的有效值包括:
结合总体最小二乘旋转不变子空间算法和模拟退火算法来计算实际端口电压的各次谐波分量的有效值。
示例性地,两个子探测线圈中的每个子探测线圈的匝数为多相无刷励磁机的励磁绕组每极串联匝数的1/10。
示例性地,对于两个子探测线圈中的每个子探测线圈,该子探测线圈围绕对应磁极的纵轴中的第一线段绕制,该子探测线圈的对应磁极上的励磁绕组围绕对应磁极的纵轴中的第二线段绕制,第一线段与第二线段不重叠。
根据本发明另一方面,提供了一种用于检测多相无刷励磁机的旋转整流器二极管故障的系统,包括:
磁极探测线圈,包括两个子探测线圈,两个子探测线圈用于在多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制并反向串联以获得串联后的磁极探测线圈,其中,P为多相无刷励磁机的极对数,磁极探测线圈的端口保持开路状态;
电压检测装置,与磁极探测线圈的端口连接,用于检测磁极探测线圈的端口电压;
处理装置,与电压检测装置连接,用于:
获取通过电压检测装置检测获得的、磁极探测线圈布置在多相无刷励磁机上时的实际端口电压;
计算实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure BDA0002659314950000041
其中,M为多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为实际端口电压中的2M/P的倍数次谐波分量的有效值;
将在线监测值Cd与报警值ad相比较,如果在线监测值Cd大于报警值ad,则确定多相无刷励磁机存在旋转整流器二极管故障,否则,确定多相无刷励磁机不存在旋转整流器二极管故障。
根据本发明另一方面,提供了一种存储介质,在存储介质上存储了程序指令,程序指令在运行时用于执行以下步骤:
获取磁极探测线圈布置在多相无刷励磁机上时的实际端口电压,其中,磁极探测线圈包括两个子探测线圈,两个子探测线圈用于在多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制并反向串联以获得串联后的磁极探测线圈,其中,P为多相无刷励磁机的极对数,磁极探测线圈的端口保持开路状态;
计算实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure BDA0002659314950000042
其中,M为多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为实际端口电压中的2M/P的倍数次谐波分量的有效值;
将在线监测值Cd与报警值ad相比较,如果在线监测值Cd大于报警值ad,则确定多相无刷励磁机存在旋转整流器二极管故障,否则,确定多相无刷励磁机不存在旋转整流器二极管故障。
根据本发明实施例的用于检测多相无刷励磁机的旋转整流器二极管故障的方法和系统及存储介质,可以有效提高对多相环形绕组无刷励磁系统故障监测的灵敏度和可靠性,在故障监测方面具有较大的应用前景。
附图说明
通过结合附图对本发明实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1示出现有多相无刷励磁机的部分结构的示意图;
图2示出布置有q轴探测线圈的多相无刷励磁机的部分结构的示意性立体图;
图3示出布置有q轴探测线圈的多相无刷励磁机的部分结构的示意性主视图;
图4示出根据本发明实施例的用于检测多相无刷励磁机的旋转整流器二极管故障的方法的示意性流程图;
图5示出根据本发明一个实施例的在多相无刷励磁机的磁极上绕制子探测线圈的示意性立体图;
图6示出根据本发明一个实施例的在多相无刷励磁机的磁极上绕制子探测线圈的示意性主视图;
图7示出根据本发明一个实施例的(在5对极多相无刷励磁机中)子探测线圈的布置方式的示意图;
图8示出Ufd=10V,R=2Ω,n=960r/min的正常工况下磁极探测线圈端口电压的实验波形;
图9示出磁极探测线圈在正常工况下端口电压的傅里叶分解结果;
图10示出Ufd=10V,R=10Ω,n=960r/min的工况下发生单个二极管开路故障时磁极探测线圈端口电压的实验波形;
图11示出磁极探测线圈在旋转整流器二极管故障下端口电压的傅里叶分解结果;
图12示出Ufd=10V,R=2Ω,n=960r/min的工况下发生定子励磁绕组匝间短路50%故障时磁极探测线圈端口电压的实验波形;
图13示出磁极探测线圈在定子励磁绕组匝间短路50%故障下端口电压的傅里叶分解结果;
图14示出Ufd=10V,R=10Ω,n=960r/min的工况下发生转子电枢相绕组70%匝间短路故障时磁极探测线圈端口电压的实验波形;
图15示出磁极探测线圈在电枢绕组内部短路故障下端口电压的傅里叶分解结果;
图16示出Ufd=10V,R=10Ω,n=960r/min工况下发生转子电枢绕组单相断线故障时磁极探测线圈端口电压的实验波形;
图17示出磁极探测线圈在电枢断线故障下端口电压的傅里叶分解结果;
图18示出11相环形绕组无刷励磁机的旋转整流器的二极管分布的示意图;
图19示出两个共阴极管和开路工况下磁极探测线圈端口电压的仿真波形;
图20示出一个共阴极管和一个(不在同一桥臂的)共阳极管开路工况下磁极探测线圈端口电压的仿真波形;以及
图21示出根据本发明一个实施例的用于检测多相无刷励磁机的旋转整流器二极管故障的系统的示意性框图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
本发明实施例提供一种用于检测多相无刷励磁机的旋转整流器二极管故障的方法和系统。该用于检测多相无刷励磁机的旋转整流器二极管故障的方法涉及一种新型的磁极探测线圈。
目前,部分多相无刷励磁机在定子磁极之间安装了特制的q轴(即交轴)探测线圈,通过q轴磁场感应的电动势估测主发电机励磁电流,解决旋转整流器输出电流(即提供给主发电机的励磁电流)无法直接测量的问题。图2示出布置有q轴探测线圈的多相无刷励磁机的部分结构的示意性立体图。图3示出布置有q轴探测线圈的多相无刷励磁机的部分结构的示意性主视图。
本发明提出的磁极探测线圈完全不同于传统的q轴探测线圈。首先,q轴探测线圈等效节距非常小;而磁极探测线圈中的每个子探测线圈是绕制在磁极上、节距接近于整距的线圈。其次,q轴探测线圈的长度比励磁机轴向长度短得多;而磁极探测线圈中的每个子探测线圈的长度略大于励磁机轴向长度。此外,从功能上看,现有q轴探测线圈是用来估测主发电机励磁电流的,而磁极探测线圈主要用于反映多相无刷励磁机定转子之间气隙磁场的变化情况进而反映电气故障是否存在。具体地,磁极探测线圈的端口电压的变化可以反映多相无刷励磁机定转子之间气隙磁场的变化,并且多相无刷励磁机定转子之间气隙磁场的变化情况可以用于判断电气故障是否存在,因此,利用本发明提出的新型磁极探测线圈,通过监测其端口电压,可以检测多相环形绕组无刷励磁系统的旋转整流器二极管故障(即旋转整流器二极管开路故障)。
本领域技术人员可以理解的是,旋转整流器的位于同一桥臂的两个二极管同时开路的故障,无论从电路拓扑结构还是从其技术效果上看,均等同于电枢断线故障,因此,在本文中,将该故障归结为电枢断线故障,即本文所述的电枢断线故障可以包括旋转整流器的位于同一桥臂的两个二极管同时开路的故障。而本发明实施例中所考虑的旋转整流器二极管故障(即旋转整流器二极管开路故障),不包括上述位于同一桥臂的两个二极管同时开路的情况,而是仅包括位于不同桥臂的两个二极管同时开路的情况。
图4示出根据本发明实施例的用于检测多相无刷励磁机的旋转整流器二极管故障的方法400的示意性流程图。如图4所示,用于检测多相无刷励磁机的旋转整流器二极管故障的方法400包括步骤S410、S420、S430、S440、S450和S460。
在步骤S410,在多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制子探测线圈,其中,P为多相无刷励磁机的极对数。
在步骤S420,将所绕制的两个子探测线圈反向串联,以获得磁极探测线圈,其中,磁极探测线圈的端口保持开路状态。
为了提高多相环形绕组无刷励磁系统运行的安全可靠性,实现对多相无刷励磁系统可能发生的旋转整流器二极管故障进行在线监测,本发明提出一种安装在多相无刷励磁机静止磁极上的探测线圈。针对在多相无刷励磁机的电机圆周上均匀分布(即相距P极)的两个磁极,在其中的每个磁极上分别绕制子探测线圈。绕制子探测线圈的两个磁极可以任意选取,只需满足相距P极的条件即可。
图5示出根据本发明一个实施例的在多相无刷励磁机的磁极上绕制子探测线圈的示意性立体图,图6示出根据本发明一个实施例的在多相无刷励磁机的磁极上绕制子探测线圈的示意性主视图。图5和图6示出的是1匝的子探测线圈,其中图5示出的线圈首、末两端分别标记为1和1′。图5和图6仅是示例而非对本发明的限制,子探测线圈可以具有任意合适的匝数。
如图5和6所示,子探测线圈的绕制方法与每极励磁绕组的绕制方法类似,本文不做赘述。所绕制的每个子探测线圈的节距接近于整距,即每个子探测线圈的节距与整距之间的差距小于预定节距阈值。该预定节距阈值可以是任意的,其可以根据需要设定,例如设定为0.2倍节距。此外,所绕制的每个子探测线圈的长度略大于励磁机轴向长度,即每个子探测线圈的长度与励磁机轴向长度之间的差距小于预定长度阈值。该预定长度阈值可以是任意的,其可以根据需要设定,例如设定为0.5厘米。
示例性地,对于两个子探测线圈中的每个子探测线圈,该子探测线圈围绕对应磁极的纵轴中的第一线段绕制,该子探测线圈的对应磁极上的励磁绕组围绕对应磁极的纵轴中的第二线段绕制,第一线段与第二线段不重叠。继续参见图5和6,示出了第一线段和第二线段,其中,第一线段采用较粗线条表示,第二线段采用较细线条表示。由图5和6可见,子探测线圈与对应磁极上的励磁绕组同轴布置,即二者均围绕对应磁极的纵轴(d轴)布置。此外,子探测线圈位于对应磁极上的除励磁绕组所在空间以外的剩余空间内,二者的分布空间不重叠。
两个子探测线圈中的每个子探测线圈的匝数可以根据需要任意设定。在一个示例中,两个子探测线圈中的每个子探测线圈的匝数可为多相无刷励磁机的励磁绕组每极串联匝数的1/10。在励磁绕组每极串联匝数的1/10不是整数的情况下,对励磁绕组每极串联匝数的1/10取整,例如采用四舍五入的方式取整,所获得的整数作为两个子探测线圈中的每个子探测线圈的匝数。子探测线圈的匝数太少,磁极探测线圈的端口电压会比较小,不利于电压分析和电气故障检测。子探测线圈的匝数太多,磁极探测线圈的端口电压过大,可能会对励磁绕组绝缘产生不良影响,同时线圈的制造成本及其安装成本均会大幅上升。每个子探测线圈的匝数为励磁绕组每极串联匝数的1/10,这是综合故障检测精度以及设备成本之后所选取的比较合适的线圈匝数。
将所绕制的两个子探测线圈反向串联,即可获得磁极探测线圈。布置好的磁极探测线圈的端口始终保持开路状态,其内部始终没有电流,并且磁极探测线圈与励磁机励磁绕组等部件都保持绝缘,从而可以避免磁极探测线圈对励磁机运行的干扰。
图7示出根据本发明一个实施例的子探测线圈的布置方式的示意图。图7示出了极对数为5的多相无刷励磁机的10个磁极。如图7所示,在第1极与第6极分别绕制了子探测线圈11′和66′,再将这两个子探测线圈反向串联,进而获得磁极探测线圈。
在一个实施例中,磁极探测线圈的数目可以为一个,这一磁极探测线圈可以一次或多次地绕制在相距P极的两个磁极上,每次绕制的磁极可以相同或不同,并可以在每次磁极探测线圈绕制在磁极上时检测对应的实际端口电压,以获得一次或多次检测结果。也就是说,可以针对无刷励磁机进行一次或多次故障检测。
在步骤S430,检测磁极探测线圈的实际端口电压。
在步骤S440,计算实际端口电压的各次谐波分量的有效值。
可以采用任何现有的或将来可能实现的谐波分析方法计算实际端口电压的各次谐波分量的有效值,例如,可以采用傅里叶分解(FFT)方法或者采用总体最小二乘旋转不变子空间算法(TLS-ESPRIT)结合模拟退火算法(SAA)来计算实际端口电压的各次谐波分量的有效值。
示例性地,计算实际端口电压的各次谐波分量的有效值可以包括:结合总体最小二乘旋转不变子空间算法和模拟退火算法来计算实际端口电压的各次谐波分量的有效值。
提取周期性信号中特定频率分量的传统方法是FFT。众所周知,利用FFT方法分析信号频谱时,只有满足整周期同步采样(即采样频率fs应为信号频率f的整数倍,且采样频率fs应大于信号中最高次谐波分量频率的2倍,采样持续时间也应是信号周期的整数倍),才能得到准确的结果。否则(即非同步采样),利用FFT方法会造成频谱泄漏和栅栏效应等,得到的频谱误差较大。
实际应用中,多采用固定采样频率采集电压。然而,在磁极探测线圈端口电压中谐波分量的频率可能随电机转速波动而变化的情况下,很难对磁极探测线圈的电压信号实现同步采样。而且实际信号的周期变化也给采样点数(即数据长度)的选取带来困难,可能无法实现整周期采样。在这些情况下,用FFT方法提取磁极探测线圈端口电压的故障特征谐波会出现较大误差。本发明实施例提供一种能够准确提取磁极探测线圈端口电压中故障特征谐波的方法。应用总体最小二乘旋转不变子空间算法结合模拟退火算法,能够有效克服FFT方法处理周期性信号的局限性,只需较少的采样点,且不必整周期同步采样,就能够准确计算采样信号中主要分量的频率和幅值。
在步骤S450,根据以下公式计算在线监测值Cd
Figure BDA0002659314950000101
其中,M为多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为实际端口电压中的2M/P的倍数次谐波分量的有效值。
在步骤S460,将在线监测值Cd与报警值ad相比较,如果在线监测值Cd大于报警值ad,则确定多相无刷励磁机存在旋转整流器二极管故障,否则,确定多相无刷励磁机不存在旋转整流器二极管故障。
可以将实际端口电压的谐波分量的有效值代入设定好的故障检测判据中,得到在线监测值Cd。当在线监测值Cd>报警值ad时,判断多相无刷励磁机发生了旋转整流器二极管故障。本发明提出的旋转整流器二极管故障检测判据为磁极探测线圈的端口电压中的1/P次、3/P次...等1/P的奇数倍谐波分量(除M/P的奇数倍次以外)的总有效值与2M/P次、4M/P次...等2M/P的倍数次谐波分量的总有效值之比Cd
如果在多相无刷励磁机内安装磁极探测线圈,从理论上来说,在多相无刷励磁机正常运行时(比如正常额定工况),气隙磁场在磁极探测线圈中产生包含预定谐波分量的端口电压;而当发生电气故障时,气隙磁场的分布情况发生变化,在磁极探测线圈中感应出其他频率的感应电动势。因此,可以根据正常及各种电气故障情况下磁极探测线圈端口电压的特征谐波,实现对不同电气故障的检测及区分。应用本发明设计的磁极探测线圈,可以实现对多相无刷励磁机有效的保护和监测。
理论分析表明,虽然多相无刷励磁机的电枢绕组为分数槽绕组,正常运行中电枢反应磁场中包含1/P次、2/P次等各种分数次谐波,但是由于电枢绕组本身是(M相)对称的,所以对于单个子探测线圈(本文描述的子探测线圈是绕制在单个磁极上的线圈)来说,该子探测线圈不与其他子探测线圈串联的话,在正常运行工况下,该子探测线圈的端口电压中只含有M/P次、2M/P次...这些M/P的倍数次谐波(P为极对数,M为相数)。而将相距P极的两个子探测线圈反向串联,就只有1/P次、3/P次等1/P的奇数倍谐波(包括基波)磁场会在这两个串联线圈中产生交变磁链及感应电动势,而某些频率的电压在子探测线圈串联后被抵消掉了。所以,相距P极的反向串联的两个子探测线圈所组成的磁极探测线圈,其端口电压在正常工况下只含有2M/P次、4M/P次等2M/P的倍数次谐波;在定子励磁绕组匝间短路故障下含有M/P次、2M/P次等M/P的倍数次谐波;在转子电枢绕组内部短路故障下含有2/P次、4/P次等2/P的倍数次谐波;在旋转整流器二极管故障下含有1/P次、2/P次等所有分数次谐波,其中奇数次谐波分量是由电枢绕组偶数次谐波电流引起的;在电枢断线故障(与同一桥臂的两个二极管同时开路是等效的)下含有2/P次、4/P次等2/P的倍数次谐波。上述特征规律也已通过实验与仿真的验证。
由上可知,当(单个)二极管开路故障(而不是电枢绕组一线断路)发生时,相距P个极下的两个子探测线圈反向串联后的端口电压中会出现所有的分数次谐波,其中除M/P次以外的1/P次、3/P次等1/P的奇数倍谐波是电枢绕组内部短路等其它故障中不会出现的,是旋转整流器二极管开路故障的独有故障特征。因此,可以通过磁极探测线圈的端口电压中出现除M/P次以外的1/P次、3/P次等1/P的奇数倍谐波作为故障判据,对多相无刷励磁机进行旋转整流器二极管故障在线监测,并与其他故障进行区分。表1示出多相无刷励磁机正常运行及各种故障工况下,磁极探测线圈端口电压的谐波特征。
表1.多相无刷励磁机正常运行及各种故障工况下,磁极探测线圈端口电压的谐波特征
Figure BDA0002659314950000111
Figure BDA0002659314950000121
可见,根据正常及各种故障情况下磁极探测线圈的端口电压谐波特征,可实现对旋转整流器二极管故障的唯一鉴别。对一台5对极11相无刷励磁机样机系统(P=5,M=11)进行正常及四种故障工况的理论分析,以及实验与仿真计算,可以表明本发明提出的基于磁极探测线圈的旋转整流器二极管故障在线监测方法的可行性。
理论上,在多相无刷励磁系统正常运行时,磁极探测线圈的端口电压中只会含有22/5次、44/5次...等22/5的倍数次谐波,但是由于电机制造工艺的误差,以及安装和测量产生的误差,在实际测得的磁极探测线圈端口电压中还会出现幅值较小的1/5次、2/5次...等其他分数次谐波。因此,多相无刷励磁系统正常运行时,监测得到的Cd值也不为零,考虑到这些由电机制造等因素引起的误差,可以设置合理的报警值ad,以尽量避免对正常或其它情况(转子等故障)误报警。
5对极11相无刷励磁机模拟样机系统的基本参数如表2所示,在励磁机样机的第1极和第6极下(相距P=5个极)各安装一个10匝的子探测线圈,并将两个子探测线圈反向串联后引出两个接线端用于测量磁极探测线圈的端口电压。
表2. 5对极11相无刷励磁机模拟样机基本参数
Figure BDA0002659314950000122
Figure BDA0002659314950000131
图8所示为励磁机模拟样机运行在励磁电压Ufd=10V,负载电阻R=10Ω,转速n=960r/min的正常工况下,磁极探测线圈端口电压的实验波形。对图8所示的端口电压进行总体最小二乘旋转不变子空间算法结合模拟退火算法计算,得到其中各次谐波分量的有效值,如表3所示。在表3中,各次谐波电压的标幺值,都是以该负载的正常工况下磁极探测线圈的端口电压总有效值为基值而得到的。从表3中可以看出其端口电压主要是22/5次谐波,其他次数谐波幅值较小,可以认为是由制造、安装等误差引起。图9所示为磁极探测线圈在正常工况下端口电压的傅里叶分解结果,从图中可以看出其端口电压中包含22/5次、44/5次等22/5的倍数次谐波。
表3.正常工况实验中磁极探测线圈端口电压各谐波分量有效值(单位:V)
Figure BDA0002659314950000132
示例性而非限制性地,可以根据正常运行时磁极探测线圈的端口电压的谐波分量中除M/P次以外的1/P次、3/P次等1/P的奇数倍谐波与2M/P次、4M/P次...等2M/P的倍数次谐波分量的总有效值之比设置报警值ad。根据表3所示的正常运行的数据,按照以下公式可确定报警值ad(本示例中预设裕度系数Kdtol取为5):
Figure BDA0002659314950000141
图10所示为励磁机模拟样机运行在励磁电压Ufd=10V,负载电阻R=10Ω,转速n=960r/min工况下发生单个二极管开路故障时磁极探测线圈端口电压的实验波形。对图10所示的端口电压进行总体最小二乘旋转不变子空间算法结合模拟退火算法计算,得到其中各次谐波分量的有效值,如表4所示。表4中各次谐波电压的基值取值与表3相同、都是该负载的正常工况下磁极探测线圈的端口电压总有效值。从表4中可以看出9/5次、14/5次和19/5次等谐波幅值与正常工况相比变化较大,一些1/5的奇数倍次谐波与正常工况相比变化明显,验证了理论推导中旋转整流器二极管故障时磁极探测线圈端口电压中会出现1/5次、2/5次等所有分数次谐波。图11为磁极探测线圈在旋转整流器二极管故障下端口电压的傅里叶分解结果,从图中也可以看出其端口电压中包含1/5次、2/5次等所有分数次谐波。
表4.单个二极管开路故障实验中磁极探测线圈端口电压各谐波分量有效值(单位:V)
Figure BDA0002659314950000142
/>
Figure BDA0002659314950000151
根据表4所示的数据,按照以下公式可计算在线监测值Cd
Figure BDA0002659314950000152
可见单个二极管开路故障可以很好地检测到。
图12所示为励磁机模拟样机运行在励磁电压Ufd=10V,负载电阻R=2Ω,转速n=960r/min工况下发生定子励磁绕组匝间短路50%故障时磁极探测线圈端口电压的实验波形。对图12所示的端口电压进行总体最小二乘旋转不变子空间算法结合模拟退火算法计算,得到其中各次谐波分量的有效值,如表5所示。以该负载的正常工况下磁极探测线圈端口电压总有效值作为基值对故障工况下的数据进行标幺化,可以方便观察故障下各谐波分量的变化情况。从表中可以看出其端口电压包含11/5次、22/5次等11/5的倍数次谐波,其中11/5次谐波幅值增大较多,其他分数次谐波有效值与正常工况相比变化不大。图13为磁极探测线圈在定子励磁绕组匝间短路50%故障下端口电压的傅里叶分解结果,从图中也可以看出其端口电压中包含11/5次、22/5次等11/5的倍数次谐波。
表5.定子励磁绕组短路50%故障实验中磁极探测线圈端口电压各谐波分量有效值(单位:V)
Figure BDA0002659314950000153
/>
Figure BDA0002659314950000161
图14所示为励磁机模拟样机运行在励磁电压Ufd=10V,负载电阻R=10Ω,转速n=960r/min工况下发生转子电枢相绕组70%匝间短路故障时磁极探测线圈端口电压的实验波形。对图14所示的端口电压进行总体最小二乘旋转不变子空间算法结合模拟退火算法计算,得到其中各次谐波分量的有效值,如表6所示。表6中各次谐波电压的基值取值与表5相同、都是该负载的正常工况下磁极探测线圈的端口电压总有效值。从表6中可以看出2/5次、4/5次等2/5的倍数次谐波比正常工况相比幅值变化较大,1/5次、3/5次等1/5的奇数倍次谐波幅值变化不大,也验证了电枢绕组故障时磁极探测线圈端口电压中会出现2/5次、4/5次等2/5的倍数次谐波。图15为磁极探测线圈在电枢绕组内部短路故障下端口电压的傅里叶分解结果,从图中也可以看出其端口电压中包含2/5次、4/5次等2/5的倍数次谐波。
表6.电枢相绕组70%匝间短路故障下磁极探测线圈端口电压各谐波分量有效值(单位:V)
Figure BDA0002659314950000162
/>
Figure BDA0002659314950000171
图16所示为励磁机模拟样机运行在励磁电压Ufd=10V,负载电阻R=10Ω,转速n=960r/min工况下发生转子电枢绕组单相断线故障时磁极探测线圈端口电压的实验波形。对图16所示的端口电压进行总体最小二乘旋转不变子空间算法结合模拟退火算法计算,得到其中各次谐波分量的有效值,如表7所示。表7中各次谐波电压的基值取值与表5相同、都是该负载的正常工况下磁极探测线圈的端口电压总有效值。从表7中可以看出其端口电压中8/5次、14/5次等谐波与正常工况相比幅值变化较大,而1/5次、3/5次等1/5的奇数倍次谐波幅值变化不大,验证了发生电枢断线故障时磁极探测线圈端口电压中包含2/5次、4/5次等2/5的倍数次谐波。图17为磁极探测线圈在电枢断线故障下端口电压的傅里叶分解结果,从图中也可以看出其端口电压中包含2/5次、4/5次等2/5的倍数次谐波。
表7.电枢绕组单相断线故障下磁极探测线圈端口电压各谐波分量有效值(单位:V)
Figure BDA0002659314950000172
/>
Figure BDA0002659314950000181
通过实验数据可知,在多相无刷励磁机正常运行时,由于制造、安装等误差,磁极探测线圈端口电压中会出现较小幅值的1/5次、2/5次...等所有的分数次谐波,但是其中幅值较大的是22/5的倍数次谐波。当发生定子励磁绕组匝间短路故障、电枢绕组内部短路和断线故障时,磁极探测线圈端口电压中1/5次、3/5次等1/5的奇数倍谐波与正常时相比变化并不明显,因此可以用1/5的奇数倍谐波幅值的变化来对二极管开路故障进行唯一鉴别。
通过本发明提出的旋转整流器二极管故障检测判据Cd,可以对旋转整流器二极管故障进行有效鉴别。此外,通过设置合适的报警值ad,可以避免对其他类型故障误报警,下面通过示例说明。针对5对极11相无刷励磁机样机系统,计算其在定子励磁绕组匝间短路故障、电枢绕组内部短路和电枢断线故障下的检测判据Cd值,结果如表8所示。
表8.根据各种工况实验数据得到的检测判据Cd值结果
Figure BDA0002659314950000182
从表8中可以看出,定子励磁绕组匝间短路故障、电枢绕组内部短路和电枢断线故障时检测判据Cd虽然比较小,但并不像理论分析那样完全等于0,这是由励磁机制造、安装等固有误差引起的。但上述三种故障引起的监测值Cd均小于报警值ad(前面根据正常工况实测数据所确定的0.164),不会报警,验证了本发明提出的二极管故障监测方法的可靠性。为避免对正常工况以及其他故障的误报警,可以设置合理的报警值ad。下面描述报警值ad的两种示例性设置方式。
在一个示例中,报警值ad落入[0.1,0.2]的范围内。可以在[0.1,0.2]的范围内任意选取一个值作为报警值ad。通常除旋转整流器二极管故障以外,电枢绕组匝间短路故障下的检测判据Cd值是最大的,如表8所示。电枢绕组匝间短路故障下的检测判据Cd值可能在如表8所示的0.074附近。因此,可以将报警值ad设置为略大于0.074,如[0.1,0.2]中的任意一个值,这样,可以比较好地避免对除旋转整流器二极管故障以外故障以及正常工况的误报警。
在另一个示例中,方法400还可以包括:
获取多相无刷励磁机或与多相无刷励磁机相同类型的样本励磁机在正常运行时测试探测线圈的理论端口电压,其中,测试探测线圈采用与磁极探测线圈相同的布置方式布置在多相无刷励磁机或样本励磁机上;
计算理论端口电压的各次谐波分量的有效值;
根据以下公式计算报警值ad
Figure BDA0002659314950000191
其中,U2M/P、U23M/P、…、U2(2P-1)M/P为理论端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U22M/P、U24M/P、…、U22M为理论端口电压中的2M/P的倍数次谐波分量的有效值,Kdtol为预设裕度系数。
上述“与磁极探测线圈相同的布置方式”中的“布置方式”包括磁极探测线圈中的子探测线圈的绕制和串联方式。具体地,测试探测线圈也包括两个子探测线圈,测试探测线圈所包括的两个子探测线圈一一对应地绕制在多相无刷励磁机或样本励磁机的相距P极的两个磁极上并反向串联在一起,形成测试探测线圈。可选地,测试探测线圈可以与用于实际检测多相无刷励磁机的旋转整流器二极管故障的磁极探测线圈采用同一线圈实现。
示例性地,预设裕度系数Kdtol可以是任何合适的数值,其可以预先通过理论或实验确定,即通过理论或实验确定待检测的多相无刷励磁机或与其相同类型的样本励磁机在正常工况下获得的检测判据Cd乘以多少倍所获得的报警值ad可以较好地将旋转整流器二极管故障与正常工况及其他三种故障区分开。
示例性地,Kdtol的取值范围如下:2≤Kdtol≤10。经过理论和实验研究,预设裕度系数Kdtol设置在2和10之间可以比较好地保证将旋转整流器二极管故障与正常工况及其他三种故障区分开。
通过测试方式获得的报警值ad可靠性比较高,有利于比较准确地将旋转整流器二极管故障与正常工况及其他三种故障区分开,从而有利于提高旋转整流器二极管故障监测的灵敏度和可靠性。
另一方面,多相无刷励磁机中高速旋转的整流器,多个二极管有可能同时发生故障。根据本发明实施例,还可以对两管同时故障的工况进行仿真计算。
图18示出11相环形绕组无刷励磁机的旋转整流器的二极管分布的示意图。根据本发明实施例,可以在励磁电压Ufd=10V,负载电阻R=10Ω,转速n=960r/min工况下进行两管开路故障仿真。图19示出两个共阴极管D1和D2开路工况下磁极探测线圈端口电压的仿真波形。图20示出一个共阴极管D2和一个(不在同一桥臂的)共阳极管D3开路工况下磁极探测线圈端口电压的仿真波形。对磁极探测线圈的端口电压进行总体最小二乘旋转不变子空间算法结合模拟退火算法计算,得到两种故障工况下计算所得的检测判据Cd值,结果如表9所示。
表9.不同位置的两管开路故障中磁极探测线圈检测判据Cd值的仿真结果
Figure BDA0002659314950000201
从表9中可以看出,无论是两个共阴极管开路故障,还是一个共阴极管和一个(不在同一桥臂的)共阳极管开路故障,磁极探测线圈检测判据Cd值都比单管开路故障的0.220更大。一般来说,只要能灵敏检测出一管开路故障,也就可以检测出多管开路故障。
实验和仿真都说明,本发明提出的旋转整流器二极管开路故障的检测方法可以准确检测出单个及多个(不在同一桥臂的)二极管开路故障,具有较高的灵敏性。
通过上述模拟样机的实验、仿真验证,说明可以采用相距P个极下的两个反向串联的子探测线圈的端口电压中除M/P次以外的1/P的奇数倍次谐波分量的总有效值与2M/P的倍数次谐波分量的总有效值之比,来对二极管开路故障进行在线监测。利用正常工况实测数据确定报警值ad的方案,不仅可以排除有电机制造、安装等带来的误差,并且可以有效地与其他故障进行区分防止误报警情况发生,还能进一步保证对二极管开路故障保持较高的灵敏度。
根据本发明实施例,方法400还可以包括:在确定多相无刷励磁机存在旋转整流器二极管故障的情况下,输出报警信息。
报警信息可以是任何能够指示多相无刷励磁机存在旋转整流器二极管故障的信息。在一个示例中,报警信息是数据,可以通过有线或无线网络将报警信息输出至远程服务器(例如远程电机管理系统)或其他设备(个人计算机或移动终端等)。在另一个示例中,报警信息可以是声音信号、图像信号、光信号等。例如,可以通过显示器、扬声器、蜂鸣器、闪光灯等装置中的一种或多种输出报警信息。通过输出报警信息,可以通知工作人员发生旋转整流器二极管故障,以提示工作人员对多相无刷励磁机进行检修。
与现有的基于定子励磁电流的故障监测方法相比,本发明提供的基于磁极探测线圈的旋转整流器二极管故障监测方法能提高对多相环形绕组无刷励磁系统故障监测的灵敏度和可靠性,在故障监测方面具有较大的应用前景。
根据本发明实施例的检测多相无刷励磁机的旋转整流器二极管故障的示例性整体流程可以包括:
(1)、在多相无刷励磁机静止的励磁磁极上安装两个相距P个极的子探测线圈,并将其反向串联,形成磁极探测线圈;
(2)、在多相无刷励磁机正常运行情况下,对磁极探测线圈的端口电压进行预采集,并利用一定方法(如FFT、TLS-ESPRIT+SAA)进行处理,计算其中各种谐波分量的频率与幅值;
(3)、多相无刷励磁机实际运行时,对磁极探测线圈的端口电压进行实时采样,利用一定方法(如FFT、TLS-ESPRIT+SAA)进行处理,计算其中各种谐波分量的频率与幅值;
(4)、用步骤(3)测取的数据,根据上文描述的公式(1)计算得到多相无刷励磁机运行时的检测判据Cd值;
(5)、用步骤(2)预采集的数据,根据上文描述的公式(2)确定报警值ad
(6)、一旦Cd>报警值ad,说明发生旋转整流器二极管开路故障,可以发报警信号。
根据本发明另一方面,提供一种用于检测多相无刷励磁机的旋转整流器二极管故障的系统。图21示出根据本发明一个实施例的用于检测多相无刷励磁机的旋转整流器二极管故障的系统2100的示意性框图。如图21所示,系统2100包括磁极探测线圈2102、电压检测装置2104和处理装置2106。
磁极探测线圈2102包括两个子探测线圈,两个子探测线圈用于在多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制并反向串联以获得串联后的磁极探测线圈,其中,P为多相无刷励磁机的极对数,磁极探测线圈的端口保持开路状态。
磁极探测线圈2102可以利用上文描述的布置方式布置于多相无刷励磁机的磁极上,并且可以将磁极探测线圈2102的线圈首、末端引出以供检测。
电压检测装置2104与所述磁极探测线圈2102的端口连接,用于检测所述磁极探测线圈2102的实际端口电压。
电压检测装置2104可以是任何能够检测电压的装置,包括但不限于数字示波器等。
处理装置2106与电压检测装置2104连接,用于:
获取通过电压检测装置检测获得的、磁极探测线圈布置在多相无刷励磁机上时的实际端口电压;
计算实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure BDA0002659314950000221
其中,M为多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为实际端口电压中的2M/P的倍数次谐波分量的有效值;
将在线监测值Cd与报警值ad相比较,如果在线监测值Cd大于报警值ad,则确定多相无刷励磁机存在旋转整流器二极管故障,否则,确定多相无刷励磁机不存在旋转整流器二极管故障。
处理装置2106可以是中央处理单元(CPU)、微控制器(MCU)、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑阵列(FPGA)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,并且可以控制所述系统2100中的其它组件以执行期望的功能。处理装置2106与电压检测装置2104之间的连接可以是直接或间接连接。例如,处理装置2106可以通过数据传输线与电压检测装置2104连接,也可以通过无线方式(即网络)与电压检测装置2104连接。
上文已经结合图4-20描述了用于检测多相无刷励磁机的旋转整流器二极管故障的方法400的实施方式,本领域技术人员可以根据上文描述理解用于检测多相无刷励磁机的旋转整流器二极管故障的系统2100中的磁极探测线圈2102、电压检测装置2104和处理装置2106的结构和工作原理,此处不再赘述。
根据本发明实施例,报警值ad落入[0.1,0.2]的范围内。
根据本发明实施例,处理装置2106还用于:
获取多相无刷励磁机或与多相无刷励磁机相同类型的样本励磁机在正常运行时测试探测线圈的理论端口电压,其中,测试探测线圈采用与磁极探测线圈相同的布置方式布置在多相无刷励磁机或样本励磁机上;
计算理论端口电压的各次谐波分量的有效值;
根据以下公式计算报警值ad
Figure BDA0002659314950000231
其中,U2M/P、U23M/P、…、U2(2P-1)M/P为理论端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U22M/P、U24M/P、…、U22M为理论端口电压中的2M/P的倍数次谐波分量的有效值,Kdtol为预设裕度系数。
根据本发明实施例,Kdtol的取值范围如下:2≤Kdtol≤10。
根据本发明实施例,处理装置2106通过以下方式计算实际端口电压的各次谐波分量的有效值:结合总体最小二乘旋转不变子空间算法和模拟退火算法来计算实际端口电压的各次谐波分量的有效值。
根据本发明实施例,两个子探测线圈中的每个子探测线圈的匝数为多相无刷励磁机的励磁绕组每极串联匝数的1/10。
根据本发明实施例,对于两个子探测线圈中的每个子探测线圈,该子探测线圈围绕对应磁极的纵轴中的第一线段绕制,该子探测线圈的对应磁极上的励磁绕组围绕对应磁极的纵轴中的第二线段绕制,第一线段与第二线段不重叠。
根据本发明实施例,系统2100还可以包括:输出装置(未示出),用于在确定多相无刷励磁机存在旋转整流器二极管故障的情况下,输出报警信息。
输出装置可以向外部(例如用户)输出各种信息(例如图像和/或声音)。输出装置可以包括有线或无线网络接口、显示器、扬声器、蜂鸣器、闪光灯等中的一个或多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
此外,根据本发明实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令。所述存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。
在一个实施例中,程序指令在运行时用于执行以下步骤:
获取磁极探测线圈布置在多相无刷励磁机上时的实际端口电压,其中,磁极探测线圈包括两个子探测线圈,两个子探测线圈用于在多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制并反向串联以获得串联后的磁极探测线圈,其中,P为多相无刷励磁机的极对数,磁极探测线圈的端口保持开路状态;
计算实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure BDA0002659314950000251
其中,M为多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为实际端口电压中的2M/P的倍数次谐波分量的有效值;
将在线监测值Cd与报警值ad相比较,如果在线监测值Cd大于报警值ad,则确定多相无刷励磁机存在旋转整流器二极管故障,否则,确定多相无刷励磁机不存在旋转整流器二极管故障。
在一个实施例中,报警值a落入[0.1,0.2]的范围内。
在一个实施例中,程序指令在运行时还用于执行以下步骤:
获取多相无刷励磁机或与多相无刷励磁机相同类型的样本励磁机在正常运行时测试探测线圈的理论端口电压,其中,测试探测线圈采用与磁极探测线圈相同的布置方式布置在多相无刷励磁机或样本励磁机上;
计算理论端口电压的各次谐波分量的有效值;
根据以下公式计算报警值ad
Figure BDA0002659314950000252
其中,U2M/P、U23M/P、…、U2(2P-1)M/P为理论端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U22M/P、U24M/P、…、U22M为理论端口电压中的2M/P的倍数次谐波分量的有效值,Kdtol为预设裕度系数。
在一个实施例中,Kdtol的取值范围如下:2≤Kdtol≤10。
在一个实施例中,程序指令在运行时所用于执行的计算实际端口电压的各次谐波分量的有效值的步骤包括:结合总体最小二乘旋转不变子空间算法和模拟退火算法来计算实际端口电压的各次谐波分量的有效值。
在一个实施例中,程序指令在运行时还用于执行以下步骤:在确定多相无刷励磁机存在定在绕组故障的情况下,输出报警信息。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的用于检测多相无刷励磁机的旋转整流器二极管故障的系统中的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (8)

1.一种用于检测多相无刷励磁机的旋转整流器二极管故障的方法,包括:
在所述多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制子探测线圈,其中,P为所述多相无刷励磁机的极对数;
将所绕制的两个子探测线圈反向串联,以获得磁极探测线圈,其中,所述磁极探测线圈的端口保持开路状态;
检测所述磁极探测线圈的实际端口电压;
计算所述实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure QLYQS_1
其中,M为所述多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为所述实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、I12M为所述实际端口电压中的2M/P的倍数次谐波分量的有效值;
将所述在线监测值Cd与报警值ad相比较,如果所述在线监测值Cd大于所述报警值ad,则确定所述多相无刷励磁机存在旋转整流器二极管故障,否则,确定所述多相无刷励磁机不存在旋转整流器二极管故障;
其中,所述方法还包括:
获取所述多相无刷励磁机或与所述多相无刷励磁机相同类型的样本励磁机在正常运行时测试探测线圈的理论端口电压,其中,所述测试探测线圈采用与所述磁极探测线圈相同的布置方式布置在所述多相无刷励磁机或所述样本励磁机上;
计算所述理论端口电压的各次谐波分量的有效值;
根据以下公式计算所述报警值ad
Figure QLYQS_2
其中,U21/P、U23/P、…、U2(2M+1)/P为所述理论端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U22M/P、U24M/P、…、U22M为所述理论端口电压中的2M/P的倍数次谐波分量的有效值,Kdtol为预设裕度系数。
2.如权利要求1所述的方法,其中,所述报警值ad落入[0.1,0.2]的范围内。
3.如权利要求1所述的方法,其中,Kdtol的取值范围如下:2≤Kdtol≤10。
4.如权利要求1至3任一项所述的方法,其中,所述计算所述实际端口电压的各次谐波分量的有效值包括:
结合总体最小二乘旋转不变子空间算法和模拟退火算法来计算所述实际端口电压的各次谐波分量的有效值。
5.如权利要求1至3任一项所述的方法,其中,所述两个子探测线圈中的每个子探测线圈的匝数为所述多相无刷励磁机的励磁绕组每极串联匝数的1/10。
6.如权利要求1至3任一项所述的方法,其中,对于所述两个子探测线圈中的每个子探测线圈,该子探测线圈围绕对应磁极的纵轴中的第一线段绕制,该子探测线圈的对应磁极上的励磁绕组围绕对应磁极的纵轴中的第二线段绕制,所述第一线段与所述第二线段不重叠。
7.一种用于检测多相无刷励磁机的旋转整流器二极管故障的系统,包括:
磁极探测线圈,包括两个子探测线圈,所述两个子探测线圈用于在所述多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制并反向串联以获得串联后的所述磁极探测线圈,其中,P为所述多相无刷励磁机的极对数,所述磁极探测线圈的端口保持开路状态;
电压检测装置,与所述磁极探测线圈的端口连接,用于检测所述磁极探测线圈的端口电压;
处理装置,与所述电压检测装置连接,用于:
获取通过所述电压检测装置检测获得的、所述磁极探测线圈布置在所述多相无刷励磁机上时的实际端口电压;
计算所述实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure QLYQS_3
其中,M为所述多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为所述实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为所述实际端口电压中的2M/P的倍数次谐波分量的有效值;
将所述在线监测值Cd与报警值ad相比较,如果所述在线监测值Cd大于所述报警值ad,则确定所述多相无刷励磁机存在旋转整流器二极管故障,否则,确定所述多相无刷励磁机不存在旋转整流器二极管故障;
其中,所述处理装置还用于:
获取所述多相无刷励磁机或与所述多相无刷励磁机相同类型的样本励磁机在正常运行时测试探测线圈的理论端口电压,其中,所述测试探测线圈采用与所述磁极探测线圈相同的布置方式布置在所述多相无刷励磁机或所述样本励磁机上;
计算所述理论端口电压的各次谐波分量的有效值;
根据以下公式计算所述报警值ad
Figure QLYQS_4
其中,U21/P、U23/P、…、U2(2M+1)/P为所述理论端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U22M/P、U24M/P、…、U22M为所述理论端口电压中的2M/P的倍数次谐波分量的有效值,Kdtol为预设裕度系数。
8.一种存储介质,在所述存储介质上存储了程序指令,所述程序指令在运行时用于执行以下步骤:
获取磁极探测线圈布置在多相无刷励磁机上时的实际端口电压,其中,所述磁极探测线圈包括两个子探测线圈,所述两个子探测线圈用于在所述多相无刷励磁机的相距P极的两个磁极中的每个磁极上分别绕制并反向串联以获得串联后的所述磁极探测线圈,其中,P为所述多相无刷励磁机的极对数,所述磁极探测线圈的端口保持开路状态;
计算所述实际端口电压的各次谐波分量的有效值;
根据以下公式计算在线监测值Cd
Figure QLYQS_5
其中,M为所述多相无刷励磁机的相数,U11/P、U13/P、…、U1(2M+1)/P为所述实际端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U12M/P、U14M/P、…、U12M为所述实际端口电压中的2M/P的倍数次谐波分量的有效值;
将所述在线监测值Cd与报警值ad相比较,如果所述在线监测值Cd大于所述报警值ad,则确定所述多相无刷励磁机存在旋转整流器二极管故障,否则,确定所述多相无刷励磁机不存在旋转整流器二极管故障;
其中,所述程序指令在运行时还用于执行以下步骤:
获取所述多相无刷励磁机或与所述多相无刷励磁机相同类型的样本励磁机在正常运行时测试探测线圈的理论端口电压,其中,所述测试探测线圈采用与所述磁极探测线圈相同的布置方式布置在所述多相无刷励磁机或所述样本励磁机上;
计算所述理论端口电压的各次谐波分量的有效值;
根据以下公式计算所述报警值ad
Figure QLYQS_6
其中,U21/P、U23/P、…、U2(2M+1)/P为所述理论端口电压中除M/P次以外的1/P的奇数倍次谐波分量的有效值,U22M/P、U24M/P、…、U22M为所述理论端口电压中的2M/P的倍数次谐波分量的有效值,Kdtol为预设裕度系数。
CN202010899380.2A 2020-08-31 2020-08-31 用于检测多相无刷励磁机整流器二极管故障的方法和系统 Active CN111983419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010899380.2A CN111983419B (zh) 2020-08-31 2020-08-31 用于检测多相无刷励磁机整流器二极管故障的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010899380.2A CN111983419B (zh) 2020-08-31 2020-08-31 用于检测多相无刷励磁机整流器二极管故障的方法和系统

Publications (2)

Publication Number Publication Date
CN111983419A CN111983419A (zh) 2020-11-24
CN111983419B true CN111983419B (zh) 2023-06-23

Family

ID=73447015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010899380.2A Active CN111983419B (zh) 2020-08-31 2020-08-31 用于检测多相无刷励磁机整流器二极管故障的方法和系统

Country Status (1)

Country Link
CN (1) CN111983419B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777530B (zh) * 2021-09-10 2023-07-11 华北电力大学(保定) 内转子式三相无刷励磁机旋转二极管开路故障诊断方法
CN117554810B (zh) * 2024-01-10 2024-03-19 南京师范大学 航空三级式起动/发电机旋转整流器故障诊断方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072755A (ja) * 2014-09-29 2016-05-09 三菱電機株式会社 高周波整流器
CN107843805A (zh) * 2017-10-30 2018-03-27 华北电力大学(保定) 无刷励磁机旋转二极管开路故障在线诊断方法
CN109991539A (zh) * 2019-03-29 2019-07-09 广西防城港核电有限公司 多相角接无刷励磁机旋转二极管一相开路检测方法与系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626259B2 (ja) * 2004-10-21 2011-02-02 日産自動車株式会社 電力変換装置の制御方法
WO2008018338A1 (fr) * 2006-08-08 2008-02-14 National University Corporation The University Of Electro-Communications Circuit de traitement d'harmoniques et circuit d'amplification mettant en oeuvre ce circuit de traitement
CN103308857B (zh) * 2013-07-05 2016-02-17 株洲中航动科南方燃气轮机成套制造安装有限公司 发电机旋转整流器检测装置及检测方法
CN107831437B (zh) * 2017-10-23 2019-10-18 西北工业大学 航空无刷电励磁同步电机旋转整流器故障检测及定位方法
CN109581219B (zh) * 2018-12-14 2021-07-09 广州孚鼎自动化控制设备有限公司 一种无刷交流发电机励磁系统故障检测方法
CN109596936B (zh) * 2018-12-21 2020-12-08 许昌学院 航空三相交流励磁系统双旋转二极管开路故障检测方法
CN111308345B (zh) * 2020-04-08 2021-10-22 清华大学 用于检测无刷励磁机的电气故障的方法和系统及存储介质
CN111308346B (zh) * 2020-04-08 2021-05-11 清华大学 用于检测多相无刷励磁机定子励磁绕组故障的方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072755A (ja) * 2014-09-29 2016-05-09 三菱電機株式会社 高周波整流器
CN107843805A (zh) * 2017-10-30 2018-03-27 华北电力大学(保定) 无刷励磁机旋转二极管开路故障在线诊断方法
CN109991539A (zh) * 2019-03-29 2019-07-09 广西防城港核电有限公司 多相角接无刷励磁机旋转二极管一相开路检测方法与系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
An Online Diagnostic Method for Rotary Diode Open-Circuit Faults in Brushless Exciters;Yucai Wu et al.;IEEE Transactions on Energy Conversion;第33卷(第4期);第1677 - 1685页 *
Analysis of inherent unbalanced currents in three-phase multi-branch brushless exciter;Wei Du et al.;2019 IEEE International Electric Machines & Drives Conference;第1875-1880页 *
Research on voltage characteristics of internal electric fault in aircraft generator;Bin Chen et al.;2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific);第1-6页 *
发电机绕组匝间故障检测的新型探测线圈;孙宇光 等;中国电机工程学报;第34卷(第06期);第917-924页 *
核电多相角形无刷励磁系统旋转二极管开路故障特征分析;郝亮亮 等;电力系统自动化;第43卷(第11期);第112-120页 *

Also Published As

Publication number Publication date
CN111983419A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
Gyftakis et al. Reliable detection of stator interturn faults of very low severity level in induction motors
CN111983452B (zh) 用于检测多相无刷励磁机的电枢绕组故障的方法和系统
Mirzaeva et al. Advanced diagnosis of stator turn-to-turn faults and static eccentricity in induction motors based on internal flux measurement
CN111308346B (zh) 用于检测多相无刷励磁机定子励磁绕组故障的方法和系统
Nandi et al. Fault diagnosis of electrical machines-a review
Mirafzal et al. On innovative methods of induction motor inter-turn and broken-bar fault diagnostics
Drif et al. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses
CN111308345B (zh) 用于检测无刷励磁机的电气故障的方法和系统及存储介质
CN102520352B (zh) 一种交流无刷发电机故障诊断仪
EP2394183B1 (en) Robust on-line stator turn fault identification system
US7042229B2 (en) System and method for on line monitoring of insulation condition for DC machines
CN108680858B (zh) 用于监测永磁同步电机转子失磁故障的方法和系统
JP4471628B2 (ja) 発電機界磁巻線の速度感知界磁地絡検出モード
CN111983419B (zh) 用于检测多相无刷励磁机整流器二极管故障的方法和系统
Riera-Guasp et al. Evaluation of the amplitudes of high-order fault related components in double bar faults
WO2013136098A1 (en) Method for rotor winding damage detection in rotating alternating machines by differential measurement of magnetic field by using two measuring coils
Goktas et al. Separation of induction motor rotor faults and low frequency load oscillations through the radial leakage flux
Blanquez et al. New fault-resistance estimation algorithm for rotor-winding ground-fault online location in synchronous machines with static excitation
Deeb et al. Three-phase induction motor short circuits fault diagnosis using MCSA and NSC
Bonet-Jara et al. Comprehensive analysis of principal slot harmonics as reliable indicators for early detection of inter-turn faults in induction motors of deep-well submersible pumps
Gyftakis et al. Introduction of the zero-sequence stray flux as a reliable diagnostic method of rotor electrical faults in induction motors
Gritli Diagnosis and fault detection in electrical machines and drives based on advanced signal processing techniques
Pandarakone et al. Online slight inter-turn short-circuit fault diagnosis using the distortion ratio of load current in a low-voltage induction motor
CN113777530B (zh) 内转子式三相无刷励磁机旋转二极管开路故障诊断方法
Pietrzak et al. Stator phase current STFT analysis for the PMSM stator winding fault diagnosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant